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Sums for U(2n, q2) and their applications
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1. Introduction. Let v be a complex-valued function on the finite field
Fq, v′ the lifting of v to Fq2 (cf. (2.1)), and let u : Fq2 → C be any function.
Then we consider the sum ∑

w∈SU(2n,q2)

v′(trw),(1.1)

where SU(2n, q2) is a special unitary group over Fq2 (cf. (2.5), (2.6)) and
trw is the trace of w. Also, we investigate∑

w∈U(2n,q2)

u(detw)v′(trw),(1.2)

where U(2n, q2) is a unitary group over Fq2 (cf. (2.5)) and detw is the
determinant of w.

In our previous papers about similar sums for classical groups over finite
fields, u and v′ are respectively a multiplicative character and a nontriv-
ial additive character (or a lifting of a nontrivial additive character to the
quadratic extension for unitary groups or a function closely related to a
nontrivial additive character; cf. [4]–[15]).

However, as demonstrated in [3] and [16], all the computations can be
carried out not only for characters but also for arbitrary functions. So we
will work in the more general setting of arbitrary functions.

The main purpose of this paper is to find explicit expressions for the sums
(1.1) and (1.2). It turns out that they are polynomials in q with coefficients
involving certain simple sums.

Another purpose of this paper is to find a formula for the number C(α, β)
of elements w in U(2n, q2) with detw = α, trFq2/Fq trw = β, for any α in the
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kernel of the norm map NFq2/Fq : F×
q2 → F×q and any β ∈ Fq. This follows

easily from the explicit expression of (1.2) in (5.13) by specializing u and v
to be the obvious functions. At the end of this paper, two tables of C(α, β)’s
for all possible values of α, β (an (q + 1)× q matrix) are provided.

Finally, we state the main results of this paper. One is referred to the
next section for some notations here.

Theorem A. The sum
∑

w∈U(2n,q2) u(detw)v′(trw) equals

(q2 − 1)−1q2n2−n−1
2n∏

j=1

(qj − (−1)j)SF×
q2

(ũ)SFq(v)

+ q2n2−n−2
n∑

r=0

q(
r+1

2 )
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
[(n−r+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

× (MKn−r+2−2l(v′, ũr; 1, 1 : q2)− q−1(q2 − 1)n−r+1−2lSF×
q2

(ũ)SFq(v))

+





q2n2−1((q2 − 1)−1SF×
q2

(ũ)− u(1))SFq(v)

×
∑

0≤r≤n
r even

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n even,

q2n2−1((q2 − 1)−1SF×
q2

(ũ)− u(−1))SFq(v)

×
∑

0≤r≤n
r odd

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n odd.

Here ũr, ũ are as in (5.3) and (5.4) respectively, for SF×
q2

(ũ), SFq(v) one

is referred to (2.20), MKm(v′, ũr; 1, 1 : q2) is defined in (3.1) and (3.2), and
the unspecified sum is over all integers j1, . . . , jl−1 satisfying 2l−1 ≤ jl−1 ≤
. . . ≤ j1 ≤ n− r + 1 (it is 1 for l = 1 by convention).
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Theorem B. Let α ∈ Ker(NFq2/Fq : F×
q2 → F×q ), β ∈ Fq. Then the num-

ber C(α, β) of the elements w ∈ U(2n, q2) with detw = α, trFq2/Fq trw = β

is given by

(q + 1)−1q2n2−n−1
2n∏

j=1

(qj − (−1)j)

+ q2n2−n−2
n∑

r=0

q(
r+1

2 )
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
[(n−r+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

× (δ(n− r + 2− 2l, q2; (−1)rα, β)− q−1(q + 1)−1(q2 − 1)n−r+2−2l)

+





q2n2−1((q + 1)−1 − δα,1)
∑

0≤r≤n
r even

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n even,

q2n2−1((q + 1)−1 − δα,−1)
∑

0≤r≤n
r odd

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n odd.

Here δ(m, q2; (−1)rα, β) is as in (6.1) and (6.2), the unspecified sum is
over all the integers j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ . . . ≤ j1 ≤
n− r+ 1 (it is 1 for l = 1 by convention), and δα,±1 are the Kronecker delta
(cf. (2.19)).

2. Preliminaries. In this section, we will fix some notations and collect
from [8] some facts that will be used in what follows. Also, refer to [1] and
[17] for some elementary facts below.

Let Fq and Fq2 denote respectively the finite field with q = pd elements
(p any prime, d a positive integer), and the quadratic extension of Fq. Let
τ : Fq2 → Fq2 be the Frobenius automorphism given by

ατ = αq.
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Then, for α ∈ Fq2 ,

trFq2/Fq α = α+ ατ , NFq2/Fqα = αατ .

For a function v : Fq → C, v′ will be used to denote the function v “lifted
to Fq2”, i.e.,

v′ = v ◦ trFq2/Fq .(2.1)

Also, for convenience we will denote the kernel of the norm map NFq2/Fq :

F×
q2 → F×q by

KNq = Ker(NFq2/Fq : F×
q2 → F×q ).(2.2)

In the following, trA and detA denote respectively the trace of A and
the determinant of A for a square matrix A, and, with “t” indicating the
transpose, ∗B = t(βτij) for any matrix B = (βij) over Fq2 . A square matrix
B over Fq2 is called Hermitian if ∗B = B. It is well known (cf. [2]), for each
positive integer r, that the number hr of all r × r nonsingular Hermitian
matrices is given by

hr = q(
r
2)

r∏

j=1

(qj + (−1)j).(2.3)

Let GL(n, q) denote the group of all invertible n×n matrices with entries
in Fq. The order of GL(n, q) equals

gn(q) =
n−1∏

j=0

(qn − qj) = q(
n
2)

n∏

j=1

(qj − 1).(2.4)

The unitary group U(2n, q2) is defined by

U(2n, q2) = {w ∈ GL(2n, q2) | ∗wJw = J },(2.5)

where

J =
[

0 1n
1n 0

]
.

