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1. Introduction and statements. In this paper we consider the prob-
lem of approximating real numbers by polynomials with a non-monotonic
error function. First some notation is needed. Throughout, P ∈ Z[x] given
by

P (x) = anx
n + · · ·+ a1x+ a0

is an integer polynomial with degree degP = n and height

H(P ) = max
0≤j≤n

|aj |.

Further, let Pn = {P ∈ Z[x] : degP ≤ n} and

Pn(H) = {P ∈ Pn : H(P ) = H}.

The Lebesgue measure of a measurable set A ⊂ R is denoted by µ(A). By
� and � we will mean the Vinogradov symbols with implicit constants
depending only on n.

In what follows, d is a fixed real number. Define a real-valued function
Ψ : R+ → R+ and denote by Ln,d(Ψ) the set of x ∈ R such that the
inequality

(1.1) |P (x) + d| < Ψ(H(P ))

has infinitely many solutions P ∈ Pn. The set Ln,d(Ψ) consists of points
satisfying an inhomogeneous Diophantine inequality. The homogeneous case
is when d ∈ Q and the corresponding set is denoted by Ln(Ψ).

The main result of this paper is the following statement.
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Theorem 1.1. For n ≥ 2,

µ(Ln,d(Ψ)) = 0

if the sum
∑∞

h=1 h
n−1Ψ(h) converges.

There are many results regarding this problem when Ψ is monotonic
and d ∈ Q. For Ψ(H) = H−w, w > n, and d ∈ Q the theorem was
proved by Sprindžuk [14]. For a general monotonic function Ψ such that∑∞

h=1 Ψ
1/n(h) < ∞ and d ∈ Q it was proved by Baker [2] who further

conjectured that µ(Ln(Ψ)) = 0 if the sum
∑∞

h=1 h
n−1Ψ(h) converges. This

was proved in 1989 by Bernik [8], and later Beresnevich [3] proved the cor-
responding divergence result. The first time that inequality (1.1) for any
d ∈ R was considered was in [9] and a similar question in the p-adic case
was answered in [10].

The above problems can be considered as questions concerning Diophan-
tine approximation on the Veronese curve Vn = {(x, x2, . . . , xn) : x ∈ R}.
Regarding more general curves and surfaces, in 1998 Kleinbock and Mar-
gulis [13] established the Baker–Sprindžuk conjecture concerning homoge-
neous Diophantine approximation on manifolds. An inhomogeneous version
was then proved by Beresnevich and Velani [7]. The significantly stronger
Groshev type theory for dual Diophantine approximation on manifolds was
established in [4], [6], and [11] for the homogeneous case and in [1] for the
inhomogeneous case. In all of these results the function Ψ was assumed to
be monotonic. In 2005 Beresnevich [5] proved Theorem 1.1 above without
the condition that Ψ is monotonic for d ∈ Q; he conjectured that the result
should also hold for any non-degenerate curve in Euclidean space. This was
proved in [12]. Here we extend this last result to the inhomogeneous set-
ting for the Veronese curve Vn. Note that using results from [12] (by taking
f = (1, x, x2, . . . , xn, d) and a = (a0, a1, . . . , an, 1)) we obtain

µ(Ln,d(Ψ)) = 0

if
∑∞

h=1 h
nΨ(h) < ∞. In Theorem 1.1 it is shown that this convergence

condition can be weakened to
∑∞

h=1 h
n−1Ψ(h) <∞.

2. Proof of Theorem 1.1. First note that since
∑∞

h=1 h
n−1Ψ(h) con-

verges, hn−1Ψ(h) tends to 0 as h→∞. Therefore,

(2.1) Ψ(h) = o(h−n+1).

Fix an arbitrary constant 0 < θ < 1. As the set of points x satisfying
|x| < θ is arbitrarily small, without loss of generality it will be assumed from
now on that

(2.2) |x| ≥ θ.
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Also note that µ(Ln,d(Ψ)) = 0 if µ(Ln,d(Ψ)∩I) = 0 for each open interval I.
Again, without loss of generality (only the constants change), fix the interval
I = (θ, 1).

The next lemma will be used repeatedly.

