On an extension of a theorem of Schur

by

PIERRE BORNSZTEIN (Antony)

1. Introduction. A well-known theorem of I. Schur ([3], [4]) states that “If the positive integers less than \(n! e \) are partitioned into \(n \) classes in any way, then \(x + y = z \) can be solved in integers (not necessarily distinct) within one class”.

For example, in the case \(n = 2 \), the above theorem may be used for \(\{1, 2, 3, 4, 5\} \). Let us consider the partition \(A_1 = \{1, 2\} \) and \(A_2 = \{3, 4, 5\} \). It is clear that \(x + y = z \) has a solution within \(A_1 \). But such a partition does not give a solution if we restrict to triplets \((x, y, z)\) of pairwise distinct integers. Note that if \(x + y = z \) with \(x, y, z \neq 0 \), only \(x \) and \(y \) may be equal.

Sierpiński [4] has proved that a solution in distinct integers is certain if we replace the upper bound \([n!e]\) by \(2^{[n!e]}\), and Irving ([1], [2]) improved this result with the bound \(\left[\frac{1}{2}(2n + 1)e \cdot n! \right] + 2 \) (where, as usual, \([x]\) denotes the greatest integer less than or equal to \(x \)).

The purpose of this paper is to prove the following theorem:

Theorem. Let \(n \geq 2 \) be an integer. If the set \(A = \{1, 2, \ldots, [n! \cdot ne] + 1\} \) is divided into \(n \) classes in any way, then at least one of the classes contains two different numbers and their sum.

2. Preliminaries. Let \(n \geq 2 \) be an integer. We define the finite sequence \((\alpha_k)\) for \(k = 1, \ldots, n + 1 \) by

\[
\alpha_k = k + n \cdot (k - 1)! \sum_{i=0}^{k-2} \frac{1}{i!},
\]

with the convention \(\sum_{i=p}^{q} = 0 \) when \(p > q \). In particular \(\alpha_1 = 1 \). Moreover, it is clear that \(\alpha_k \in \mathbb{N}^* \) for each \(k \).

Lemma 1. We have \(\alpha_{n+1} = [n! \cdot ne] + 1 \).

2000 Mathematics Subject Classification: Primary 11B75.
Proof. We have
\[\alpha_{n+1} = n + 1 + n \cdot n! \sum_{i=0}^{n-1} \frac{1}{i!} = 1 + n \cdot n! \sum_{i=0}^{n} \frac{1}{i!}, \]
that is,
\[\alpha_{n+1} = 1 + n \cdot n! e - n \cdot n! R_n \]
with \(R_n = \sum_{i=n+1}^{\infty} \frac{1}{i!} \).
But
\[R_n = \frac{1}{n!} \left(\frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \cdots \right) < \frac{1}{n!} \left(\frac{1}{n+1} + \frac{1}{(n+1)^2} + \cdots \right) \]
so\[R_n = \frac{1}{n \cdot n!}. \]
Thus \(\alpha_{n+1} < 1 + n \cdot n! e < \alpha_{n+1} + 1 \). Since \(\alpha_{n+1} \) is an integer, we deduce that \(\alpha_{n+1} = \lfloor n! \cdot ne \rfloor + 1 \).

Lemma 2. For each \(k \geq 1 \), we have \(\alpha_{k+1} = k(\alpha_k + n - k + 1) + 1 \).
Proof. Let \(k \geq 1 \). We have
\[\frac{\alpha_{k+1} - 1}{k} = 1 + n \cdot (k - 1)! \sum_{i=0}^{k-1} \frac{1}{i!} = 1 + n + n \cdot (k - 1)! \sum_{i=0}^{k-2} \frac{1}{i!}. \]
Thus \(\frac{\alpha_{k+1} - 1}{k} = 1 + n + \alpha_k - k \). The conclusion follows.