Also,
SU(2n, q2) = {w ∈ U(2n, q2) | detw = 1}.(2.6)

The composite of the matrix trace tr : U(2n, q2) → Fq2 and the field trace
trFq2/Fq : Fq2 → Fq will be denoted by

tn,q = trFq2/Fq ◦ tr : U(2n, q2)→ Fq.(2.7)

P (2n, q2) denotes the maximal parabolic subgroup of U(2n, q2)
defined by

P (2n, q2) =

{[
A 0
0 ∗A−1

][
1n B
0 1n

] ∣∣∣∣
A ∈ GL(n, q2), B is n× n
over Fq2 with ∗B +B = 0

}
.(2.8)
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Also, we put

(2.9) Q = Q(2n, q2) = {w ∈ P (2n, q2) | detw = 1}

=

{[
A 0
0 ∗A−1

][
1n B
0 1n

] ∣∣∣∣
A ∈ GL(n, q2),

detA ∈ F×q , ∗B +B = 0

}
,

(2.10) Q− = Q−(2n, q2) = {w ∈ P (2n, q2) | detw = −1}

=





[
A 0
0 ∗A−1

][
1n B
0 1n

]
∣∣∣∣∣∣∣

A ∈ GL(n, q2),

trFq2/Fq(detA) = 0,
∗B +B = 0




.

Note here that, for A ∈ GL(n, q2),

detA ∈ F×q ⇔ (detA)q−1 = 1,(2.11)

trFq2/Fq(detA) = 0 ⇔ (detA)q−1 = −1.

In [8], it was noted that, starting from the Bruhat decomposition

U(2n, q2) =
n∐

r=0

PσrP,

one can obtain the following decompositions:

(2.12) U(2n, q2) =
n∐

r=0

Pσr(Br\Q),

(2.13) SU(2n, q2) =
( ∐

0≤r≤n
r even

Qσr(Br\Q)
)
q
( ∐

0≤r≤n
r odd

Q−σr(Br\Q)
)
,

where

Br = Br(q2) = {w ∈ Q(2n, q2) | σrwσ−1
r ∈ P (2n, q2)},(2.14)

σr =




0 0 1r 0
0 1n−r 0 0
1r 0 0 0
0 0 0 1n−r


 .(2.15)

For integers n, r with 0 ≤ r ≤ n, the q-binomial coefficients are de-
fined by [

n

r

]

q

=
r−1∏

j=0

qn−j − 1
qr−j − 1

.(2.16)

Then, as was noted in [8],

|Br(q2)\Q(2n, q2)| = qr
2
[
n

r

]

q2
.(2.17)



344 D. S. Kim

Also, from the q-binomial theorem (cf. [8, (2.13)]), one can see that
n∑

r=0

|Br\Q| =
n∑

r=0

qr
2
[
n

r

]

q2
=

n∏

j=1

(q2j−1 + 1).(2.18)

[y] denotes the greatest integer ≤ y, for a real number y. For α, β ∈ Fq2 ,
we will use the Kronecker delta, so that

δα,β =
{

1 if α = β,
0 otherwise.

(2.19)

For a complex-valued function h defined on a finite set X and a subset Y of
X, SY (h) will be used to denote

SY (h) =
∑

α∈Y
h(α).(2.20)

3. Some propositions. For any f, h : Fq → C, α, β ∈ Fq, and m ∈ Z≥0,
define, for m > 0,

(3.1) MKm(f, h;α, β : q)

=
∑

α1,...,αm∈F×q

h(α1 . . . αm)f(αα1 + βα−1
1 + . . .+ ααm + βα−1

m ),

and
MK0(f, h;α, β : q) = h(1)f(0).(3.2)

We first recall the following proposition from [8, Theorem 4.2], which
will be needed in proving Proposition 3.2.

Proposition 3.1. For integers n ≥ 1, α, β, γ ∈ F×q , and λ a nontrivial
additive character of Fq, the sum

(3.3) Sn(γ;α, β)

=
∑

w∈SL(n,q)

λ

(
α tr

[
1n−1 0

0 γ

]
w + β tr

([
1n−1 0

0 γ

]
w

)−1)

is given by

(3.4) Sn(γ;α, β)

= q(n−2)(n+1)/2

×
[(n+2)/2]∑

l=1

qlBKn+1−2l(λ;α;α(−αβ−1)l−1γ;β;β(−α−1β)l−1γ−1 : q)

×
∑ l−1∏

ν=1

(qjν−2ν − 1),
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where BKn(λ; a; b; c; d : q) is the bihyperkloosterman sum defined , for n > 0,
by

(3.5) BKn(λ; a; b; c; d : q)

=
∑

α1,...,αn∈F×q

λ
(
a

n∑

j=1

αj + b

n∏

j=1

α−1
j + c

n∑

j=1

α−1
j + d

n∏

j=1

αj

)

and by
BK0(λ; a; b; c; d : q) = λ(b+ d),(3.6)

and the inner sum runs over all integers j1, . . . , jl−1 satisfying 2l − 1 ≤
jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n+ 1 (it is 1 for l = 1 by convention).

Here when n = 2k is even and l = [(n + 2)/2] = k + 1, we understand
that

(3.7) BKn+1−2l(λ;α;α(−αβ−1)l−1γ;β;β(−α−1β)l−1γ−1 : q)

= BK−1(λ;α;α(−αβ−1)l−1γ;β;β(−α−1β)l−1γ−1 : q)

=
{

1 for γ = (−α−1β)k,
0 otherwise.