Lemma 2.1 (Borel–Cantelli). Let (X,µ) be a measure space. Let Ai for
i = 1, 2, . . . be a sequence of sets such that

∑∞
i=1 µ(Ai) < ∞. Then the set

of points lying in infinitely many Ai has measure zero.

The proof is now split into two parts and the following two sets are
considered. Fix a real number v satisfying

(2.3) 0 < v < 1/3.

Define

L1(n, d) = {x ∈ I : |P (x)+d| < H(P )−n+1, |P ′(x)| < H(P )−v i.m. P ∈ Pn}

and

L2(n, d, Ψ) = {x ∈ I :

|P (x) + d| < Ψ(H(P )), |P ′(x)| ≥ H(P )−v i.m. P ∈ Pn}

where i.m. should be read for infinitely many. Clearly, from (2.1),

Ln,d(Ψ) ⊂ L1(n, d) ∪ L2(n, d, Ψ).

It will be shown that each of the sets L1(n, d) and L2(n, d, Ψ) has Lebesgue
measure zero.

2.1. The case of small derivative

Proposition 2.2. Let n ≥ 2. Then µ(L1(n, d)) = 0.

First L1(n, d) is written as a limsup set. For P ∈ Pn define

B(P ) = {x ∈ R : |P (x) + d| < H(P )−n+1, |P ′(x)| < H(P )−v}.

Then

L1(n, d) =
∞⋂
N=1

∞⋃
t=N

⋃
P∈Ptn

B(P ),

where

Ptn := {P ∈ Pn : 2t ≤ H(P ) < 2t+1}.

To prove the proposition it will be shown that a larger set (containing
L1(n, d)) has measure zero and then the Inhomogeneous Transference Prin-
ciple proved in [7] will be used. The Inhomogeneous Transference Principle
allows the transfer of zero measure statements for homogeneous lim sup sets
to inhomogeneous lim sup sets and is described below.
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2.1.1. Inhomogeneous Transference Principle. Most of this section is
adapted from [7]. For our purposes the two countable indexing sets T and
A from [7] are the sets T = N ∪ {0} and A = Pn. Throughout, J denotes
a finite open interval in R with closure denoted by J̄ . Let H and I be two
maps from (N ∪ {0})× Pn × R into the set of open subsets of R such that

H(t, P, ε) = It0(P, ε) and I(t, P, ε) = Itd(P, ε).
For the specific case considered in this article the sets It0(P, ε) and Itd(P, ε)
are defined as follows:

Itd(P, ε) =

{
{x ∈ I : |P (x) + d| < 2t(−n+1)ε, |P ′(x)| < 2−tvε} if P ∈ Ptn,

∅ else,

and

(2.4) It0(P, ε)

=

{
{x ∈ I : |P (x)| < 2t(−n+1)ε, |P ′(x)| < 2−tvε} if P ∈

⋃t+1
s=0 Psn,

∅ else.

Let δ > 0 and define the function φδ(t) = 2δt. Also, define Φ = {φδ : 0 ≤
δ < v/2}. For any φ ∈ Φ define

Itd(φ) =
⋃

P∈Pn

Itd(P, φ(t)) =
⋃

P∈Ptn

Itd(P, φ(t))

and denote by ΛI(φ) the lim sup set

ΛI(φ) =
∞⋂
N=1

∞⋃
t=N

Itd(φ).

In order to use the Inhomogeneous Transference Principle from [7] we also
define the homogeneous lim sup set

ΛH(φ) =

∞⋂
N=1

∞⋃
t=N

It0(φ),

where

It0(φ) =
⋃

P∈Pn

It0(P, φ(t)) =
t+1⋃
s=0

⋃
P∈Psn

It0(P, φ(t)).

Clearly, for any 0 ≤ δ < v/2,

L1(n, d) ⊂ ΛI(φδ)
holds. The use of the Transference Principle depends on the following two
properties being satisfied.

Intersection property. Let Φ denote a set of functions φ : N ∪ {0}
→ R+. The triple (H, I, Φ) is said to have the intersection property if for
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any φ ∈ Φ there exists φ∗ ∈ Φ such that for all but finitely many t ∈ N∪{0}
and all distinct P, P̃ ∈ Pn,

(2.5) Itd(P, φ(t)) ∩ Itd(P̃ , φ(t)) ⊂ It0(φ∗).

