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On an extension of a theorem of Schur
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Pierre Bornsztein (Antony)

1. Introduction. A well-known theorem of I. Schur ([3], [4]) states that
“If the positive integers less than n!e are partitioned into n classes in any
way, then x+y = z can be solved in integers (not necessarily distinct) within
one class”.

For example, in the case n = 2, the above theorem may be used for
{1, 2, 3, 4, 5}. Let us consider the partition A1 = {1, 2} and A2 = {3, 4, 5}.
It is clear that x + y = z has a solution within A1. But such a partition
does not give a solution if we restrict to triplets (x, y, z) of pairwise distinct
integers. Note that if x+ y = z with x, y, z 6= 0, only x and y may be equal.

Sierpiński [4] has proved that a solution in distinct integers is certain if
we replace the upper bound [n!e] by 2[n!e], and Irving ([1], [2]) improved this
result with the bound

[
1
2 (2n+ 1)e · n!

]
+ 2 (where, as usual, [x] denotes the

greatest integer less than or equal to x).
The purpose of this paper is to prove the following theorem:

Theorem. Let n ≥ 2 be an integer. If the set A = {1, 2, . . . , [n! ·ne]+1}
is divided into n classes in any way , then at least one of the classes contains
two different numbers and their sum.

2. Preliminaries. Let n ≥ 2 be an integer. We define the finite sequence
(αk) for k = 1, . . . , n+ 1 by

αk = k + n · (k − 1)!
k−2∑

i=0

1
i!
,

with the convention
∑q
i=p = 0 when p > q. In particular α1 = 1. Moreover,

it is clear that αk ∈ N∗ for each k.

Lemma 1. We have αn+1 = [n! · ne] + 1.
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Proof. We have

αn+1 = n+ 1 + n · n!
n−1∑

i=0

1
i!

= 1 + n · n!
n∑

i=0

1
i!
,

that is,

αn+1 = 1 + n · n!e− n · n!Rn with Rn =
∞∑

i=n+1

1
i!
.

But

Rn =
1
n!

(
1

n+ 1
+

1
(n+ 1)(n+ 2)

+ . . .

)
<

1
n!

(
1

n+ 1
+

1
(n+ 1)2 + . . .

)

=
1

n · n!
.

Thus αn+1 < 1 + n · n!e < αn+1 + 1. Since αn+1 is an integer, we deduce
that αn+1 = [n! · ne] + 1.

Lemma 2. For each k ≥ 1, we have αk+1 = k(αk + n− k + 1) + 1.

Proof. Let k ≥ 1. We have

αk+1 − 1
k

= 1 + n · (k − 1)!
k−1∑

i=0

1
i!

= 1 + n+ n · (k − 1)!
k−2∑

i=0

1
i!
.

Thus (αk+1 − 1)/k = 1 + n+ αk − k. The conclusion follows.

3. Proof of the Theorem. Take partition of A = {1, . . . , αn+1} into
n pairwise disjoint classes. For E ⊂ A and a ∈ A, define ∆a(E) = {x − a |
x ∈ E and x > a}. Then we consider the following algorithm:

(1) Define S to be the set of all the classes of the decomposition.
(2) Choose one of the classes in S with the maximum number of elements.

Denote it by A1. Set S = S − {A1}.
(3) Define E1 = A1, a1 = minE1, F1 = ∆a1(E1)− {a1}.
(4) If F1 ∩ A1 6= ∅ then stop. Otherwise, set p = 1 and continue.
(5) Choose an element of S which contains the maximum number of

elements from Fp. Denote it by Ap+1. Set S = S − {Ap+1}.
(6) Define

Ep+1 = Ap+1 ∩ Fp, ap+1 = minEp+1,

Fp+1 = ∆ap+1(Ep+1)−
{ j∑

i=0

ap+1−i | j = 0, 1, . . . , p
}
.

(7) If Fp+1 ∩ (
⋃p
i=1 Ai) 6= ∅ then stop. Otherwise, continue.

(8) Set p = p+ 1. Go to (5).
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Claim 1. For each p ∈ {1, . . . , n}, if Ep is constructed by the algorithm
then:

• Ep contains at least αn−p+1 + p+ 1 elements.
• Fp is constructed , and it contains at least αn−p+1 elements.

Proof. By induction on p. For p = 1, from the pigeon-hole principle, A1

contains at least
αn+1

n
=

1
n

+ n!
n∑

i=0

1
i!

elements. Thus, E1 = A1 contains at least

1 + n!
n∑

i=0

1
i!