For any functions f, h : Fq → C, α, β ∈ F×q , we want to find an explicit
expression for the sum∑

w∈GL(n,q)

f(detw)h(α trw + β trw−1).(3.8)

When f is identically 1, this has been considered in [16]. As we need only
the case of α = β = 1, we will just consider that case.

With λ as in Proposition 3.1,
∑

w∈GL(n,q)

f(detw)h(trw + trw−1)

=
∑

γ∈F×q

f(γ)
∑

w∈SL(n,q)

h

(
tr
[

1n−1 0
0 γ

]
w + tr

([
1n−1 0

0 γ

]
w

)−1)

= q−1
∑

γ∈F×q

∑

ε∈Fq

∑

ζ∈Fq

∑

w∈SL(n,q)

f(γ)

× λ
(
ζ

(
tr
[

1n−1 0
0 γ

]
w + tr

([
1n−1 0

0 γ

]
w

)−1

− ε
))

h(ε)

= q−1
∑

γ∈F×q

∑

ε∈Fq

∑

ζ∈F×q

f(γ)h(ε)Sn(γ; ζ, ζ)λ(−ζε)

+ q−1(q − 1)−1gn(q)SF×q (f)SFq(h)
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(cf. (3.3)). Using the expression of Sn(γ; ζ, ζ) in (3.4), this can be written
as

q(n−2)(n+1)/2
[(n+2)/2]∑

l=1

ql
∑ l−1∏

ν=1

(qjν−2ν − 1)

× q−1
∑

γ∈F×q

∑

ε∈Fq

∑

ζ∈F×q

BKn+1−2l(λ; ζ; (−1)l−1ζγ; ζ; (−1)l−1ζγ−1 : q)

× λ(−ζε)f(γ)h(ε) + q−1(q − 1)−1gn(q)SF×q (f)SFq(h).

If t = n+ 1− 2l > 0, then, reversing the above steps, we get

(3.9) q−1
∑

γ∈F×q

∑

ε∈Fq

∑

ζ∈F×q

BKn+1−2l(λ; ζ; (−1)l−1ζγ; ζ; (−1)l−1ζγ−1 : q)

× λ(−ζε)f(γ)h(ε)

= q−1
∑

γ∈F×q

∑

ε∈Fq

∑

ζ∈Fq

∑

α1,...,αt∈F×q

λ
(
ζ
( t∑

j=1

αj + (−1)l−1γ

t∏

j=1

α−1
j

+
t∑

j=1

α−1
j + (−1)l−1γ−1

t∏

j=1

αj − ε
))
f(γ)h(ε)

− q−1(q − 1)tSF×q (f)SFq(h)

=
∑

γ∈F×q

∑

α1,...,αt∈F×q

f(γ)h
( t∑

j=1

αj + (−1)l−1γ

t∏

j=1

α−1
j

+
t∑

j=1

α−1
j + (−1)l−1γ−1

t∏

j=1

αj

)
− q−1(q − 1)tSF×q (f)SFq(h)

=
∑

α1,...,αt+1∈F×q

f((−1)l−1α1 . . . αt+1)h(α1+α−1
1 + . . .+ αt+1+α−1

t+1)

(
by putting αt+1 = (−1)l−1γ

t∏

j=1

α−1
j

)

(3.10) = MKt+1(h, fl−1; 1, 1 : q)− q−1(q − 1)tSF×q (f)SFq(h)

where we put

fl−1(α) = f((−1)l−1α).(3.11)
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One can check that, even for t = n+1−2l = 0, we get the same expression
as in (3.10) for (3.9). However, if n is even and l = [(n+ 2)/2] = n/2 + 1, so
that t = n+ 1− 2l = −1, then, from (3.7), we see that (3.9) is

f((−1)n/2)(h(0)− q−1SFq(h)).(3.12)

On the other hand, for t = n+ 1− 2l = −1, the expression in (3.10) is

f((−1)n/2)h(0)− q−1(q − 1)−1SF×q (f)SFq(h)(3.13)

(cf. (3.2)).
From these considerations and taking into account the difference between

(3.12) and (3.13), we finally get the following proposition.

Proposition 3.2. Let f, h : Fq → C be any functions. Then the sum in
(3.8) (for α = β = 1)

∑

w∈GL(n,q)

f(detw)h(trw + trw−1)

is given by

(3.14) q(n−2)(n+1)/2
[(n+2)/2]∑

l=1

ql
∑ l−1∏

ν=1

(qjν−2ν − 1)

× (MKn+2−2l(h, fl−1; 1, 1 : q)− q−1(q − 1)n+1−2lSF×q (f)SFq(h))

+ q−1(q − 1)−1gn(q)SF×q (f)SFq(h)

+





qn
2/2−1

n/2∏

ν=1

(qn+1−2ν − 1)SFq(h)

×((q − 1)−1SF×q (f)− f((−1)n/2)) for n even,

0 for n odd ,

where the unspecified sum is over all integers j1, . . . , jl−1 satisfying 2l− 1 ≤
jl−1 ≤ . . . ≤ j1 ≤ n+1 (it is 1 for l=1 by convention), MKm(h, fl−1; 1, 1 : q)
is as in (3.1) and (3.2), one is referred to (2.20) for SF×q (f) and SFq(h), and
gn(q) is as in (2.4).

The following “incomplete” sums in (3.15) can be obtained by using
similar ideas to the derivation of Proposition 3.2. The details will be left to
the reader. In the next proposition, it is understood that either +1 or −1 is
always assumed whenever they appear at the same time.
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Proposition 3.3. Let v : Fq → C be any function with v′ = v ◦ trFq2/Fq .
Then

(3.15)
∑

w∈GL(n,q2)
(detw)q−1=±1

v′(trw + trw−1)

= q(n−2)(n+1)
[(n+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

×
(∑

v′
( n+2−2l∑

j=1

αj +
n+2−2l∑

j=1

α−1
j

)

− q−1(q + 1)−1(q2 − 1)n+2−2lSFq(v)
)

+ q−1(q + 1)−1gn(q2)SFq(v)

+





qn
2−1

n/2∏

ν=1

(q2n+2−4ν − 1)((q + 1)−1 − δ1,±1)SFq(v)

for n even,
0 for n odd.