Contracting property. Let {kt}t∈N be a sequence of positive num-
bers such that

(2.6)
∑

t∈N∪{0}

kt <∞.

The measure µ is said to be contracting with respect to (I, Φ) if for any φ ∈ Φ
there exists φ+ ∈ Φ such that for all but finitely many t and all P ∈ Pn
there exists a collection Ct,P of balls B centred in J̄ satisfying the following
three conditions:

J̄ ∩ Itd(P, φ(t)) ⊂
⋃

B∈Ct,P

B,(2.7)

J̄ ∩
⋃

B∈Ct,P

B ⊂ Itd(P, φ+(t)),(2.8)

µ
(
5B ∩ Itd(P, φ(t))

)
≤ ktµ(5B).(2.9)

We now state the theorem from [7].

Theorem 2.3 (Inhomogeneous Transference Principle). Suppose that
(H, I, Φ) has the intersection property and that µ is contracting with re-
spect to (I, Φ). If µ(ΛH(φ)) = 0 for all φ ∈ Φ, then µ(ΛI(φ)) = 0 for all
φ ∈ Φ.

First the contracting and intersection properties are verified and then it
will be shown that µ(ΛH(φδ)) = 0. This will imply, using the Transference
Principle, that ΛI(φδ) has measure zero and further that µ(L1(n, d)) = 0 as
required.

2.1.2. Verifying the intersection property. Let t ∈ N∪{0} and P, P̃ ∈ Pn
with P 6= P̃ . Suppose that

x ∈ Itd(P, φδ(t)) ∩ Itd(P̃ , φδ(t)).
Then the following inequalities hold:

|P (x) + d| < φδ(t)2
t(−n+1) and |P̃ (x) + d| < φδ(t)2

t(−n+1),

|P ′(x)| < φδ(t)2
−vt and |P̃ ′(x)| < φδ(t)2

−vt.

Let R(x) = (P (x) + d)− (P̃ (x)− d). Then

|R(x)| < 2φδ(t)2
t(−n+1) < φδ′(t)2

t(−n+1),

|R′(x)| < 21−vtφδ(t) < 2−vtφδ′(t)
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for all t > 1/(v/2− δ) and where φδ′ ∈ Φ. Clearly R cannot be constant
for n ≥ 2 and t ≥ 2, so R ∈

⋃t+1
s=0 Psn. Thus, x ∈ It0(R,φδ′(t)) and (2.5) is

satisfied with φ∗ = φδ′ .

2.1.3. Verifying the contracting property. The following lemma from [13,
Lemma 3.1 and Proposition 3.2] will be used.

Lemma 2.4. Let I ⊂ R, T ∈ R[x] be a polynomial of degree at most n
and K = supx∈I |T (x)|. Then

µ({x ∈ I : |T (x)| < ε}) ≤ 2n(n+ 1)1/nK−1/nε1/nµ(I).

It clearly implies that there exists a constant C > 0 such that

µ({x ∈ I : |Ft,P (x)| < ε}) ≤ Cε1/nµ(I)

where

Ft,P (x) := max{2t(n−1)2−vt|P (x) + d|, |P ′(x)|}.

By definition, for P ∈ Pn,

(2.10) Itd(P, φδ(t)) =

{
{x ∈ I : Ft,P (x) < φδ(t)2

−vt} if P ∈ Ptn,

∅ else.

Next, given φδ ∈ Φ let

φ+
δ := φ(δ+v/2)/2.

Clearly, φ+
δ ∈ Φ and φδ(t) ≤ φ+

δ (t) for all t ∈ N ∪ {0}; therefore,

(2.11) Itd(P, φδ(t)) ⊂ Itd(P, φ+
δ (t)).

Let J be a sufficiently small open interval such that 5J ⊂ I. The collec-
tion Ct,P will consist of intervals B(x), each centred at a point x ∈ J , which
satisfy conditions (2.6)–(2.9) for an appropriate sequence kt; they are con-
structed in the following way. Let P ∈ Pn. If Itd(P, φδ(t)) = ∅ then Ct,P = ∅.
Now assume that Itd(P, φδ(t)) 6= ∅. By the definition of Φ and (2.3), it follows
that

Itd(P, φ+
δ (t)) ⊂ {x ∈ I : |P (x) + d| < 2−t(n−7/6)}.

