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Linear independence of certain Lambert and allied series
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1. Introduction. In our recent work [3] we considered linear indepen-
dence of q-analogues of certain classical constants connected with Lambert
series

F (a) :=

∞
∑

n=1

an

qn − 1
,

where q is a rational integer or an integer in an imaginary quadratic number
field satisfying |q| > 1, and a := (an) is a non-zero periodic sequence of
period length ≤ 2 with all an in the same field as above. Our results gave
quantitative refinements of some results of Tachiya [7], e.g., a linear indepen-
dence measure 2(π2+4)/(π2−8) = 14.83694 . . . was obtained for 1, F (a) and
F (b) with linearly independent sequences a and b, giving the same measure
for 1, Lq(1), Lq(−1), the values of the q-logarithm Lq defined below. Simul-
taneously and independently, the same measure was obtained by Zudilin [8]
using another method based on Padé approximations of the second kind.

In the present paper, our purpose is to extend the results of [3] to more
general algebraic numbers q and to

(1) f(a, α) :=
∞

∑

n=1

an

qn − α

with α ∈ {1,−1}; note that f(a, 1) = F (a). The arithmetic part of the proof
depends essentially on the value of α, and the new case α = −1 turns out
to be much more interesting than the earlier α = 1. Our present extensions
also give new applications.

2. Notations and results. Let q be an algebraic number satisfying
|q| > 1, and let K := Q(q), d := [K : Q]. We shall consider linear indepen-
dence (over K) of 1, f(a, α) and f(b, α), where a = (an) and b = (bn) are
linearly independent periodic sequences in KN of period length ≤ 2.
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We shall use the absolute height of β ∈ K defined by

h(β) :=
∏

w

max(1, |β|w)dw/d,

where the product is taken over all places w of K, with | |w denoting the
valuation corresponding to w, normalized in the usual way, Kw the comple-
tion of K at w, and dw := [Kw : Qw]. For a vector β := (β1, . . . , βn) ∈ Kn

we define

|β|w := max
i

|βi|w, h(β) :=
∏

w

max(1, |β|w)dw/d.

Further, let us denote by v the infinite place with |q| = |q|v.
To formulate our results we need the quantity

(2) λ :=
d log h(q)

dv log |q|v
.

Clearly λ ≥ 1 holds always, and λ = 1 if and only if |q|w ≤ 1 for all places
w 6= v. For example, if K is Q or an imaginary quadratic number field and
q is an integer in such a K, then λ = 1. Furthermore, λ = 1 holds for all
algebraic integers such that |q|w ≤ 1 for all infinite places w 6= v. Examples
of such algebraic integers are the elements of the classes S (nowadays called
Pisot, or Pisot–Vijayaraghavan, or PV numbers) and T (now called Salem
numbers) in terms of Salem’s monograph [6] (Chap. I and III, respectively).

In our results we shall use an upper bound λ(α) for λ defined by

(3) λ(α) :=

{

3π2/(2π2 + 8) = 1.067399 . . . if α = 1,

27π2/(19π2 + 66) = 1.051107 . . . if α = −1.

Theorem 1. Let q be an algebraic number such that |q|v > 1 and

|q|w 6= 1 for all infinite places w 6= v of K = Q(q), and assume that a = (an)
and b = (bn) are linearly independent periodic sequences in KN of period

length ≤ 2. If λ < λ(α), then the numbers

(4) 1, f(a, α), f(b, α)

are linearly independent over K. Moreover , for any ε ∈ R+, there exists a

positive constant H0 = H0(|q|v, a, b, α, ε) such that

(5) |ℓ0 + ℓ1f(a, α) + ℓ2f(b, α)|v > |(ℓ1, ℓ2)|vH−m1(α)−ε

for all non-zero ℓ ∈ K3, where H := max(h(ℓ), H0) and m1(α) is defined by

dv

d
m1(α) =

{

3π2/(3π2 − 2λ(π2 + 4)) if α = 1,

27π2/(27π2 − λ(19π2 + 66)) if α = −1.