Here the unspecified sum involving the product notation is over all integers
j1, . . . , jl−1 satisfying 2l− 1 ≤ jl−1 ≤ . . . ≤ j1 ≤ n + 1 (it is 1 for l = 1 by
convention), the innermost sum is over all α1, . . . , αn+2−2l ∈ F×q2 satisfying
(α1 . . . αn+2−2l)q−1 = ±1, and one is referred to (2.20), (2.4) respectively for
SFq(v), gn(q2).

4. SU(2n, q2) case. In this section, we will consider the sum in (1.1)
∑

w∈SU(2n,q2)

v′(trw)

for any function v : Fq → C with v′ = v ◦ trFq2/Fq , and find an explicit
expression for this by using the decomposition in (2.13).

The sum in (1.1) can be written, using (2.13), as
∑

0≤r≤n
r even

|Br\Q|
∑

w∈Q
v′(trwσr)(4.1)

+
∑

0≤r≤n
r odd

|Br\Q|
∑

w∈Q−
v′(trwσr),(4.2)

where Br = Br(q2), Q = Q(2n, q2), Q− = Q−(2n, q2), σr are respectively as



Sums for U(2n, q2) and their applications 349

in (2.14), (2.9), (2.10), (2.15). Here one has to observe that, for each y ∈ Q,
∑

w∈Q
v′(trwσry) =

∑

w∈Q
v′(tr ywσr) =

∑

w∈Q
v′(trwσr),

and yQ− = Q−.
Write w ∈ Q (cf. (2.9)) as

w =
[
A 0
0 ∗A−1

] [
1n B
0 1n

]
,(4.3)

with

(4.4) A =
[
A11 A12
A21 A22

]
, ∗A−1 =

[
E11 E12
E21 E22

]
, B =

[
B11 B12
−∗B12 B22

]
,

(4.5) B11 + ∗B11 = 0, B22 + ∗B22 = 0.

Here A11, A12, A21, A22 are respectively of sizes r×r, r×(n−r), (n−r)×r,
(n− r)× (n− r), and similarly for ∗A−1 and B. Then, for any r (0 ≤ r ≤ n),
the inner sum in (4.1) is

∑

w∈Q
v′(trwσr)(4.6)

=
∑

v′(trA11B11 − trA12
∗B12 + trA22 + trE22),(4.7)

where the sum is over A ∈ GL(n, q2) with detA ∈ F×q , B11, B12, B22 subject
to the conditions in (4.5).

Consider the sum in (4.7) first for the case 1 ≤ r ≤ n − 1, so that A12
does appear. We divide the sum into four subsums

∑

A12 6=0

. . .+
∑

A12=0
A11∈I

. . .+
∑

A12=0
A11∈II

. . .+
∑

A12=0
A11 Hermitian

. . . ,(4.8)

where

(4.9)

I = {A11 = (aij) ∈ GL(r, q2) | aji 6= aτij

for some i, j with 1 ≤ i < j ≤ r},
II = {A11 = (aij) ∈ GL(r, q2) | aji = aτij for all i, j with

1 ≤ i < j ≤ r, and aii 6∈ Fq for some i (1 ≤ i ≤ r)}.
Note here that I and II above are disjoint and that

I ∪ II = GL(r, q2)− {A ∈ GL(r, q2) | ∗A = A}.(4.10)

The first sum in (4.8) is

q(n−r)2 ∑

A,B11

∑

B12

v′(trA11B11 − trA12
∗B12 + trA22 + trE22),(4.11)
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where A is with A12 6= 0, detA ∈ F×q , and B11 is with B11 + ∗B11 = 0. Fix
such A, B11. Write A12 = (aij), B12 = (bij). Then akl 6= 0 for some k, l
(1 ≤ k ≤ r, 1 ≤ l ≤ n− r), so that the inner sum in (4.11) is

∑

all bij with
(i,j)6=(k,l)

∑

bkl

v′(−aklbτkl + . . .) = q2r(n−r)−1SFq(v).(4.12)

Here one is referred to (2.20) for SFq(v), and one must observe that the
inner sum in (4.12) is ∑

γ∈Fq2
v′(γ) = qSFq(v).(4.13)

Put B11 = (bij). Then the first condition in (4.5) is equivalent to

(4.14)
trFq2/Fq bii = 0 for 1 ≤ i ≤ r,
bij + bτji = 0 for 1 ≤ i < j ≤ r.

In particular,
|{B11 | B11 + ∗B11 = 0}| = qr

2
.(4.15)

Combining (4.11), (4.12), (4.15), and noting

|{A ∈ GL(n, q2) |A12 6= 0,detA ∈ F×q }|
= (q + 1)−1(gn(q2)− q2r(n−r)gr(q2)gn−r(q2))

(cf. (2.4)), we see that the first sum in (4.8) equals

(q + 1)−1qn
2−1(gn(q2)− q2r(n−r)gr(q2)gn−r(q2))SFq(v).(4.16)

The subsum of (4.7) with A12 = 0 is

(4.17)
∑

A21,B12,B22

∑

A11,A22,B11

v′(trA11B11 + trA22 + trA−1
22 )

= q(n−r)2+4r(n−r) ∑

A11,A22,B11

v′(trA11B11 + trA22 + trA−1
22 ).

