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Random Liouville functions and normal sets

by

Alexander Fish (Jerusalem)

We define a random Liouville function λQ which depends on a random
set Q of primes and prove that AQ = {n ∈ N | λQ(n) = −1} is normal
almost everywhere. This fact enables us to generate a family of normal sets
such that the equation xy = z is not solvable inside them. Additionally we
prove that the equations xy = z2, x2 + y2 = square, x2 − y2 = square are
solvable in any normal set, and for any equation xy = cn2 (c > 1 is not a
square) there exists a normal set Ac such that the equation is not solvable
inside Ac.

1. Introduction. With the familiar notion of normal numbers in mind,
we shall call an infinite binary sequence normal if any binary word ω of
length |ω| occurs in the sequence with the right frequency: 2−|ω|. We have
the natural bijection between infinite {0, 1}-sequences λ and the subsets of
the natural numbers Aλ = {i | λi = 1}. We now have

Definition 1.1. A set B ⊂ N is called normal if the corresponding
{0, 1}-sequence is normal.

In this note we shall be interested in normal sets and the possibility of
solving diophantine equations in integers from a given, but arbitrary, nor-
mal set. We expect that there are many diophantine equations (or systems
of equations) which, if they are solvable at all in integers, are solvable in
integers from a given normal set. We call such equations N-regular, and we
denote by DSN the family of N-regular equations (or systems of equations).

An equation, or a system of equations, is called partition-regular if for any
finite partition of the natural numbers, the system is solvable within one of
the cells of the partition. One of the earliest examples of a partition-regular
equation is Schur’s equation: x + y = z. It is not hard to see that Schur’s
equation is also N-regular. Rado in [6] classified all systems of linear dio-
phantine equations that are partition regular. Rado’s theorem implies the
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familiar van der Waerden theorem on existence of arbitrarily long monochro-
matic arithmetic progressions in any finite coloring of the natural numbers.

Using Furstenberg’s theorem regarding Rado’s systems in [4], one can
obtain the analogous result for N-regularity: namely, any Rado system of
linear equations is in DSN.

From the foregoing, we have many linear equations in DSN. But little is
known in the non-linear case. For example, it is an open question whether
the Pythagorean equation x2+y2 = z2 is in DSN. The purpose of this note is
to show that the equation xy = z is not in DSN. This equation is called the
multiplicative Schur equation. It is an easy consequence of Schur’s additive
theorem that his multiplicative equation is also partition-regular. In fact in
any finite partition of N one can find solutions to both the additive and
the multiplicative equations in the same cell ([1]). Thus partition regularity
does not imply N-regularity. To show that xy = z is not in DSN we will use
a construction of random normal sets, based on a variant of the Liouville
function λ(n) from number theory. Recall

Definition 1.2. Liouville’s function λ : N → {−1, 1} is defined by

λ(pe1

1 pe2

2 · · · pek

k ) = (−1)e1+e2+···+ek

where p1, . . . , pk are primes.

It is a well known and very deep question whether the set A = {n ∈ N |
λ(n) = −1} is normal (see [2] and [3]). It seems that at present we are far
from resolving this outstanding problem. But just for clarity, if the answer to
this question is positive, then the aforementioned set A gives us an example
of a normal set with no solution to the equation xy = z.

In the following we will use a random Liouville function λQ which is
defined by a random choice of a subset Q inside P (the prime numbers) as
follows:

λQ(pe1

1 pe2

2 · · · pek

k ) = λQ(p1)
e1λQ(p2)

e2 · · ·λQ(pk)
ek

and

λQ(p) =

{−1, p ∈ Q,

1, p 6∈ Q.

By randomness of Q we mean that the choice of every prime number p is
independent of the choice of any other prime numbers and Pr(p ∈ Q) = 0.5
for any p ∈ P .

One defines AQ = {n ∈ N | λQ(n) = −1}. In Section 2 we prove

Theorem 1.1. For almost every Q the set AQ is normal.

This theorem gives us an infinite family of normal sets such that the
multiplicative Schur equation is not solvable in these sets.

In Section 3 we prove that the equations xy = z2, x2 + y2 = square and
u2 − v2 = square are in DSN.
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2. AQ is normal for a.e. Q. We start from an obvious claim about
normality of AQ.