Remark. From the proof of this theorem we see that the ε in (5) can
be replaced by a positive function of H of size O((log log H)/(log H)1/2) if
α = 1, or of size O((log log H)2/(log H)1/2) if α = −1.
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As noted after (2), λ = 1 happens in some cases. In such a situation we
have

Theorem 2. Let the assumptions of Theorem 1 be satisfied , and suppose

further that |q|w ≤ 1 for all places w 6= v of K. Then the numbers (4) are

linearly independent over K, and inequality (5) holds with m1(α) replaced

by m2(α), which is defined by

dv

d
m2(α) =

{

3π2/(π2 − 8) if α = 1,

27π2/(8π2 − 66) if α = −1.

This theorem has the following corollary containing Tachiya’s Theorem 2
(see [7]).

Corollary 1. If q is an algebraic integer , |q| = |q|v > 1 and |q|w < 1
for all infinite places w 6= v of K, then the claims of Theorem 2 are true.

In particular , for any non-zero periodic sequence a = (an) of period length

≤ 2 the number f(a, α) is not in K, and , for any ε > 0, the inequality

|ℓ0 + ℓ1f(a, α)| > |ℓ1|H−m2(α)−ε

holds for all non-zero ℓ ∈ K2 with H = max(h(ℓ)) ≥ H0(|q|v, a, α, ε).

We next give as a theorem the special case of Theorem 1 where K = I, the
field Q or an imaginary quadratic number field. Note that if the components
of ℓ are integers in I, then h(ℓ) = max(|ℓi|).
Theorem 3. Let the hypotheses of Theorem 1 be satisfied , and suppose

that Q(q) = I, and q is an integer in I. Then the numbers (4) are linearly

independent over I and , for any ε > 0, the inequality

|ℓ0 + ℓ1f(a, α) + ℓ2f(b, α)| > h−m3(α)−ε

holds for all ℓ ∈ I3 with integer components satisfying h = max(|ℓ1|, |ℓ2|) ≥
H0(|q|, a, b, α, ε), where

m3(α) :=

{

2(π2 + 4)/(π2 − 8) if α = 1,

(19π2 + 66)/(8π2 − 66) if α = −1.

The case α = 1 of this theorem is Theorem 2 of [3]. We can also give a
generalization of Corollary 1 of [3] and Theorem 1 and its corollary in [8]. For
this, we introduce the q-logarithm, the first formula defining Lq in |z| < |q|
only:

Lq(z) =

∞
∑

n=1

zn

qn − 1
= z

∞
∑

n=1

1

qn − z
.

Corollary 2. Let the hypotheses of Theorem 1 be satisfied. If λ < λ(α),
then, for α ∈ {1,−1}, any of the following sets of three numbers is linearly

independent over K:

{1, Lq(α), Lq(−α)}, {1, Lq(α), Lq2(α)}, {1, Lq2(α), Lq2(α/q)}.
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Moreover , the lower bound given in (5) holds true for linear forms in any of

these triples of numbers.

Remark. For obvious reasons, we also call Lq(1) a q-harmonic series

(and denote it by ζq(1)), and Lq(−1) a q-analogue of log 2, sometimes de-
noted by logq 2. Of course, we could as well give the above triples in these
terms.

Our theorems also have some further interesting corollaries. For the next
one, let τo(n) and τe(n) denote, respectively, the number of odd and even
positive integral divisors d of the positive integer n. Then we have

Corollary 3. Let the assumptions of Theorem 1 be satisfied. If λ <
λ(1), then the numbers

1,
∑

n≥1

τo(n)q−n,
∑

n≥1

τe(n)q−n

are linearly independent over K. Moreover , the lower bound given in (5)
holds true for linear forms in these numbers.

For our next result we define the arithmetical functions

s(n) :=
∑

d|n

(−1)d−1, t(n) :=
∑

d|n

(−1)d+n/d.

We shall see in Lemma 4 that these are multiplicative functions intimately
connected with the classical divisor function τ .

