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Capturing forms in dense subsets of finite fields
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1. Introduction. In this paper we consider a finite field analogue of
the following open problem in arithmetic Ramsey theory [HLS].

PROBLEM 1.1. For any r-colouring ¢ : N — {1,...,r} of the natural
numbers, is it possible to solve c(x+y) = c(xy) apart from the trivial solution

(z,y) = (2,2)7

One might suspect that in fact a stronger result might hold, namely that
any sufficiently dense set of natural numbers contains the elements z+y and
xy for some x and y. This would immediately solve the problem since one of
the colours in any finite colouring must be sufficiently dense. Such a result is
impossible however, since the odd numbers provide a counter-example and
are fairly dense in many senses of the word. Fortunately, this simple parity
obstruction disappears in the finite field setting. Indeed, in [J], the following

was proved @

THEOREM 1.2. Let p be a prime number, and Ay, Az, A3 C F), be any
sets, |Ay| |Aa||As| > 40p®/2. Then there are x,y € T, such that x +y € Ay,
xy € As and x € As.

Now, let ¢ = p" be an odd prime power and I, a finite field of order q.
Given a binary linear form L(X,Y) and a binary quadratic form Q(X,Y),
define N,(L, Q) to be the smallest integer k such that for any subset A C F,
with [A| > k, there exists (z,y) € F2 with L(z,y), Q(z,y) € A. In this paper
we give estimates on the size of Ny(L, Q). Namely, we prove the following
theorem.

MAIN THEOREM 1.3. Let F, be a finite field of odd order. Let @) €
F,[X,Y] be a binary quadratic form with non-zero discriminant and let L €
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F,[X,Y] be a binary linear form not dividing Q). Then
logq < Ny(L,Q) < \/q.

This theorem is the content of the next two sections. In the final sec-
tion, we provide remarks on the analogous problem in the ring of integers
modulo N when N is composite.

2. Upper bounds. Let L(X,Y) be a linear form and Q(X,Y) be a
quadratic form, both with coefficients in F,. Suppose A is an arbitrary sub-
set of F;. We will reduce the problem of solving L(z,y),Q(x,y) € A to
estimating a character sum.

By a multiplicative character, we mean a group homomorphism y :
Fy — C*. We say x is mon-trivial if it is not constant, i.e. x #Z 1. We
also extend such characters to F, with the convention that x(0) = 0. One
of the most useful features of characters is that for x non-trivial, we have

> x(@) =0.
z€F,
The quadratic character on Iy is the character given by
1 if ¢ # 0 is a square,
x(c) =< —1 if ¢ # 0 is not a square,
0 if c=0.
LeEMMA 2.1. Let Q € Fy[X,Y] be a binary quadratic form and let L €

Fo[X,Y] be a binary linear form. Suppose a,b € F,. Then there exist r,s,t
€ IF, depending only on L and @ such that

{(z,y) € Fj : L(z,y) = a and Q(z,y) = b}|
= |{y € Fy : 7y + say + ta® = b}|.

Furthermore, v = 0 if and only if L|Q, and r = s = 0 if and only if L? | Q.

Proof. Write L(X,Y) = a1 X + a2Y where without loss of generality we
can assume a; # 0. We can then expand Q(X,Y) in terms of L(X,Y) to
obtain

Q(X,Y) =tL(X,Y)* + sL(X,Y)Y +rY?%
If L(z,y) = a then we obtain
Q(z,y) = ta® + say + ry°.

The y? coefficient vanishes if and only if Q = LM for some linear form M.
The y and y? coefficients vanish if and only if Q = tL?. Certainly, any
solution to L(z,y) = a and Q(z,y) = b gives a solution y of ry? + say + ta?
= b. Conversely, if y is such a solution, setting = = al_l(a — azy) produces a
solution (z,y). =
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Recall that the discriminant of a quadratic form Q(X,Y) = b X? +
bo XY + b3Y? is defined to be disc(Q) = b3 — 4b1bs.

COROLLARY 2.2. Let Q € Fy[X,Y] be a binary quadratic form and let
L € F,[X,Y] be a binary linear form not dividing Q. For a,b € F,, the
number of solutions to L(x,y) = a and Q(z,y) = b is

14 x((s® — 4rt)a® + 47b)
where x is the quadratic character.

Proof. The quantity (sa)? —4r(ta? —b) is the discriminant of 7y? + say +
ta? — b. The result follows from the definition of y and the quadratic for-
mula. =

In fact, from Lemma [2.I] we can essentially handle the situation when
L|Q.
COROLLARY 2.3. Let Q € Fy[X,Y] be a binary quadratic form and let

L € F,[X,Y] be a binary linear form dividing Q. Then N,(L,Q) = 1 if L?
does not divide Q, otherwise Ny(L,Q) > (¢ +1)/2.

Proof. Let A C F,. The number of pairs (z,y) with L(z,y), Q(z,y) € A
equals

S 1a(Llr ) 1A Qe y) = 30 3 Lalsay + ta)

acAyel,

by the above lemma. If sa # 0 then say + ta® ranges over F, as y ranges
over Fy, and the inner sum is | A|. In this case there are in fact |A|? solutions
(z,y). If a =0 then 0 € A and we can take (z,y) = (0,0). If s = 0 then the
sum is ¢ 3, 4 1a(a?t). If we set

s t-N={tn:ne N} ift#0,
N ift=0,
where N is the set of non-squares in [Fy, then there are no solutions. This

shows that Ny(L,Q) > (¢+1)/2. =

We now handle the case that L does not divide Q). The following estimate
is essentially due to Vinogradov (see for instance the excercises of Chapter 6
in [V] for the analogous result for exponentials).

