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On an extension of a theorem of Schur
by

PIERRE BORNSZTEIN (Antony)

1. Introduction. A well-known theorem of I. Schur ([3], [4]) states that
“If the positive integers less than nle are partitioned into n classes in any
way, then x+y = z can be solved in integers (not necessarily distinct) within
one class”.

For example, in the case n = 2, the above theorem may be used for
{1,2,3,4,5}. Let us consider the partition A; = {1,2} and As = {3,4,5}.
It is clear that x + y = z has a solution within A;. But such a partition
does not give a solution if we restrict to triplets (z,y, z) of pairwise distinct
integers. Note that if z +y = z with z,y, 2 # 0, only x and y may be equal.

Sierpiniski [4] has proved that a solution in distinct integers is certain if
we replace the upper bound [nle] by 2("¢l| and Trving ([1], [2]) improved this
result with the bound [§(2n+ 1)e - n!] +2 (where, as usual, [z] denotes the
greatest integer less than or equal to x).

The purpose of this paper is to prove the following theorem:

THEOREM. Let n > 2 be an integer. If the set A ={1,2,...,[n!-ne]+1}
is divided into n classes in any way, then at least one of the classes contains
two different numbers and their sum.

2. Preliminaries. Let n > 2 be an integer. We define the finite sequence
(ag) for k=1,...,n+1 by

k—2

1
ak:k+n-(k—1)!zﬁ,
i=0

with the convention Zg:p = 0 when p > ¢q. In particular a; = 1. Moreover,
it is clear that aj € N* for each k.

LEMMA 1. We have a1 = [n!-ne] + 1.
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Proof. We have
n—1

1 "1
an+1:n—|—1+n-n!25:1+n-n!25,
i=0 i=0

that is,
: — 1
ont1 =1+n-nle—n-nlR, with Rn:i;—la,

But
R =i< L, ! +...><l< LI +>
"oonl\n+1 (n+1)(n+2) nl\n+1 (n+1)2

1

n-n!

Thus ap+1 < 14+ n-nle < ap41 + 1. Since ay,41 is an integer, we deduce
that a1 = [n!-ne] + 1.

LEMMA 2. For each k > 1, we have a1 = k(o +n—k+ 1)+ 1.
Proof. Let k > 1. We have

a 1 =1 =1
bl 2 S (k= 'E = . hd
. =1+4+n-(k 1).i70i!—1+n+n (k—1)! ifol!.

Thus (ag+1 —1)/k =1+ n+ oy — k. The conclusion follows.

3. Proof of the Theorem. Take partition of A = {1,..., a,41} into
n pairwise disjoint classes. For E C A and a € A, define A,(F) = {z —a |
x € F and x > a}. Then we consider the following algorithm:

(1) Define S to be the set of all the classes of the decomposition.

(2) Choose one of the classes in S with the maximum number of elements.
Denote it by A;. Set S =5 —{A4:}.

(3) Define E1 = Al, a; = min El, F1 (ll (El) {al}

(4) If F; N Ay # 0 then stop. Otherwise, set p = 1 and continue.

(5) Choose an element of S which contains the maximum number of
elements from F,,. Denote it by Ap41. Set S =5 — {A,41}.

(6) Define

Ep+1 = Ap+1 N F'p7 Qp+1 = min Ep+1,

FP+1:A%+1 P+1 {Zaerl ilj=0,1,...,p }

(7) If Fpe1 N (UP_; A;) # 0 then stop. Otherwise, continue.
(8) Set p=p+ 1. Go to (5).
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CLAM 1. For each p € {1,...,n}, if E, is constructed by the algorithm
then:

e E, contains at least cv,—py1 +p+ 1 elements.
o I, is constructed, and it contains at least on,—pi1 elements.