Corollary 4. Let the assumptions of Theorem 1 be satisfied. If λ <
λ(−1), then the numbers

1,

∞
∑

n=1

s(n)q−n,

∞
∑

n=1

t(n)q−n

are linearly independent over K and the lower bound given in (5) holds true

for linear forms in these numbers.

In the following we work in Q(
√

5), where we choose q := −(3 +
√

5)/2.
Then |q|w = (3 −

√
5)/2 < 1 for the other infinite place of K, and therefore

λ = 1. Since
1

qn − 1
=

βn

√
5Fn

and
1

qn + 1
=

βn

Ln
,

where β := (1 −
√

5)/2 and (Fn) is the Fibonacci and (Ln) the Lucas se-
quence, Theorem 2 immediately implies the following

Corollary 5. Let (an) and (bn) be linearly independent periodic se-

quences in Q(
√

5)N of period length ≤ 2. Then the sets
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{

1,
∞

∑

n=1

anβn

Fn
,

∞
∑

n=1

bnβn

Fn

}

,

{

1,
∞
∑

n=1

anβn

Ln
,

∞
∑

n=1

bnβn

Ln

}

,

{

1,
∞

∑

n=1

βn

Fn
,

∞
∑

n=1

βn

Ln

}

are linearly independent over Q(
√

5). Moreover , the lower bound given in (5)
holds true for linear forms in any of these triples, where m1(α) has to be

replaced by 6π2/(π2 − 8) or 27π2/(4π2 − 33) in the first and third case, or

in the second case, respectively.

We note that the irrationality measures 2.874 and 7.652 for
∑

n≥1 βn/Fn

and
∑

n≥1 βn/Ln, respectively, were proved by Matala-aho and Prévost [5].

3. Analytic construction. To prove Theorems 1 and 2 we consider a
linear form in 1, f(a, α) and f(b, α), with α = ±1 and linearly independent
a and b, say

(6) L := ℓ0 + ℓ1f(a, α) + ℓ2f(b, α),

where ℓ := (ℓ0, ℓ1, ℓ2) ∈ K3 \ {0}. We assume that (ℓ1, ℓ2) 6= (0, 0) (the case
ℓ1 = ℓ2 = 0 being trivial). Clearly L is of the form

L = ℓ0 + f(d, α),

where d := ℓ1a + ℓ2b is a periodic sequence of period length ≤ 2. Since a
and b are linearly independent, we have d 6= 0.

We now construct approximations to f(d, α) similarly to [3], see also [2].
For this we use the complex integral

(7) J(N) :=
1

2πi

L
|z|=1

∏2N−δ
k=1 (αz − qk)

z2N
∏N

n=1(1 − q2nz)
f(d, αz) dz,

where δ := 0 if |d1|v ≥ |d2|v, δ := 1 if |d1|v < |d2|v, and N ∈ N is a parameter
to be fixed later. By using the equalities

f(d, αq−2n) = q2n

(

f(d, α) −
2n
∑

m=1

dm

qm − α

)

,

f (ν)(d, αz)

ν!

∣

∣

∣

∣

z=0

= αν d1q
ν+1 + d2

q2(ν+1) − 1

and the residue theorem we obtain

(8) J(N) = P (N)f(d, α) + Q(N, d),

where

P (N) := P (N, q, α)(9)

:=

N
∑

n=1

(−1)N+n+1+δ qn(n−1)+2δn
∏2N−δ

k=1 (qk+2n − α)
∏n−1

ν=1(q
2ν − 1)

∏N−n
ν=1 (q2ν − 1)

,
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the single summands here being denoted later by pn(N, q, α), and

(10) Q(N, d) := Q(N, d, q, α) := −
N

∑

n=1

pn(N, q, α)
2n
∑

m=1

dm

qm − α

+
∑

κ+µ+ν=2N−1

(

∑

1≤k1<···<k2N−δ−κ≤2N−δ

ακ(−1)δ+κqk1+···+k2N−δ−κ

)

×
(

∑

µ1+···+µN=µ

(−1)µq2(1µ1+···+NµN )
)

αν d1q
ν+1 + d2

q2(ν+1) − 1
.