By Lemma 2.4 and supx∈5J |P (x) + d| > 0,

µ
(
Itd(P, φ+

δ (t)) ∩ J
)
≤ µ({x ∈ J : |P (x) + d| < 2−t(n−7/6)})
� 2−t(1−7/6n)µ(J)

for sufficiently large t. Hence,

(2.12) J 6⊂ Itd(P, φ+
δ (t))

for sufficiently large t and n ≥ 2.
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By (2.11) and the fact that Itd(P, φ
+
δ (t)) is open, for every x ∈ J̄ ∩

Itd(P, φδ(t)) there is an open interval B′(x) containing x such that

B′(x) ⊂ Itd(P, φ+
δ (t)).

Hence, by (2.12), and the fact that J is bounded, there exists a scaling factor
τ ≥ 1 such that the open interval B(x) := τB′(x) satisfies

J̄ ∩B(x) ⊂ Itd(P, φ+
δ (t)),

J̄ ∩ 5B(x) 6⊂ Itd(P, φ+
δ (t)),(2.13)

5B(x) ⊂ 5J.

Let

Ct,P := {B(x) : x ∈ J̄ ∩ Itd(P, φδ(t))}.

By (2.13) and the construction, (2.7) and (2.8) are automatically satisfied.
Consider any interval B ∈ Ct,P . By (2.10) and (2.13),

(2.14) sup
x∈5B

Ft,P (x) ≥ sup
x∈J̄∩5B

Ft,P (x) ≥ φ+
δ (t)2−vt.

On the other hand, by (2.10),

(2.15) sup
x∈Itd(P,φδ(t))∩5B

Ft,P (x) ≤ φδ(t)2−vt.

Let δ∗ = 1
4(v − 2δ) > 0. Then, using (2.14), (2.15) and the definitions of φδ

and φ+
δ , we obtain

sup
x∈Itd(P,φδ(t))∩5B

Ft,P (x) ≤ 2−δ
∗t sup
x∈5B

Ft,P (x).

Again, from Lemma 2.4 it follows by (2.13) and (2.15) that

µ(Itd(P, φδ(t)) ∩ 5B) ≤ µ
({
x ∈ 5B : Ft,P (x) ≤ 2−δ

∗t sup
x∈5B

Ft,P (x)
})

≤ C2−δ
∗t/nµ(5B)

for sufficiently large t. This verifies (2.9) with kt := C2−δ
∗t/n and it is easily

seen that the convergence condition (2.6) is satisfied.

2.1.4. Establishing µ(ΛH(φδ)) = 0. For this, Theorem 1.4 of [11] is used.
In the notation of that paper take f = (x, x2, . . . , xn), d = 1, U = R and
T1 = · · · = Tn = T , to obtain the next result.

Theorem 2.5 ([11]). Let x0 ∈ I. There exists an interval J ⊂ I con-
taining x0 such that for any interval B ⊂ J there exists a constant E > 0
such that for any choice of real numbers ω,K, T satisfying the inequalities

0 < ω ≤ 1, T ≥ 1, K > 0, ωKTn−1 ≤ 1
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the set

S(ω,K, T ) :=

x ∈ B : there exists P ∈ Pn such that

|P (x)| < ω,

|P ′(x)| < K,

0 < H(P ) < T


has measure at most Eε1/(2n−1)µ(B), where

ε := max
(
ω, (ωKTn−1)1/(n+1)

)
.

Fix δ ∈ [0, v/2). It then follows from (2.4) that

It0(φδ) =

t+1⋃
s=0

⋃
P∈Psn

It0(P, φδ(t)) = S(ω,K, T )

with ω = φδ(t)2
t(−n+1), K = φδ(t)2

−vt and T = 2t+2. By (2.3), we have
ε� 2−4δ∗t/(n+1). Thus, Theorem 2.5 implies that

µ(It0(φδ))� 2−βt,

where β := 4δ∗/((n+ 1)(2n− 1)) is a positive constant. This finally gives∑
t∈N

µ(It0(φδ))�
∞∑
t=0

2−βt <∞.