Let A11 = (aij), B11 = (bij). Then, from (4.14), one observes that

trA11B11 =
r∑

i=1

aiibii +
∑

1≤i<j≤r
(aji − aτij)bij .(4.18)

The subsum of the sum in (4.17) with A11 ∈ I (cf. (4.9)) is
∑

A11∈I, A22

∑

B11

v′(trA11B11 + trA22 + trA−1
22 ).(4.19)

Fix A11 = (aij) ∈ I, A22. Then ats 6= aτst, for some s, t with 1 ≤ s < t ≤ r.
By the same argument as in the case of (4.11) and in view of (4.14) and
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(4.18), we see that the inner sum in (4.19) is

qr
2−1SFq(v).(4.20)

Combining (4.17), (4.19), and (4.20) shows that the second sum in (4.8) is

qn
2+2rn−2r2−1SFq(v)

∑
1,(4.21)

where the sum is over A11, A22 with (detA11)(detA22) ∈ F×q , A11 ∈ I.
The subsum of the sum in (4.17) with A11 ∈ II (cf. (4.9)) is

∑

A11∈II, A22

∑

B11

v′(trA11B11 + trA22 + trA−1
22 ).(4.22)

Fix A11 = (aij) ∈ II, A22. Then ass 6∈ Fq, for some s (1 ≤ s ≤ r). In view of
(4.14) and (4.18) and with B11 = (bij), the inner sum in (4.22) is

(4.23) qr
2−1
∑

v′(assbss + . . .)

= qr
2−1

∑

α∈Fq
v(α trFq2/Fq(assη) + trFq2/Fq(. . .))

= qr
2−1SFq(v).

Here the unspecified sum in (4.23) is over bss with trFq2/Fq bss = 0, η is a
fixed nonzero element in Fq2 with trFq2/Fq η = 0, and ass 6∈ Fq implies that
trFq2/Fq(assη) 6= 0. Combining (4.17), (4.22), and (4.23), we see that the
third sum in (4.8) equals

qn
2+2rn−2r2−1SFq(v)

∑
1,(4.24)

where the sum is over A11, A22 with (detA11)(detA22) ∈ F×q , A11 ∈ II.
Adding up (4.21) and (4.24), we see that the sum of the second and third

sums in (4.8) is
qn

2+2rn−2r2−1SFq(v)
∑

1,(4.25)

where the sum is over A11, A22 with (detA11)(detA22) ∈ F×q , and A11 is not
Hermitian (cf. (4.10)). Now, (4.25) is easily seen to be equal to

(q + 1)−1qn
2+2rn−2r2−1gn−r(q2)(gr(q2)− hr)SFq(v),(4.26)

where hr is as in (2.3).
One observes that, for A11 Hermitian and B11 with B11 + ∗B11 = 0,

v′(trA11B11 + trA22 + trA−1
22 ) = v′(trA22 + trA−1

22 )

(cf. (4.14), (4.18)). So the subsum of the sum in (4.17) with A11 Hermitian is

qr
2 ∑

A11,A22

v′(trA22+trA−1
22 ) = qr

2
hr

∑

w∈GL(n−r,q2)
detw∈F×q

v′(trw+trw−1).(4.27)
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So, combining (4.17) and (4.27), we see that the last sum in (4.8) equals

qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)
detw∈F×q

v′(trw + trw−1).(4.28)

Adding up (4.16), (4.26), and (4.28), we have shown that, for 1 ≤ r ≤
n− 1,

(4.29)
∑

w∈Q
v′(trwσr)

= (q + 1)−1qn
2−1(gn(q2)− q2rn−2r2

gn−r(q2)hr)SFq(v)

+ qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)
detw∈F×q

v′(trw + trw−1).

For r = 0, one can check that the sum in (4.6) is given by the same
expression as in (4.29) with the convention h0 = 1. In view of (2.3), this
convention is natural. On the other hand, for r = n, one shows, using a
similar argument to the above 1 ≤ r ≤ n − 1 case, that the sum in (4.6) is
given by

(4.30)
∑

w∈Q
v′(trwσn) = qn

2−1((q + 1)−1gn(q2)− hn)SFq(v) + qn
2
hnv(0).

The details are left to the reader.
From (4.29) and (4.30), the sum in (4.1) can be expressed as

(4.31)
∑

0≤r≤n
r even

|Br\Q|
∑

w∈Q
v′(trwσr)

=
∑

0≤r≤n−1
r even

|Br\Q|
{

(q + 1)−1qn
2−1(gn(q2)− q2rn−2r2

gn−r(q2)hr)SFq(v)

+ qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)
detw∈F×q

v′(trw + trw−1)
}

+




|Bn\Q|{qn2−1((q + 1)−1gn(q2)− hn)SFq(v) + qn

2
hnv(0)}

for n even,
0 for n odd.

Next, for any r (0 ≤ r ≤ n) we consider the inner sum of the sum in
(4.2). Write w ∈ Q− (cf. (2.10)) as

w =
[
A 0
0 ∗A−1

] [
1n B
0 1n

]
.
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Here A satisfies the condition trFq2/Fq(detA) = 0, i.e., (detA)q−1 = −1,

whereas A ∈ Q satisfies detA ∈ F×q , i.e., (detA)q−1 = 1 (cf. (2.11)).
With this change in mind and glancing through the above argument, one

can see that, for 0 ≤ r ≤ n− 1,

(4.32)
∑

w∈Q−
v′(trwσr)

(4.33) = (q + 1)−1qn
2−1(gn(q2)− q2rn−2r2

gn−r(q2)hr)SFq(v)

+ qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)
trF

q2/Fq
(detw)=0

v′(trw + trw−1).

On the other hand, for r = n, the sum in (4.32) is given by

(4.34)
∑

w∈Q−
v′(trwσn)

= qn
2−1((q + 1)−1gn(q2)− hnδ1,−1)SFq(v) + qn

2
hnv(0)δ1,−1.

Here δ1,−1 is the Kronecker delta so that

(4.35) δ1,−1 =
{

1 if charFq = 2,
0 otherwise.