Furthermore, as in the proof of Theorem 2 in [3], we have

(11) |J(N)|v = c1|d|v|q|−3N2−(2+δ)N
v (1 + O(|q|−N

v )),

where c1 (as also c2, c3, . . . later) and the implied constant in the O-notation
are positive constants depending on α and q, but not on d or N .

4. Arithmetic considerations. In the analytic part there was no es-
sential difference between the cases α = 1 and α = −1. Now we consider
the arithmetic properties, in particular the denominators, of P (N, q, α) and
Q(N, d, q, α), and here the situation is different. The case α = 1 is rather
standard, but the case α = −1 is a highly delicate one.

The case α = 1 is treated in [3], and in this case (9) implies

P (N, q, 1) =
N

∑

n=1

(−1)N+n+1+δqn(n−1)/2

[

N − 1

n − 1

]

q2

[

2N + 2n − 1

2n

]

q

(12)

× (q2N+2n − 1)1−δ
N
∏

ν=1

(q2ν−1 − 1),

where the q-binomial coefficients are in Z[q]. Therefore P (N, q, 1) ∈ Z[q],
and if

D(N, q, 1) := lcm(q2 − 1, q4 − 1, . . . , q4N − 1),

then D(N, q, 1)Q(N, d, q, 1) ∈ K[q], by (10). Furthermore, by using the cy-
clotomic polynomials Φν we have

D(N, q, 1) =

2N
∏

ν=1

Φν(q2)

and

(13) |D(N, q, 1)|v = |q|24π−2N2+O(N log N)
v ,

where the O-constant depends at most on q.
In the case α = −1, we certainly need D(N, q, 1) in the common denom-

inator, but this is not enough. After multiplying by D(N, q, 1), we still need
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a common denominator for all n = 1, . . . , N of
∏2N−δ+2n

k=1+2n (qk + 1)
∏2N

l=1 Φl(q
2)

∏N−1
k=1 (q2k − 1)

· 1

qj + 1
(j = 1, . . . , 2n);

see (9), (10) and the above D(N, q, 1). Because of

N
∏

k=1

(qk − 1) =

N
∏

k=1

∏

l|k

Φl(q) =

N
∏

l=1

Φl(q)
[N/l]

the above expression is, for each j ∈ {1, . . . , 2n}, of the form

(14)

∏2N−δ+2n
k=1+2n (q2k − 1) · ∏2N

l=1 Φl(q
2)

∏2N−δ+2n
k=1+2n (qk − 1) ·

∏N−1
k=1 (q2k − 1)

· qj − 1

q2j − 1

=

∏2N−δ+2n
k=1+2n

∏

l|2k Φl(q) ·
∏2N

l=N Φl(q
2) ·

∏

l|j Φl(q)
∏2N−δ+2n

k=1+2n

∏

l|k Φl(q) ·
∏[(N−1)/2]

l=1 Φl(q2)[(N−1)/l]−1 · ∏l|2j Φl(q)
.

Lemma 1. The product

ΨN (q) :=

[(N−1)/2]
∏

l=1
2∤l

Φl(q)
[(N−1)/l]−1

is a common denominator of all rational expressions (14).

Proof. Since

Φl(q
2) =

{

Φ2l(q) for even l,

Φ2l(q)Φl(q) for odd l,

(compare, e.g., [4, Chap. 2]) our lemma follows if all quotients
∏2N−δ+2n

k=1+2n

∏

l|2k Φl(q)
∏2N−δ+2n

k=1+2n

∏

l|k Φl(q)
·

∏2N
l=N Φl(q

2)
∏[(N−1)/2]

l=1 Φ2l(q)[(N−1)/l]−1
·

∏

l|j Φl(q)
∏

l|2j Φl(q)

are in Z[q]. Obviously all Φl(q) with odd l appearing in the denominator can
be cancelled by the nominator.