3. Proof of the Theorem. Take partition of \(A = \{1, \ldots, \alpha_{n+1}\} \) into \(n \) pairwise disjoint classes. For \(E \subseteq A \) and \(a \in A \), define \(\Delta_a(E) = \{ x - a \mid x \in E \text{ and } x > a \} \). Then we consider the following algorithm:

(1) Define \(S \) to be the set of all the classes of the decomposition.
(2) Choose one of the classes in \(S \) with the maximum number of elements.
Denote it by \(A_1 \). Set \(S = S - \{A_1\} \).
(3) Define \(E_1 = A_1, a_1 = \min E_1, F_1 = \Delta_{a_1}(E_1) - \{a_1\} \).
(4) If \(F_1 \cap A_1 \neq \emptyset \) then stop. Otherwise, set \(p = 1 \) and continue.
(5) Choose an element of \(S \) which contains the maximum number of elements from \(F_p \). Denote it by \(A_{p+1} \). Set \(S = S - \{A_{p+1}\} \).
(6) Define
\[E_{p+1} = A_{p+1} \cap F_p, \quad a_{p+1} = \min E_{p+1}, \]
\[F_{p+1} = \Delta_{a_{p+1}}(E_{p+1}) - \left\{ \sum_{i=0}^{j} a_{p+1-i} \mid i = 0, 1, \ldots, p \right\}. \]
(7) If \(F_{p+1} \cap (\bigcup_{i=1}^{p} A_i) \neq \emptyset \) then stop. Otherwise, continue.
(8) Set \(p = p + 1 \). Go to (5).
Claim 1. For each \(p \in \{1, \ldots, n\} \), if \(E_p \) is constructed by the algorithm then:

- \(E_p \) contains at least \(\alpha_{n-p+1} + p + 1 \) elements.
- \(F_p \) is constructed, and it contains at least \(\alpha_{n-p+1} \) elements.

Proof. By induction on \(p \). For \(p = 1 \), from the pigeon-hole principle, \(A_1 \) contains at least

\[
\frac{\alpha_{n+1}}{n} = \frac{1}{n} + n! \sum_{i=0}^{n} \frac{1}{i!}
\]

elements. Thus, \(E_1 = A_1 \) contains at least

\[
1 + n! \sum_{i=0}^{n} \frac{1}{i!} = \alpha_n + 2
\]

elements (from Lemma 2). Moreover, \(\alpha_n + 2 \geq 2 \), thus \(a_1 \) is well defined. And \(F_1 \) is constructed: we form the differences in (3) (which decreases the number of elements by 1), and delete \(a_1 \) (if necessary). Thus \(F_1 \) contains at least \(\alpha_n \) elements.

Let \(p \) be a fixed integer with \(1 \leq p < n \). Suppose that the conclusion holds for the value \(p \) and that \(E_{p+1} \) is constructed by the algorithm. Then, by the induction hypothesis, \(F_p \) contains at least \(\alpha_{n-p+1} \) elements, none of which belongs to \(\bigcup_{i=1}^{p} A_i \) (otherwise the algorithm would have stopped from (7), and \(E_{p+1} \) would not have been constructed). From the pigeon-hole principle and Lemma 2, \(A_{p+1} \) contains at least

\[
\frac{\alpha_{n-p+1}}{n-p} = \alpha_{n-p} + p + 1 + \frac{1}{n-p}
\]

elements from \(F_p \). It follows that \(E_{p+1} \) contains at least \(\alpha_{n-p} + p + 2 \) elements. Moreover, \(\alpha_{n-p} + p + 2 \geq 2 \), thus \(a_{p+1} \) is well defined, and \(F_{p+1} \) is constructed: we form the differences and make the deletions (if necessary, and not more than \(p + 1 \)). Then \(F_{p+1} \) contains at least \(\alpha_{n-p} \) elements, which ends the induction, and completes the proof of the claim.

Remark. The claim ensures that there will be no problem at step (6) of the algorithm.