The Kronecker delta appears here, since, for a nonsingular Hermitian matrix
A over Fq2 , we have

trFq2/Fq(detA) = (detA) trFq2/Fq 1 = 0 ⇔ charFq = 2.

From (4.33) and (4.34), the sum in (4.2) can now be expressed as

(4.36)
∑

0≤r≤n
r odd

|Br\Q|
∑

w∈Q−
v′(trwσr)

=
∑

0≤r≤n−1
r odd

|Br\Q|

×
{

(q + 1)−1qn
2−1(gn(q2)− q2rn−2r2

gn−r(q2)hr)SFq(v)

+ qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)
trF

q2
/Fq (detw)=0

v′(trw + trw−1)
}

+





0 for n even,
|Bn\Q|{qn2−1((q + 1)−1gn(q2)− hnδ1,−1)SFq(v)

+ qn
2
hnv(0)δ1,−1} for n odd.
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By (4.31) and (4.36), the sum in (1.1) can be written as

(4.37)
∑

w∈SU(2n,q2)

v′(trw)

=
∑

0≤r≤n
|Br\Q|

{
(q + 1)−1qn

2−1(gn(q2)− q2rn−2r2
gn−r(q2)hr)SFq(v)

+ qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)
(detw)q−1=(−1)r

v′(trw + trw−1)
}

+

{
|Bn\Q|qn2−1hn((q + 1)−1 − 1)SFq(v) for n even,
|Bn\Q|qn2−1hn((q + 1)−1 − δ1,−1)SFq(v) for n odd

(cf. (2.11)). Here in (4.37) we adopt the convention that
∑

w∈GL(0,q2)
(detw)q−1=1

v′(trw + trw−1) = v(0),(4.38)

∑

w∈GL(0,q2)
(detw)q−1=−1

v′(trw + trw−1) = v(0)δ1,−1.(4.39)

Finally, from (2.3), (2.4), (2.17), (3.15), and (4.37), we get the following
main theorem of this section.

Theorem 4.1. For any function v : Fq → C with v′ = v ◦ trFq2/Fq , the

sum over SU(2n, q2) ∑

w∈SU(2n,q2)

v′(trw)

is given by

(4.40) (q + 1)−1q2n2−n−1
2n∏

j=1

(qj − (−1)j)SFq(v)

+ q2n2−n−2
n∑

r=0

q(
r+1

2 )
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
[(n−r+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

×
(∑

v′
( n−r+2−2l∑

j=1

αj +
n−r+2−2l∑

j=1

α−1
j

)



Sums for U(2n, q2) and their applications 355

− q−1(q + 1)−1(q2 − 1)n−r+2−2lSFq(v)
)

+





q2n2−1((q + 1)−1 − 1)SFq(v)

×
∑

0≤r≤n
r even

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n even,

q2n2−1((q + 1)−1 − δ1,−1)SFq(v)

×
∑

0≤r≤n
r odd

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n odd.

Here SFq(v) and δ1,−1 are as in (2.20) and (4.35) respectively (cf. (2.19)),
the first unspecified sum is over all integers j1, . . . , jl−1 satisfying 2l − 1 ≤
jl−1 ≤ . . . ≤ j1 ≤ n−r+1, and the second one is over α1, . . . , αn−r+2−2l ∈ F×q2

with (α1 . . . αn−r+2−2l)q−1 = (−1)r. Also, when m = 0, our conventions
here for

∑

α1,...,αm
(α1...αm)q−1=1

v′
( m∑

j=1

αj +
m∑

j=1

α−1
j

)
,

∑

α1,...,αm
(α1...αm)q−1=−1

v′
( m∑

j=1

αj +
m∑

j=1

α−1
j

)

are v(0) and v(0)δ1,−1 respectively (cf. (4.38), (4.39)).

5. U(2n, q2) case. Here we will consider the sum in (1.2)
∑

w∈U(2n,q2)

u(detw)v′(trw)

for any functions u : Fq2 → C, v : Fq → C with v′ = v ◦ trFq2/Fq , and find an
explicit expression for this by using the decomposition in (2.12).
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The sum in (1.2) can be written, using (2.12), as
n∑

r=0

|Br\Q|
∑

w∈P
u((−1)r detw)v′(trwσr).(5.1)

Write w ∈ P as in (4.3) with A, ∗A−1, B as in (4.4) and (4.5). Note here
that, in contrast to the Q and Q− of the SU(2n, q2) case, we do not have
any restriction on A. Then the inner sum in (5.1) is

∑

A,B

u

(
(−1)r

detA
(detA)τ

)
v′(trA11B11 − trA12

∗B12 + trA22 + trE22).(5.2)

Here the sum is over A ∈ GL(n, q2), B11, B12, B22 subject to the conditions
in (4.5).

Before we move on, we will introduce the following notation that will be
needed later. For u : Fq2 → C, r ∈ Z, ũr : Fq2 → C is the function defined
by

ũr(α) = u((−1)rαq−1).(5.3)

In particular, we put

ũ(α) = ũ0(α) = u(αq−1).(5.4)

It is easy to see that the sum SF×
q2

(ũr) (cf. (2.20)) is independent of r, so
that

SF×
q2

(ũr) = SF×
q2

(ũ) for any r ∈ Z.(5.5)

Consider now the sum in (5.2) first for the case 1 ≤ r ≤ n− 1, so that A12
does appear. Divide the sum in (5.2) just as in (4.8) (cf. (4.9)):

∑

A12 6=0

. . .+
∑

A12=0
A11∈I

. . .+
∑

A12=0
A11∈II

. . .+
∑

A12=0
A11 Hermitian

. . .(5.6)

The first sum in (5.6) is (q − 1)−1SF×
q2

(ũ) times the corresponding sum

for the SU(2n, q2) case in (4.16), i.e., it is

(q2 − 1)−1qn
2−1(gn(q2)− q2r(n−r)gr(q2)gn−r(q2))SF×

q2
(ũ)SFq(v)(5.7)

(cf. (5.3)–(5.5)). Similarly, the sum of the second and third subsums in
(5.6) is

(q2 − 1)−1qn
2+2rn−2r2−1gn−r(q2)(gr(q2)− hr)SF×

q2
(ũ)SFq(v),(5.8)

which is again (q − 1)−1SF×
q2

(ũ) times the corresponding sum in (4.26). On

the other hand, the last sum in (5.6) is easily seen to be equal to

qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)

ũr(detw)v′(trw + trw−1).(5.9)
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The arguments are completely analogous to the corresponding ones for the
SU(2n, q2) case.