The polynomial Φl with even l appears at least

A :=

[

2N + 2n − δ

l/2

]

−
[

2n

l/2

]

times in the nominator and at most

B :=

[

2N + 2n − δ

l

]

−
[

2n

l

]

+

[

N − 1

l/2

]

− 1 + 1

times in the denominator. On putting l′ := l/2 and writing N = νl′ + ν ′,



204 P. Bundschuh and K. Väänänen

n = µl′ + µ′ with ν ′, µ′ ∈ {0, 1, . . . , l′ − 1} we obtain

A − B =

[

2ν ′ + 2µ′ − δ

l′

]

−
[

2µ′

l′

]

−
[

ν ′ + µ′ − δ/2

l′

]

−
[

ν ′ − 1

l′

]

.

If ν ′ = 0, then clearly A−B ≥ 0. If ν ′ ∈ {1, . . . , l′−1} and ν ′+µ′−δ/2 < l′,
then

A − B =

[

2ν ′ + 2µ′ − δ

l′

]

−
[

2µ′

l′

]

≥ 0.

Finally, if ν ′ + µ′ − δ/2 ≥ l′, then

A − B ≥ 2 −
[

2µ′

l′

]

− 1 ≥ 0.

This proves our lemma.

Lemma 2. We have the following asymptotic formula:

|ΨN (q)|v = |q|(1/3−2/π2)N2+O(N log2 N)
v .

Proof. It is obviously enough to prove that

(15)
∑

′

l≤n/2

ϕ(l)

([

n

l

]

− 1

)

=

(

1

3
− 2

π2

)

n2 + O(n log2 n),

where
∑′ denotes the summation over all odd positive integers specified

under the sum sign. Namely we have

∑

′

l≤n/2

ϕ(l)

([

n

l

]

− 1

)

=
n

∑

k=1

k
∑

′

n/(k+1)<l≤n/k

ϕ(l) −
∑

′

l≤n/2

ϕ(l) =: Σ1 − Σ2.

From

(16)

m
∑

j=1

ϕ(2j − 1) =
8

π2
m2 + O(m log m),

we immediately see Σ2 = 2π−2n2 + O(n log n). On the other hand, we find

Σ1 =
n

∑

k=1

∑

′

l≤n/k

ϕ(l) =
∑

k≤H

∑

′

l

+
∑

H<k≤n

∑

′

l

=: Σ3 + Σ4,

where H := [n/log2 n] + 1. In Σ4, we estimate trivially

∑

′

l≤n/k

ϕ(l) ≤
∑

′

l≤n/k

l ≤ n2

k2
, hence Σ4 < n2

∑

k>H

1

k2
<

n2

H
< n log2 n.

In contrast, Σ3 contributes to the main term in (15). Namely, by (16), we
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have

Σ3 =
∑

k≤H

(

2

π2

n2

k2
+ O

(

n

k
log

n

k

))

=
2

π2
n2

(

π2

6
−

∑

k>H

1

k2

)

+ O

(

n(log n)
∑

k≤H

1

k

)

=
n2

3
+ O

(

n2

H

)

+ O(n(log n)(log H)).

Combination of our above considerations yields (15) and thus Lemma 2.

By Lemmas 1 and 2 we now know that in the case α = −1 we have
a common denominator

D(N, q,−1) = ΨN (q)D(N, q, 1)

satisfying

(17) |D(N, q,−1)|v = |q|(22/π2+1/3)N2+O(N log2 N)
v .

We now multiply (8) by D(N, q, α) and get

(18) rN (q, α) := D(N, q, α)J(N) = sN (q, α)f(d, α) + tN (d, q, α),

where sN and tN are polynomials in K[q]. By using (9), (10), (11), (13) and
(17) we now obtain the following

Lemma 3. We have

(19) |rN (q, α)|v = |d|v|q|−b(α)N2+O(N logν(α) N)
v ,

and for all places w of K,

(20) max

(

|sN (q, α)|w,
|tN(d, q, α)|w

|d|w

)

≤ 2δ(w)N log N (max(1, |q|w))a(α)N2+O(N logν(α) N),

where

a(1) := 6 +
24

π2
, b(1) := 3 − 24

π2
, ν(1) := 1,

a(−1) :=
19

3
+

22

π2
, b(−1) :=

8

3
− 22

π2
, ν(−1) := 2,

and δ(w) = 0 for finite w, but δ(w) = 1 for infinite w.