Lemma 2.1. Let Q ⊂ P be given. Then AQ is normal ⇔ for any k ∈
N ∪ {0} and any i1 < · · · < ik we have

(1) lim
N→∞

1

N

N
∑

n=1

λQ(n)λQ(n + i1) · · ·λQ(n + ik) = 0.

We proceed with the following statement which is readily proved:

Lemma 2.2. Let {an} be a bounded sequence. Define TN =N−1
∑N

n=1 an.

Then TN converges to a limit t ⇔ there exists an increasing sequence {Ni}
of indices such that Ni/Ni+1 → 1 and TNi

→ t as i → ∞.

The next step is to show

∞
∑

N=1

E

((

1

N40

N40

∑

n=1

λQ(n)λQ(n + i1) · · ·λQ(n + ik)

)2 )

< ∞.

Lemma 2.3. Let TN be as above. Then E(T 2
N ) ≤ O(1/N0.05).

Proof. By linearity of expectation we get

E(T 2
N ) =

1

N2

N
∑

x,y=1

E(λQ(x)λQ(x + i1) · · ·λQ(x + ik)λQ(y)λQ(y + i1) · · ·λQ(y + ik)).

Note that for any m ∈ N, E(λQ(m)) = 0 unless m is a square in which case
E(λQ(m)) = 1.

Set

φ(x) = λQ(x)λQ(x + i1) · · ·λQ(x + ik), ξ(x) = x(x + i1) · · · (x + ik).

By distribution of Q we get

E(φ(x)φ(y)) = 1 ⇔ ξ(x)ξ(y) = m2.

Otherwise
E(φ(x)φ(y)) = 0.

Therefore, to obtain an upper bound on E(T 2
N ), we give an upper bound on

the number of pairs (x, y) ∈ [1, N ] × [1, N ] which satisfy ξ(x)ξ(y) = square.
For a given x ∈ [1, N ] assume that ξ(x) = cxm2, where cx is a square-

free number, say with prime factorization cx = pj1 · · · pjl
. Then we define
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h(x) = l (thus h(x) is the number of primes in the prime factorization of the
maximal square-free number which divides x). Denote by D the set of all
possible common divisors of the numbers x, x + i1, . . . , x + ik (i.e. positive
integers which divide at least two of them). For a finite non-empty set S of
positive numbers we denote by m(S) the product of all elements of S; for
the empty set, we set m(∅) = 1.

Note that ξ(x)ξ(y) = square ⇒ there exist S1⊂D and S2⊂{pj1 , . . . , pjl
}

such that y = m(S1)m(S2) square.
Assume |D| = r (r depends only on the set {i1, . . . , ik} and does not

depend on x). Then we obtain ξ(x)ξ(y) = square for at most 2r2h(x)
√

N y’s
inside [1, N ]. Thus

E(T 2
N ) ≤ 1

N2

(

N
∑

n=1

2r2h(n)
√

N
)

≤ c

N1.5

N
∑

n=1

2h(n).

Therefore it remains to bound the expression
∑N

n=1 2h(n).
Let p = pi be the smallest prime number such that (k + 1)/log2 p ≤ 0.45.

If ξ(n) is not divisible by any of the primes 2, 3, . . . , p then

h(n) ≤ logp (n + ik)
k+1 = (k + 1)

log2 (n + ik)

log2 p
.

This gives us

2h(n) ≤ (n + ik)
(k+1)/log2 p ≤ (n + ik)

0.45.

But if ξ(n) is arbitrary then h(n) can increase by at most i, which means

2h(n) ≤ 2i(n + ik)
0.45. Thus

∑N
n=1 2h(n) ≤ C1(N + ik)

1.45 and therefore we
get

E(T 2
N ) ≤ C2

1

N0.05
.

Proof of Theorem 1.1. From the last lemma we conclude that
∑∞

N=1 E(T 2
N40) < ∞. Thus TN40 → 0 almost surely. Lemma 2.2 implies

that TN → 0 almost surely. And from Lemma 2.1 (with countably many
conditions for AQ to be normal) it follows that for almost all Q ⊂ P the
sets AQ are normal.

We can now demonstrate the main result of this note.

Theorem 2.1. There exists a normal set A ⊂ N such that the multi-

plicative Schur equation is not solvable inside A.