Therefore, by the Borel–Cantelli lemma µ(ΛH(φδ)) = 0 for all δ ∈ [0, v/2).
By the Inhomogeneous Transference Principle this further implies that
µ(ΛI(φδ)) = 0 as required. The proposition has now been proved.

2.2. The case of large derivative. This subsection is devoted to prov-
ing the following proposition.

Proposition 2.6. Let n ≥ 2. Then µ(L2(n, d, Ψ)) = 0.

Let Dn(H) be the set of points x ∈ I which satisfy

(2.16) |P (x) + d| < Ψ(H) and |P ′(x)| ≥ H−v

for some polynomial P ∈ Pn(H). Clearly,

L2(n, d, Ψ) =

∞⋂
N=1

∞⋃
H=N

Dn(H).

Define Pn,j(H) to be the set

Pn,j(H) =
{
P ∈ Pn(H) : j = max

|ak|=H, 0≤k≤n
k
}

for j = 1, . . . , n. Then Pn(H) =
⋃n
j=0 Pn,j(H). For each P ∈ Pn,j(H) define

σ0(P, d) to be the set of points for which the inequalities in (2.16) hold, so
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that

Dn(H) =
n⋃
j=0

⋃
P∈Pn,j(H)

σ0(P, d).

For convenience we will occasionally use Pd to denote the polynomial

P (x) + d. Clearly, for all x ∈ R, P (j)(x) = P
(j)
d (x) for j = 1, . . . , n.

2.2.1. Case 1 : n ≥ 3. The roots of any polynomial P will be denoted
by α1, . . . , αn ∈ C. For each root of P define the sets

SP (αj) =
{
x ∈ R : |x− αj | = min

1≤i≤n
|x− αi|

}
, 1 ≤ j ≤ n.

Clearly, for each P , x ∈ SP (αj) for at least one j ∈ {1, . . . , n}. During the
proof the points x will be restricted to a set SP (αj) for a fixed j and for
simplicity we will take j = 1. The following easy lemma will be used in what
follows.

Lemma 2.7. Let P be a polynomial with root α1 such that P ′(α1) 6= 0.
Then, if x ∈ SP (α1),

|x− α1| < n|P (x)| |P ′(x)|−1.

Proof. As

P (x) = an(x− α1) · · · (x− αn), P ′(x) = an

n∑
j=1

(
(x− αj)−1

n∏
i=1

(x− αi)
)

we have
|P ′(x)|
|P (x)|

≤
n∑
j=1

1

|x− αj |
≤ n

|x− α1|
.

For x ∈ I ∩ SPd(α) ∩ σ0(P, d) such that P ′(x) 6= 0 let σ′(Pd, α) denote
the interval defined by the inequality

|x− α| < n|P (x) + d| |P ′(x)|−1 ≤ nΨ(H)Hv.

The last inequality follows from Lemma 2.7. Now, the Taylor series of
P ′ = P ′d is evaluated in the neighbourhood of α. Estimating each term, using
(2.1) and the fact that v < 1/3, n ≥ 3, gives

|P (j)(α)(x− α)j−1| � H(Ψ(H)Hv)j−1 � H1+(j−1)(−n+1+v) < H−v−ε

for j = 2, . . . , n and H sufficiently large. Further, since |P ′(x)| ≥ H−v, we
have

H−v/2 ≤ |P ′(x)|/2 < |P ′(α)| < 2|P ′(x)|.
Therefore, σ′(Pd, α) is contained in the interval σ(Pd, α) defined by the in-
equality

(2.17) |x− α| < 2n|P (x) + d| |P ′(α)|−1 ≤ 2nΨ(H)|P ′(α)|−1.
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For each polynomial P ∈ Pn,j(H) let APd be the set

APd = {α ∈ I : Pd(α) = 0 and |P ′(α)| > H(P )−v/2}.

Thus, σ0(P, d) ⊆ σ(Pd) =
⋃
α∈APd

σ(Pd, α).