Proof. We easily get (19) from (11), (13) and (17). For (20) we first note
that

∣

∣

∣

∣

[

n

k

]

q

∣

∣

∣

∣

w

≤ 2δ(w)n(max(1, |q|w))nk−k2

and
|Φn(q)|w ≤ 2δ(w)O(1)(max(1, |q|w))ϕ(n).
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Then the use of (12) immediately gives an estimate

(21) |pn(N, q, 1)|w ≤ 2δ(w)O(N)(max(1, |q|w))6N2+O(N) (n = 1, . . . , N).

The use of the above bound for |Φn(q)|w then implies, as in (13), that

|D(N, q, 1)|w ≤ 2δ(w)O(N)(max(1, |q|w))24π−2N2+O(N log N),

and this gives (20) in the case α = 1. The case α = −1 follows similarly on
noting that

pn(N, q,−1) = (−1)N+n+1+δqn(n−1)/2

[

N − 1

n − 1

]

q2

∏2N−δ+2n
k=1+2n (qk + 1)
∏N−1

k=1 (q2k − 1)
.

The bound for |tN(d, q, α)|w then follows immediately from (10) and the
inequalities (see the notations in (10))

k1+· · ·+k2N−δ−κ+2(1µ1+· · ·+NµN ) ≤ (2N−δ)+(2N−δ−1)+· · ·+κ+2Nµ

≤ 2N2 − 1

2
κ(κ − 1) + 2N(2N − 1 − κ) ≤ 6N2.

5. Proofs of the theorems. Now we shall prove a lower bound for the
linear form (6), i.e. for

L = ℓ0 + ℓ1f(a, α) + ℓ2f(b, α) = ℓ0 + f(d, α),

where d = ℓ1a + ℓ2b. By our assumption on linear independence of a and b
we have, for all places w of K,

(22) |d|w ≤ |γ1|w|(ℓ1, ℓ2)|w, |(ℓ1, ℓ2)|w ≤ |γ2|w|d|w
for some constant non-zero vectors γ1 and γ2 depending only on a and b.

From (18) we find

(23) sN (q, α)L = ℓ0sN (q, α)− tN(d, q, α)+rN(q, α) =: ∆(q, α)+rN(q, α).

Assume now that ∆N (q, α) 6= 0 and

(24) |rN (q, α)|v ≥ 1

2
|∆N(q, α)|v.

By Lemma 3, (22) and the product formula we then obtain

dv

d
(log+ |γ1|v + log+ |ℓ|v − b(α)N2 log |q|v + c2N(log N)ν(α) log |q|v)

≥ dv

d
log |∆N(q, α)|v = −

∑

w 6=v

dw

d
log |∆N(q, α)|w

≥ −
∑

w 6=v

dw

d
(log+ |γ1|w + log+ |ℓ|w + a(α)N2 log+ |q|w

+ c3N(log N)ν(α) log+ |q|w + δ(w)c4N log N)
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for all N ≥ c5, where log+ x := log max(1, x). By (2), this yields

(25) log h(ℓ) ≥ (a(α) + b(α) − λa(α))
dv

d
N2 log |q|v − c6N(log N)ν(α).