Case 1: The algorithm stops at (4). Then there exists \(b \in F_1 \cap A_1 \). Thus \(b = a_i - a_1 \) for some \(a_i \in A_1 \), and \(b \neq a_1 \) since \(a_1 \notin F_1 \). Thus \(b + a_1 = a_i \) in \(A_1 \), and the conclusion of the Theorem holds.

Case 2: The algorithm stops at (7) with \(p < n \). First note that it did not stop before.

Claim 2. For each \(k \in \{1, \ldots, p\} \), the number \(X_k = a_p + a_{p-1} + \ldots + a_k \) belongs to \(E_k \).
Proof. By (descending) induction. For \(k = p \), we directly have \(X_p = a_p \in E_p \). Let \(k \in \{2, \ldots, p\} \) be fixed. Suppose that \(X_k \in E_k \). Since \(E_k \subset F_{k-1} \subset \Delta a_{k-1} (E_{k-1}) \), there exists \(x \in E_{k-1} \) such that \(X_k = x - a_{k-1} \). Thus \(X_{k-1} = X_k + a_{k-1} = x \) belongs to \(E_{k-1} \). This ends the induction and completes the proof.

Since the algorithm has stopped at (7), there exists \(k \in \{1, \ldots, p\} \) such that \(F_p \cap A_k \neq \emptyset \). Then \(b = b_{i_1} - a_p \in F_p \cap A_k \) for some \(b_{i_1} \in E_p \).

If \(k = p \), we have \(b \in F_p \). Then, by construction, \(b \neq a_p \). Thus \(b_{i_1} = b + a_p \) in \(A_p \), and the conclusion of the Theorem holds.

If \(k < p \), then \(b_{i_1} \in E_p \subset F_{p-1} \). It follows that

\[
\begin{align*}
b_{i_1} &= b_{i_2} - a_{p-1} & & \text{for some } b_{i_2} \in E_{p-1} \subset F_{p-2}, \\
b_{i_2} &= b_{i_3} - a_{p-2} & & \text{for some } b_{i_3} \in E_{p-2} \subset F_{p-3}, \\
\vdots \\
b_{i_{p-k}} &= b_{i_{p-k+1}} - a_k & & \text{for some } b_{i_{p-k+1}} \in E_k \subset A_k.
\end{align*}
\]

Summing, we obtain

\[
b = b_{i_{p-k+1}} - \sum_{i=k}^{p} a_i = b_{i_{p-k+1}} - X_k.
\]

But, from Claim 2, we have \(X_k \in E_k \subset A_k \). And, since \(b \in F_p \), we deduce that \(b \neq X_k \) (see step (6)). It follows that \(b + X_k = b_{i_{p-k+1}} \) in \(A_k \), and the conclusion of the Theorem holds.

Case 3: The algorithm does not stop until \(p = n \) in (8). Then \(A_n, E_n, F_n \) are constructed by the algorithm. From Claim 1, \(F_n \) contains at least \(\alpha_1 = 1 \) elements. Thus \(F_n \neq \emptyset \) and

\[
F_n \cap \left(\bigcup_{i=1}^{n} A_i \right) = F_n \cap A \neq \emptyset.
\]

We deduce that the algorithm stops at (7). The reasoning used in Case 2 may be repeated word for word, and the conclusion of the Theorem holds. Thus the proof is complete.

4. Remarks. Following Sierpiński [4], given a natural number \(k \), denote by \(n(k) \) the least natural number \(n \) with the following property: if the numbers 1, \ldots, \(n \) are divided into \(k \) classes, then at least one class contains two different numbers together with their sum.

Then according to Walker [6]

\[
n(1) = 3, \quad n(2) = 9, \quad n(3) = 24, \quad n(4) = 67, \quad n(5) = 197.
\]

Also, see [5], p. 440,

\[
n(k) \geq 1 + 315^{(k-1)/5}.
\]
Thus
\[315^{(k-1)/5} + 1 \leq n(k) \leq [k! \cdot ke] + 1.\]

References

50 rue Prosper Legouté
92160 Antony, France
E-mail: pbornszt@club-internet.fr

Received on 2.1.2001 (3940)