The proof is now subdivided into three parts depending on the size of
P ′(α) when x ∈ SPd(α). The three subcases to consider are

|P ′(α)| > c0H(P )1/2,

1 < |P ′(α)| ≤ c0H(P )1/2,(2.18)
1
2H(P )−v < |P ′(α)| ≤ 1

for some constant c0 > 0. These three inequalities partition the roots of Pd
and are labelled A

(i)
Pd

, i = 1, 2, 3, respectively.

Proposition 2.8. Assume that
∑∞

h=1 h
n−1Ψ(h) <∞. The set of points

x ∈ I ∩ SPd(α) with α ∈ A(1)
Pd

which satisfy

|Pd(x)| = |P (x) + d| < Ψ(H(P )), |P ′(x)| ≥ H(P )−v

for infinitely many P ∈ Pn has measure zero.

Proof. Let c1 = c1(n, d) be a constant to be chosen later. For each P ∈
Pn,j(H) and α ∈ A(1)

Pd
define the set σ1(Pd, α) of points x ∈ I which satisfy

|x− α| < c1|P ′(α)|−1.

From (2.17), for H sufficiently large, σ(Pd, α) ⊂ σ1(Pd, α) and

(2.19) µ(σ(Pd, α)) < 2nc−1
1 Ψ(H)µ(σ1(Pd, α)).

Now the Taylor series of Pd on σ1(Pd, α) is evaluated. Each term is estimated
to obtain

|Pd(α)| = |P (α) + d| = 0,

|P ′(α)(x− α)| < c1,

|P (j)(α)(x− α)j | < cj1n
j+1H(c0H

1/2)−j ≤ n3c2
1c
−2
0

for 2 ≤ j ≤ n and H sufficiently large. Choose c1 = c1(θ) < θ/8 (where
θ is defined in (2.2)) such that n4c1c

−2
0 < 1. Then |P (x) + d| < 2c1 for H

sufficiently large.

The set Pn,j(H) is now subdivided into sets with the same coefficients.
Let b1 denote the (n − 1)-tuple (an, an−1, . . . , ai+1, ai−1, . . . ,H, . . . , a0),
where |aj | = H, i 6= j, i 6= 0; let the subclass of polynomials P ∈ Pn,j(H)

with the same (n− 1)-tuple of coefficients b1 be denoted by Pb1
n,j(H). Then

Pn,j(H) =
⋃

b1
Pb1
n,j(H) and the number of subclasses is � Hn−1. Let

P, P̃ ∈ Pb1
n,j(H), with P 6= P̃ , and assume that σ1(Pd, α) ∩ σ1(P̃d, α̃) 6= ∅.
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Let x ∈ σ1(Pd, α) ∩ σ1(P̃d, α̃) and let R(x) = P̃d(x)− Pd(x) = a′ix
i for some

a′i ∈ Z \ 0. Then, by (2.2),

θ < |R(x)| ≤ 4c1 < θ/2,

which is a contradiction. Hence, σ1(Pd, α) ∩ σ1(P̃d, α̃) = ∅ and∑
P∈Pb1

n,j(H)

∑
α∈A(1)

Pd

µ(σ1(Pd, α)) ≤ µ(I).

Together with (2.19) this gives∑
P∈Pb1

n,j(H)

∑
α∈A(1)

Pd

µ(σ(Pd, α))� Ψ(H)µ(I),

which further implies that
∞∑
H=1

n∑
j=0

∑
b1∈Zn−1, |b1|≤H

∑
P∈Pb1

n,j(H)

∑
α∈A(1)

Pd

µ(σ(Pd, α))

�
∞∑
H=1

Hn−1Ψ(H)µ(I) <∞.

The proof of the proposition can now be completed using the Borel–Cantelli
lemma.

Proposition 2.9. Assume that
∑∞

h=1 h
n−1Ψ(h) <∞. The set of points

x ∈ I ∩ SPd(α) with α ∈ A(2)
Pd

which satisfy

|Pd(x)| = |P (x) + d| < Ψ(H(P )), |P ′(x)| ≥ H(P )−v

for infinitely many P ∈ Pn has measure zero.

Proof. Let P ∈ Pn,j(H) and α ∈ A(2)
P,d. Define σ2(Pd, α) ⊃ σ(Pd, α) to

be the set of points x ∈ I which satisfy the inequality

|x− α| < H−1|P ′(α)|−1.