= αn + 2

elements (from Lemma 2). Moreover, αn + 2 ≥ 2, thus a1 is well defined.
And F1 is constructed: we form the differences in (3) (which decreases the
number of elements by 1), and delete a1 (if necessary). Thus F1 contains at
least αn elements.

Let p be a fixed integer with 1 ≤ p < n. Suppose that the conclusion
holds for the value p and that Ep+1 is constructed by the algorithm. Then,
by the induction hypothesis, Fp contains at least αn−p+1 elements, none
of which belongs to

⋃p
i=1 Ai (otherwise the algorithm would have stopped

from (7), and Ep+1 would not have been constructed). From the pigeon-hole
principle and Lemma 2, Ap+1 contains at least

αn−p+1

n− p = αn−p + p+ 1 +
1

n− p
elements from Fp. It follows that Ep+1 contains at least αn−p+p+2 elements.
Moreover, αn−p+p+2 ≥ 2, thus ap+1 is well defined, and Fp+1 is constructed:
we form the differences and make the deletions (if necessary, and not more
than p + 1). Then Fp+1 contains at least αn−p elements, which ends the
induction, and completes the proof of the claim.

Remark. The claim ensures that there will be no problem at step (6)
of the algorithm.

Case 1: The algorithm stops at (4). Then there exists b ∈ F1∩A1. Thus
b = ai − a1 for some ai ∈ A1, and b 6= a1 since a1 6∈ F1. Thus b+ a1 = ai in
A1, and the conclusion of the Theorem holds.

Case 2: The algorithm stops at (7) with p < n. First note that it did
not stop before.

Claim 2. For each k ∈ {1, . . . , p}, the number Xk = ap+ap−1 + . . .+ak
belongs to Ek.



398 P. Bornsztein

Proof. By (descending) induction. For k = p, we directly have Xp =
ap ∈ Ep. Let k ∈ {2, . . . , p} be fixed. Suppose that Xk ∈ Ek. Since Ek ⊂
Fk−1 ⊂ ∆ak−1(Ek−1), there exists x ∈ Ek−1 such that Xk = x − ak−1.
Thus Xk−1 = Xk + ak−1 = x belongs to Ek−1. This ends the induction and
completes the proof.

Since the algorithm has stopped at (7), there exists k ∈ {1, . . . , p} such
that Fp ∩ Ak 6= ∅. Then b = bi1 − ap ∈ Fp ∩ Ak for some bi1 ∈ Ep.

If k = p, we have b ∈ Fp. Then, by construction, b 6= ap. Thus bi1 = b+ap
in Ap, and the conclusion of the Theorem holds.

If k < p, then bi1 ∈ Ep ⊂ Fp−1. It follows that

bi1 = bi2 − ap−1 for some bi2 ∈ Ep−1 ⊂ Fp−2,

bi2 = bi3 − ap−2 for some bi3 ∈ Ep−2 ⊂ Fp−3,

. . .

bip−k = bip−k+1 − ak for some bip−k+1 ∈ Ek ⊂ Ak.
Summing, we obtain

b = bip−k+1 −
p∑

i=k

ai = bip−k+1 −Xk.

But, from Claim 2, we have Xk ∈ Ek ⊂ Ak. And, since b ∈ Fp, we deduce
that b 6= Xk (see step (6)). It follows that b+ Xk = bip−k+1 in Ak, and the
conclusion of the Theorem holds.

Case 3: The algorithm does not stop until p=n in (8). Then An, En, Fn
are constructed by the algorithm. From Claim 1, Fn contains at least α1 = 1
elements. Thus Fn 6= ∅ and

Fn ∩
( n⋃

i=1

Ai

)
= Fn ∩ A 6= ∅.

We deduce that the algorithm stops at (7). The reasoning used in Case 2
may be repeated word for word, and the conclusion of the Theorem holds.
Thus the proof is complete.

4. Remarks. Following Sierpiński [4], given a natural number k, de-
note by n(k) the least natural number n with the following property: if the
numbers 1, . . . , n are divided into k classes, then at least one class contains
two different numbers together with their sum.

Then according to Walker [6]

n(1) = 3, n(2) = 9, n(3) = 24, n(4) = 67, n(5) = 197.

Also, see [5], p. 440,
n(k) ≥ 1 + 315(k−1)/5.
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Thus
315(k−1)/5 + 1 ≤ n(k) ≤ [k! · ke] + 1.
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