Adding up (5.7)–(5.9), we have shown that, for 1 ≤ r ≤ n− 1,

(5.10)
∑

w∈P
u((−1)r detw)v′(trwσr)

(5.11) = (q2 − 1)−1qn
2−1(gn(q2)− q2rn−2r2

gn−r(q2)hr)SF×
q2

(ũ)SFq(v)

+ qn
2+2rn−2r2

hr
∑

w∈GL(n−r,q2)

ũr(detw)v′(trw + trw−1).

If r = 0, then (5.10) is given by the same expression as in (5.11) with
the convention h0 = 1. On the other hand, if r = n, then, using a similar
argument to the above 1 ≤ r ≤ n− 1 case, we see that the sum in (5.10) is
given by

(5.12) qn
2−1((q2 − 1)−1gn(q2)SF×

q2
(ũ)− hnu((−1)n))SFq(v)

+ qn
2
hnu((−1)n)v(0).

From (5.1), (5.11), and (5.12), we see that the sum in (1.2) equals
∑

w∈U(2n,q2)

u(detw)v′(trw)

= (q2 − 1)−1qn
2−1gn(q2)SF×

q2
(ũ)SFq(v)

n∑

r=0

|Br\Q|

− (q2 − 1)−1qn
2−1SF×

q2
(ũ)SFq(v)

n−1∑

r=0

|Br\Q|q2rn−2r2
gn−r(q2)hr

+ qn
2
n−1∑

r=0

|Br\Q|q2rn−2r2
hr

∑

w∈GL(n−r,q2)

ũr(detw)v′(trw + trw−1)

+ |Bn\Q|qn
2−1hnu((−1)n)(qv(0)− SFq(v)).

Now, from (2.3), (2.4), (2.17), (2.18), and (3.14), we get the follow-
ing main theorem of this section. Here one has to observe that (ũr)l−1 =
ũr+(l−1)(q−1) = ũr (cf. (3.11), (5.3)).

Theorem 5.1. For any function u : Fq2 → C, and any function v : Fq →
C with v′ = v ◦ trFq2/Fq , the sum over U(2n, q2)

∑

w∈U(2n,q2)

u(detw)v′(trw)
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is given by

(5.13) (q2 − 1)−1q2n2−n−1
2n∏

j=1

(qj − (−1)j)SF×
q2

(ũ)SFq(v)

+ q2n2−n−2
n∑

r=0

q(
r+1

2 )
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
[(n−r+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

× (MKn−r+2−2l(v′, ũr; 1, 1 : q2)− q−1(q2 − 1)n−r+1−2lSF×
q2

(ũ)SFq(v))

+





q2n2−1((q2 − 1)−1SF×
q2

(ũ)− u(1))SFq(v)

×
∑

0≤r≤n
r even

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n even,

q2n2−1((q2 − 1)−1SF×
q2

(ũ)− u(−1))SFq(v)

×
∑

0≤r≤n
r odd

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n odd.

Here one is referred to (5.3), (5.4) for ũr, ũ and to (2.20) for SF×
q2

(ũ),

SFq(v), the unspecified sum is over all integers j1, . . . , jl−1 satisfying 2l − 1
≤ jl−1 ≤ . . . ≤ j1 ≤ n − r + 1 (it is 1 for l = 1 by convention), and
MKm(v′, ũr; 1, 1 : q2) is as in (3.1).

6. Applications to certain enumerations. As applications of the
results in Sections 4 and 5, we will derive some counting formulas related to
U(2n, q2) and SU(2n, q2).

For each α ∈ KNq (cf. (2.2)), β ∈ Fq, and m ∈ Z≥0, we define, for m ≥ 1,

(6.1) δ(m, q2;α, β) = |{(α1, . . . , αm) ∈ (F×
q2)m | (α1 . . . αm)q−1 = α,

trFq2/Fq(α1 + α−1
1 + . . .+ αm + α−1

m ) = β}|
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and

δ(0, q2;α, β) = δα,1δβ,0 =
{

1 if α = 1 and β = 0,
0 otherwise

(6.2)

(cf. (2.19)). Then, with the choices of u : Fq2 → C, v : Fq → C as

u(y) = δy,α, v(y) = δy,β(6.3)

and any m ∈ Z≥0,

MKm(v′, ũr; 1, 1 : q2) = δ(m, q2; (−1)rα, β).(6.4)

Also, with u, v as in (6.3), we have

SF×
q2

(ũ) = q − 1, SFq(v) = 1.(6.5)

The following theorem is now an easy consequence of Theorem 5.1 with
the choices of u and v as in (6.3), in view of the observations made in (6.4)
and (6.5).