Clearly,

(2.20) µ(σ(Pd, α)) < 2nHΨ(H)µ(σ2(Pd, α)).

Again, Pn,j(H) is subdivided into sets which have the same coefficients.
Let b2 be the (n − 2)-tuple (an, an−1, . . . , al+1, al−1, . . . ,H, . . . , ak+1, ak−1,
. . . , a0), where |aj | = H, l, k 6= j, l, k 6= 0, and l > k. Denote the subclass of

polynomials with the same (n−2)-tuple b2 of coefficients by Pb2
n,j(H). Then

Pn,j(H) =
⋃

b2
Pb2
n,j(H). The number of classes is � Hn−2. We now use

Sprindžuk’s method of essential and inessential intervals; see [14] for more
details. The interval σ2(Pd, α) is called essential if

µ(σ2(Pd, α) ∩ σ2(P̃d, α̃)) ≤ µ(σ2(Pd, α))

2
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for all P̃d ∈ Pb2
n,j(H) and all roots α̃ ∈ A(2)

P̃d
of P̃ , P 6= P̃ . Otherwise it is

called inessential.

First, the essential polynomials are investigated. By definition∑
P∈Pb2

n,j(H)

∑
α∈A(2)

Pd
σ2(Pd,α) essential

µ(σ2(Pd, α))� µ(I).

From this and (2.20),∑
b2∈Zn−2

|b2|≤H

∑
P∈Pb2

n,j(H)

∑
α∈A(2)

Pd
σ2(Pd,α) essential

µ(σ(Pd, α))� Hn−1Ψ(H)µ(I).

Hence,
∞∑
H=1

n∑
j=0

∑
b2∈Zn−2

|b2|≤H

∑
P∈Pb2

n,j(H)

∑
α∈A(2)

Pd
σ2(Pd,α) essential

µ(σ(Pd, α)) <∞.

Therefore, by the Borel–Cantelli lemma, the set of points x which satisfy
(2.16) for infinitely many essential intervals is of measure zero.

Now we consider an inessential interval σ2(Pd, α). By definition, there is a
polynomial P̃ ∈ Pb2

n,j(H) such that µ(σ2(Pd, α) ∩ σ2(P̃d, α̃)) > 1
2(σ2(Pd, α)).

Let x ∈ σ2(Pd, α) ∩ σ2(P̃d, α̃). The polynomial Pd is now developed as a
Taylor series on the interval σ2(Pd, α) and each term is estimated from
above to obtain

|P ′(α)(x− α)| � H−1,

|P (j)(α)(x− α)j | � H1−j |P ′(α)|−j � H1−j , 2 ≤ j ≤ n.
The last inequality follows from (2.18). Hence,

(2.21) |P (x) + d| � H−1.

The derivative P ′ is also developed as a Taylor series on σ2(Pd, α) to obtain

|P ′(x)| ≤ |P ′(α)|+
n∑
j=2

((j − 1)!)−1|P (j)(α)(x− α)j−1|(2.22)

� H1/2 +

n∑
j=2

H2−j |P ′(α)|−(j−1) � H1/2.

Consider the new polynomial R(x) = P̃d(x)− Pd(x) = a′kx
k + a′lx

l with

a′k, a
′
l ∈ Z not both zero, where both Pd and P̃d belong to Pb2

n,j(H). By (2.21)
and (2.22), the inequalities

|R(x)| � H−1, |R′(x)| � H1/2
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hold on σ2(Pd, α) ∩ σ2(P̃d, α̃). It is relatively straightforward to show that
|a′i| � H1/2 for i = k, l so that H(R) � H1/2. Therefore, |a′kxk + a′lx

l| �
H(R)−2. Divide by xk. Then, using (2.2), we have |a′lxl−k + a′k| � H(R)−2,
which holds infinitely often only on a set of measure zero by Khinchin’s
theorem. Thus, the measure of the set of x which lie in infinitely many
inessential intervals is zero.

Proposition 2.10. Assume that
∑∞

h=1 h
n−1Ψ(h)<∞. The set of points

x ∈ I ∩ SPd(α), α ∈ A(3)
Pd

, which satify

|Pd(x)| = |P (x) + d| < Ψ(H(P )), |P ′(x)| ≥ H(P )−v

for infinitely many P ∈ Pn has measure zero.