Proof. By induction on p. For p = 1, from the pigeon-hole principle, Ay

contains at least
a 1 "1
n+1 -~ 4 Tl' z : -
n n —
=0

elements. Thus, 'y = A; contains at least

n
14+ n! Z Z—ll =q, + 2
i=0
elements (from Lemma 2). Moreover, a,, + 2 > 2, thus a; is well defined.
And F is constructed: we form the differences in (3) (which decreases the
number of elements by 1), and delete a; (if necessary). Thus F; contains at
least «,, elements.

Let p be a fixed integer with 1 < p < n. Suppose that the conclusion
holds for the value p and that E,; is constructed by the algorithm. Then,
by the induction hypothesis, F}, contains at least c,,_,41 elements, none
of which belongs to |J/_, A; (otherwise the algorithm would have stopped
from (7), and E, 4, would not have been constructed). From the pigeon-hole
principle and Lemma 2, A, contains at least

Oty 1
Pt APl ——
n—op n—op

elements from F),. It follows that E, 1 contains at least a,,—,+p+2 elements.
Moreover, ay,—p+p+2 > 2, thus a,4; is well defined, and Fj,4; is constructed:
we form the differences and make the deletions (if necessary, and not more
than p 4+ 1). Then Fj,4, contains at least c,—_, elements, which ends the
induction, and completes the proof of the claim.

REMARK. The claim ensures that there will be no problem at step (6)
of the algorithm.

CASE 1: The algorithm stops at (4). Then there exists b € F1 N A;. Thus
b = a; — ay for some a; € A1, and b # a1 since a; € Fy. Thus b+ a; = a; in
Aj, and the conclusion of the Theorem holds.

CASE 2: The algorithm stops at (7) with p < n. First note that it did
not stop before.

CLAIM 2. Foreach k € {1,...,p}, the number X, = ap+ap—1+...+ay
belongs to Ej.
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Proof. By (descending) induction. For k& = p, we directly have X, =
ap € E,. Let k € {2,...,p} be fixed. Suppose that X € Ej. Since Ej, C
Fp1 C A, _,(Ek—1), there exists x € Ej_; such that X, = = — ax_1.
Thus X1 = Xk + ar_1 = x belongs to Ex_1. This ends the induction and
completes the proof.

Since the algorithm has stopped at (7), there exists k € {1,...,p} such
that F, N Ay # 0. Then b = b;, — a, € F, N Ay, for some b;, € E,,.

If k = p, we have b € F},. Then, by construction, b # a,. Thus b;, = b+a,
in A,, and the conclusion of the Theorem holds.

If £ <p, then b;, € £, C F},_;. It follows that

bil = big — Qp—1 for some biz S Ep_1 C Fp_g,
big = big — Qp—2 for some bi3 S Ep_z C Fp_g,
bi,_ =bi, ., —ar forsomeb;, . € EyC Ay.

Summing, we obtain

p
b = bip7k+1 — E a; = bip7k+l — Xk
i=k

But, from Claim 2, we have X, € Ej, C Ay. And, since b € F),, we deduce
that b # X (see step (6)). It follows that b+ X3 = b in Aj, and the
conclusion of the Theorem holds.

CASE 3: The algorithm does not stop untilp=n in (8). Then A,, E,, F,
are constructed by the algorithm. From Claim 1, F}, contains at least a; = 1
elements. Thus F,, # () and

an(OAi):FnﬂA#@.
=1

ip—kt1

We deduce that the algorithm stops at (7). The reasoning used in Case 2
may be repeated word for word, and the conclusion of the Theorem holds.
Thus the proof is complete.

4. Remarks. Following Sierpiriski [4], given a natural number k, de-
note by n(k) the least natural number n with the following property: if the
numbers 1,...,n are divided into k classes, then at least one class contains
two different numbers together with their sum.

Then according to Walker [6]

n(1)=3, n(2)=9, n(3)=24, n(4) =67, n(5)=197.

Also, see [5], p. 440,
n(k) > 14 315¢°=1/5,
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Thus
315175 11 <n(k) < [K!- ke] + 1.
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