Theorem 6.1. For each α ∈ KNq (cf. (2.2)) and β ∈ Fq, we put

C(α, β) = |{w ∈ U(2n, q2) | detw = α, tn,q(w) = β}|(6.6)

(cf. (2.7)). Then C(α, β) is given by

(6.7) (q + 1)−1q2n2−n−1
2n∏

j=1

(qj − (−1)j)

+ q2n2−n−2
n∑

r=0

q(
r+1

2 )
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
[(n−r+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

× (δ(n− r + 2− 2l, q2; (−1)rα, β)− q−1(q + 1)−1(q2 − 1)n−r+2−2l)

+





q2n2−1((q + 1)−1 − δα,1)
∑

0≤r≤n
r even

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n even,

q2n2−1((q + 1)−1 − δα,−1)
∑

0≤r≤n
r odd

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n odd.
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Here the unspecified sum is over all integers j1, . . . , jl−1 satisfying 2l − 1
≤ jl−1 ≤ . . . ≤ j1 ≤ n − r + 1 (it is 1 for l = 1 by convention), and
δ(m, q2; (−1)rα, β) is as in (6.1) and (6.2).

For β ∈ Fq and m ∈ Z≥0, we define, for m ≥ 1,

(6.8) δ(m, q2;β) = |{(α1, . . . , αm) ∈ (F×
q2)m |

trFq2/Fq(α1 + α−1
1 + . . .+ αm + α−1

m ) = β}|
and

δ(0, q2;β) = δβ,0.(6.9)

Then it is easy to see that, for any m ∈ Z≥0,
∑

α∈KNq
δ(m, q2;α, β) = δ(m, q2;β)(6.10)

(cf. (6.1), (6.2)).
From the expression of C(α, β) in (6.7) and using (6.10), we now obtain

that of C(β) in (6.11) below. Note here that, for each β ∈ Fq,

C(β) =
∑

α∈KNq
C(α, β).

Corollary 6.2. For each β ∈ Fq, we put

C(β) = |{w ∈ U(2n, q2) | tn,q(w) = β}|(6.11)

(cf. (2.7)). Then

C(β) = q2n2−n−1
2n∏

j=1

(qj − (−1)j)

+ q2n2−n−2
n∑

r=0

q(
r+1

2 )
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
[(n−r+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

× (δ(n− r + 2− 2l, q2;β)− q−1(q2 − 1)n−r+2−2l),

where the unspecified sum runs over all integers j1, . . . , jl−1 satisfying 2l−1
≤ jl−1 ≤ . . . ≤ j1 ≤ n−r+1 (it is 1 for l = 1 by convention), and δ(m, q2;β)
is as in (6.8) and (6.9).

The following formula for D(β) (cf. (6.12)) can be obtained from (6.7) by
simply observing that D(β) = C(1, β). Alternatively, it follows from (4.40)
by specializing v to be the obvious function.
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Corollary 6.3. For each β ∈ Fq, put

D(β) = |{w ∈ SU(2n, q2) | tn,q(w) = β}|.(6.12)

Then

D(β) = (q + 1)−1q2n2−n−1
2n∏

j=1

(qj − (−1)j)

+ q2n2−n−2
n∑

r=0

q(
r+1

2 )
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
[(n−r+2)/2]∑

l=1

q2l
∑ l−1∏

ν=1

(q2jν−4ν − 1)

× (δ(n− r + 2− 2l, q2; (−1)r, β)− q−1(q + 1)−1(q2 − 1)n−r+2−2l)

+





q2n2−1((q + 1)−1 − 1)
∑

0≤r≤n
r even

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n even,

q2n2−1((q + 1)−1 − δ1,−1)
∑

0≤r≤n
r odd

q(
r
2)
[
n

r

]

q2

r∏

j=1

(qj + (−1)j)

×
(n−r)/2∏

ν=1

(q2n−2r+2−4ν − 1) for n odd.

Here the unspecified sum is over all integers j1, . . . , jl−1 satisfying 2l−1
≤ jl−1 ≤ . . . ≤ j1 ≤ n − r + 1 (it is 1 for l = 1 by convention), and
δ(m, q2; (−1)r, β) is as in (6.1) and (6.2).

Remark. Here we illustrate our formula in (6.7) for the cases of n = 4,
q = 3 and n = 3, q = 4. To produce the following tables the formula was
encoded into a Mathematica program by Mr. Lee whom I wish to thank.
Below, F9 = F3(θ) with θ2 + 1 = 0, and F16 = F2(ω) with ω4 + ω3 + 1 = 0.

The symmetries in the tables are not surprising. For w ∈ U(2n, q2),
detw−1 = (detw)−1, and tn,qw

−1 = tn,qw (cf. (2.5), (2.7)). So

C(α, β) = C(α−1, β).(6.13)

Also, for γ ∈ KNq ∩F×q (cf. (2.2)), w ∈ U(2n, q2), γw ∈ U(2n, q2), det γw =
γ2n detw, and tn,q(γw) = γtn,q(w). This implies that

C(α, β) = C(γ2nα, γβ) for γ ∈ KNq ∩ F×q .(6.14)

Now, (6.13) and (6.14) explain the symmetries in the tables.
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Tables for C(α, β)

U(8, 9)

C(α, β) β = 0 β = 1 β = 2

α = 1 348404946102203499680204203542 348404866248608262213916355829 348404866248608262213916355829

α = 2 348404888313371102211168336288 348404895143024460948434289456 348404895143024460948434289456

α = θ 348404902715982873530028187728 348404887941718575289004363736 348404887941718575289004363736

α = 2θ 348404902715982873530028187728 348404887941718575289004363736 348404887941718575289004363736

U(6, 16)

C(α, β) β = 0 β = 1 β = ω5 β = ω10

α = 1 280145279251629735936 280127317656521932800 280127345861572165632 280127345861572165632

α = ω12 280132068688141484032 280131089634240233472 280131089629945266176 280133040678969016320

α = ω3 280132068688141484032 280131089634240233472 280131089629945266176 280133040678969016320

α = ω9 280132068688141484032 280131089634240233472 280133040678969016320 280131089629945266176

α = ω6 280132068688141484032 280131089634240233472 280133040678969016320 280131089629945266176
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