Proof. This is very similar to the previous case so some of the details
will be omitted.

For each Pd with root α ∈ A(3)
P,d and P ∈ Pn,j(H) define the set σ2(Pd, α)

and the (n − 2)-tuple b2 as above. Again, we use essential and inessential
intervals. Summing over the essential intervals gives

∞∑
H=1

n∑
j=0

∑
b2∈Zn−2

|b2|≤H

∑
P∈Pb2

n,j(H)

∑
α∈A(3)

Pd
σ2(Pd,α) essential

µ(σ(Pd, α))

≤
∞∑
H=1

Hn−1Ψ(H)µ(I).

Thus, using the Borel–Cantelli lemma, the set of x lying in infinitely many
essential intervals has zero measure.

Now let σ2(Pd, α) be an inessential interval. Using Taylor’s formula for
Pd on σ2(Pd, α), we obtain

|P ′(α)(x− α)| � H−1,

|P (j)(α)(x− α)j | � HH−j |P ′(α)|−j � H2v−1, 2 ≤ j ≤ n.
For the last part the fact that v < 1/3 was used. Thus,

(2.23) |Pd(x)| = |P (x) + d| � H2v−1.

Similarly develop P ′ as a Taylor series on σ2(Pd, α) to obtain

|P ′(x)| ≤ |P ′(α)|+
n∑
j=2

((j − 1)!)−1|P (j)(α)(x− α)j−1|(2.24)

� 1 +

n∑
j=2

HH−j+1|P ′(α)|−(j−1) � Hv

since v < 1/3.
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As before let x ∈ σ2(Pd, α)∩σ2(P̃d, α̃) and let R(x) = P̃d(x)−Pd(x) with
Pd, P̃d ∈ Pb2

n,j(H). For R the inequalities |R(x)| � H2v−1 and |R′(x)| � Hv

hold; these follow from (2.23) and (2.24). As in Proposition 2.9 it is possible
to show that |a′i| � Hv (i = k, l) so that H(R) = max{|a′k|, |a′l|} � Hv. By
(2.2) and (2.23),

|R(x)| = |a′lxl−k + a′k| � H(R)(2v−1)/v � H(R)−1

for v < 1/3. By Khinchin’s theorem the last inequality holds infinitely often
only for a set of measure zero. Hence, the measure of the set of x lying in
infinitely many inessential intervals is also zero.

The three propositions complete the proof of Proposition 2.6 in the case
n ≥ 3.

2.2.2. Case 2 : n = 2. The proof splits into two parts. If |P ′(x)| > c2 for
some constant c2 ≥ 1 then we follow the proof of Proposition 2.6 until the
start of Propostion 2.10, in each case replacing H−v by c2. The only other
change is that instead of restricting to the sets Pb2

2 (H) we restrict to the
set P2(H) in Proposition 2.9.

Next, the case H−v ≤ |P ′(x)| ≤ c2 is considered. For a given polynomial
P ∈ P2(H) we redefine σ0(P, d) to be the set of solutions of |P (x) + d| <
Ψ(H) and H−v ≤ |P ′(x)| ≤ c2. Let

β = inf
x∈σ0(P,d)

|P ′(x)|.

It is readily verified that σ0(P, d) consists of at most two intervals of length
at most 4Ψ(H)β−1. For every Pd define a point γ ∈ σ0(P, d) such that
|P ′(γ)| ≤ 2β. Then µ(σ0(P, d)) � Ψ(H)|P ′(γ)|−1. The choice of γ also
implies that H−v ≤ |P ′(γ)| ≤ c2. After this, the proof follows the same lines
as in Proposition 2.10 except that instead of restricting to the sets Pb2

2 (H)
we restrict to the set P2(H) and α is replaced by γ.

The two cases complete the proof of Proposition 2.6 for n = 2 and hence
of Theorem 1.1.

Acknowledgements. Natalia Budarina is supported under the Science
Foundation Ireland grant RFP11/MTH3084.

References

[1] D. Badziahin, V. Beresnevich and S. Velani, Inhomogeneous theory of dual Diophan-
tine approximation on manifolds, Adv. Math. 232 (2013), 1–35.
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