From the assumption λ < λ(α) it follows that a(α) + b(α) − λa(α) is
positive. We now fix N to be the smallest positive integer such that

(26) log H < (a(α) + b(α) − λa(α))
dv

d
n2 log |q|v − c6n(log n)ν(α)

for all n ≥ N , where H := max(h(ℓ), H0) and H0 is a sufficiently large
constant to guarantee N ≥ c5. For this N , (25) and thus also (24) cannot
hold, which implies |rN (q, α)|v < |∆N(q, α)|v/2. By (23) we then obtain

(27) |sN (q, α)L|v ≥ |rN (q, α)|v.
If ∆N (q, α) = 0, then (23) gives sN (q, α)L = rN (q, α) and (27) is also

true. Thus we have (27) in both cases if N is fixed as before. The above
choice of N also gives

(a(α)+b(α)−λa(α))
dv

d
(N−1)2 log |q|v−c6(N−1)(log(N−1))ν(α) ≤ log H,

and therefore

N2 log |q|v ≤ d log H

dv(a(α) + b(α) − λa(α))
+ c7N(log N)ν(α).

This result together with Lemma 3, (22) and (27) implies

log |L|v ≥ log |rN (q, α)|v − log |sN (q, α)|v
≥ log |d|v − (a(α) + b(α))N2 log |q|v − c8N(log N)ν(α)

> log |(ℓ1, ℓ2)|v −
d(a(α) + b(α))

dv(a(α) + b(α) − λa(α))
log H

− c9(log H)1/2(log log H)ν(α).

Theorems 1–3 are now immediately obtained by using the values of a(α)
and b(α) given in Lemma 3.

6. Proofs of the corollaries. Clearly we need to consider only Corol-
laries 3 and 4. Since

τ(n) =
∑

d|n

1 = τo(n) + τe(n) and
∑

d|n

(−1)d−1 = τo(n) − τe(n),

we have
∑

m≥1

1

qm − 1
=

∑

n≥1

τ(n)q−n =
∑

n≥1

τo(n)q−n +
∑

n≥1

τe(n)q−n
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and
∑

m≥1

(−1)m−1

qm − 1
=

∑

n≥1

q−n
∑

d|n

(−1)d−1 =
∑

n≥1

τo(n)q−n −
∑

n≥1

τe(n)q−n

if |q| > 1. This proves Corollary 3.

Further, again if |q| > 1, we see

∑

m≥1

1

qm + 1
= − Lq(−1) =

∑

m≥1

(−1)m−1

qm − 1
=

∑

n≥1

s(n)q−n,

∑

m≥1

(−1)m−1

qm + 1
=

∑

m≥1

(−1)m−1

qm

∑

ν≥0

(−1)ν

qmν
=

∑

d,m≥1

(−1)d+m

qdm
=

∑

n≥1

t(n)q−n.

Thus the case α = −1 of Theorem 1 implies Corollary 4.

We finally investigate more closely the connection of the functions s and
t with the divisor function τ . For this purpose we give the following

Lemma 4. The arithmetical functions s and t are multiplicative. For

odd n, we have s(n) = t(n) = τ(n), whereas for even n, we have

s(n) = −ν2(n) − 1

ν2(n) + 1
τ(n), t(n) =

ν2(n) − 3

ν2(n) + 1
τ(n),

ν2(n) ∈ N denoting the exact exponent of 2 in n.

Proof. We first remark that the arithmetical function r(n) := (−1)n−1

is multiplicative. Namely, if n1, n2 ∈ N are coprime, then at least one of
these numbers is odd, and hence the congruence n1n2−1 = (n1−1)(n2 − 1)
+(n1−1)+(n2−1) ≡ (n1−1)+(n2−1) modulo 2 holds, yielding r(n1n2) =
r(n1)r(n2). Denoting by ∗ the Dirichlet convolution on the set of arithmetical
functions, we see s = r ∗ 1 (with 1(n) := 1 for all n ∈ N) and t = r ∗ r, and
thus s and t are also multiplicative (compare, e.g., [1, Chap. 2]).

Since r(n) = 1 for odd n, we have s(n) =
∑

d|n r(d) = τ(n), and further

t(n) =
∑

d|n r(d)r(n/d) = τ(n) for such n’s. From r(2ν) = −1 for each

ν ∈ N we see s(2ν) = 1 − ν, t(2ν) = ν − 3, and this proves our formulae for
s(n), t(n) if n is even.
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