Proof. We have already shown the existence of many Q (Q ⊂ P ) such
that AQ is normal. By definition of AQ, we have xy 6∈AQ for any x, y∈AQ.

Corollary 2.1. For any equation xy = cnk (where c, k are natural

numbers, c is not a square and k is even) we can find a normal set Ac,k ⊂ N

such that for any x, y ∈ A we have xy 6= cnk for every natural n.



Random Liouville functions and normal sets 195

Proof. We take AQ normal and such that λQ(c) = −1 (this happens
with probability 1/2, and thus such sets exist). Then obviously we cannot
solve the above equation inside AQ.

3. Solvability of the equation xy = z2 and related problems

Theorem 3.1. Let A ⊂ N be a normal set. Then there exist x, y, z ∈ A
(x 6= y) such that xy = z2.

Proof. For a set S ⊂ N and a ∈ N define Sa = {n ∈ N | an ∈ S}. It
is easily seen that if S is normal then so is each Sa (see [5]). We denote by
d(S) the density of a set S, if it exists.

Let A be a normal set. Define Rn = A2n . For any n we have d(Rn) = 1/2.
Set

µN (S) =
|S ∩ {1, . . . , N}|

N
for any S ⊂ N and any N ∈ N.

By Szemerédi’s theorem (finite version), for any δ > 0 and l ∈ N there
exists N(l, δ) such that for any N ≥ N(l, δ) and F ⊂ {1, . . . , N} such that
|F |/N ≥ δ the set F contains an arithmetic progression of length l (see [7]).

One chooses K ≥ N(3, 1/3). Then there exists NK such that µNK
(Ri) ≥

1/3 for every 1 ≤ i ≤ K.
We claim that there exists F ⊂ {1, . . . , K} such that |F |/K ≥ 1/3 and

µNK
(
⋂

j∈F Rj) > 0. If not, let 1Ri
be the indicator function of the set Ri

inside {1, . . . , NK}. Then on the one hand,\
[1,NK ]

(1R1
+ · · · + 1RK

) dµNK
=

K
∑

j=1

\
[1,NK ]

1Rj
dµNK

≥ K

3
.

But on the other hand,\
[1,NK ]

(1R1
+ · · · + 1RK

) dµNK
<

K

3

because 1R1
+ · · · + 1RK

< K/3.
Let F be as above. Then by the choice of K it follows that F necessar-

ily contains an arithmetic progression of length 3. This means there exist
a, b, c ∈ F such that a + c = 2b. We have Ra ∩ Rb ∩ Rc 6= ∅ and so there
exists n ∈ N such that x := n2a ∈ A, z := n2b ∈ A and y := n2c ∈ A. Then

xy = z2.

Question. Are the equations xy = c2z2, where c > 0 is a natural
number, always solvable inside an arbitrary normal set?

Theorem 3.2. Let A ⊂ N be an arbitrary normal set. Then there exist

x, y, u, v ∈ A such that x2 + y2 = square and u2 − v2 = square.
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Proof. Note that there exist a, b, c ∈ N such that a2 + b2 = square and
a2 + c2 = square and b2 + c2 = square, for example a = 44, b = 117, c = 240.

Let A ⊂ N be an arbitrary normal set. We look at the triple of sets
Aa, Ab, Ac defined as in the proof of Theorem 3.1. Then d(Aa) = d(Ab) =
d(Ac) = 1/2 and thus it cannot be true that the intersection of each pair
from the triple is empty.

Without loss of generality, assume that Aa ∩ Ab 6= ∅. Thus there exists
z ∈ Aa ∩ Ab or equivalently za, zb ∈ A. But a2 + b2 = square and therefore
(za)2 + (zb)2 = square.

The proof that the equation u2 − v2 = square is solvable in any normal
set is similar. We use the fact that there exist a, b, c ∈ N such that a < b < c
and c2 − b2 = square, c2 − a2 = square and b2 − a2 = square, for example
a = 153, b = 185, c = 697.

Questions. 1) For an arbitrary normal set A do there exist x, y, z ∈ A
such that x2 + y2 = z2?

2) For an arbitrary normal set A do there exist x, y, z ∈ A such that
x2 − y2 = z2?
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