LEMMA 2.4. Let A, B C F, and suppose X is a non-trivial multiplicative
character. Then for u,v € F we have

> x(ua® + vb) < 24/q|A[|B.

acAbeB
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Proof. Let S denote the sum in question. Then

|51 < Z‘Z x(ua® +vb)‘ < |B|1/2(Z‘Zx(ua2 +vb)‘2>1/2

beEB acA beFy acA
by Cauchy’s inequality. Expanding the sum in the second factor, we get
OID SERY (ST SHND DR (Rt st
a1,a2€A  beF, uaj + vb a1,02€A  beF, uas + vb
ua%—&-vb;é() ua%-{—vb;ﬁO

= Y > x(1+u(af —a3)b)

a1,a2€A bGIFX

after the change of variables (ua% + vb)~! +— b. When a? # a3, the values of
1+ u(a] — a3)b range over all values of I, save 1 as b traverses F. Hence,
in this case, the sum amounts to —1. It follows that the total is at most
4q|A|. =
COROLLARY 2.5. Let Q € Fy[X,Y] be a binary quadratic form and let
L € F,[X,Y] be a binary linear form not dividing Q. Then Ny(L,Q) <
2,/q + 1 if disc(Q) # 0, otherwise Ny(L,Q) > (¢ —1)/2.
Proof. Let A C F,. By Corollary the number of pairs (x,y) with
L(z,y), Q(z,y) € A s
D 1Lz 9)1a(Q(z,y) = Y 1+ x(Da® + 4rb)
€T

a,beA

where D = s — 4rt. One can check that in fact D = a; 2 disc(Q).

If D = 0 then x(Da? +4rb) +1 = x(r)x(b) + 1. This will be indentically
zero if A is chosen to be the squares or non-squares according to the value
of x(r). Hence, if disc(Q) = 0 then Ny (L,Q) > (¢ —1)/2.

Now assume D # 0. Summing over a,b € A the number of solutions is

A+ > x(Da® + 4rb) = |A]* + E(A).
a,beA
By Lemma E(A) < |A]* when |A| > 2,/q + 1, and the result follows.
REMARK 2.6. In the case that A has particularly nice structure, we can

improve the upper bound. Suppose g = p is prime and A is an interval. Then
as above the number of pairs (z,y) with L(z,y), Q(z,y) € A is

AP + ) x(Da? + 4rb).
a,beA

Z x(Da? + 4rb) < Z’Z x(Da?/4r +b)|.

a,beA acA beA

Now
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A well-known result of Burgess states that if |A| > p/4*¢ for some ¢ > 0,
then the inner sum is O(|A|p~?) for some § = §(g) > 0 (see [IK|, Chapter 12]).

3. A lower bound. In this section we give a lower bound for N, (L, Q)
in the case that L does not divide @ and disc(Q) # 0. To do so we need to
produce a set A such that L(x,y) and Q(z,y) are never both elements of A.
Equivalently, we need to produce a set A for which x(Da? + 4rb) = —1 for
all pairs (a,b) € A x A.

Let a € F; and define

X (b) = { 1 if X(Da.2 + 4rb) = x(Db* + 4ra) = —1,
0 otherwise.

Thus the desired set A will have X,(b) = 1 for a,b € A. The idea behind
our argument is probabilistic. Suppose we create a graph I' with vertex set
V={aeclF;: X,(a) =1}

and edge set
E = {{a,b} : X4(b) = Xp(a) =1}.

These edges appear to be randomly distributed and occur with probability
roughly 1/4. In this setting,

No(L, Q) =1+ w(I")
where w(I") is the cliqgue number of I' (i.e. the size of the largest complete
subgraph of I'). Let G(n,d) be the graph with n vertices that is the result
of connecting two vertices randomly and independently with some fixed
probability 6 > 0. Such a graph has clique number roughly logn (see [AS,
Chapter 10]). It is tempting to treat I" as such a graph and construct a
clique by greedily choosing vertices, and indeed this is how the set A is
constructed. It is worth mentioning that this model suggests that the right
upper bound for Ny(L, Q) is also roughly logn.

LeEMMA 3.1. Let B C Fy. Then for a € F, we have
1
D Xa(b) = 1 > (1= x(Da® + 4rb))(1 — x(DV* + 4ra)) + O(1).
beB beB
Proof. The summands on the right are

(1 — x(Da? + 47b))(1 — x(Db* + 4ra))

4 if x(Da? 4 4rb) = x(Db? + 4ra) = —1,

2 if {x(Da? + 4rb), x(Db?> + 4ra)} = {0, -1},

1 if x(Da? + 4rb) = x(Db? + 4ra) = 0,

0 otherwise.

For fixed a, the second and third cases can only occur for O(1) values of b. =
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We will use the following well-known theorem of Weil (see for instance
Chapter 11 of [IK]).

THEOREM 3.2 (Weil). Suppose x € Fg has order d > 1 and f € Fy[X]
is not of the form f = g% for some g € F [X]. If f has m distinct roots in

F, then
> (@) < mva

z€lFy
LEMMA 3.3. Let A, B C Fq with |A|,|B| > /q. Then
AllB
S5 Xty = AUE L oay g ),

ac€AbeEB
Proof. By the preceding lemma, it suffices to estimate

2 %(Z(l — x(Da? + 4rb))(1 — x(Db* + 4m))) +0(1)
acA beB

acAbeB acAbeB

* % >3 x((Da? + 4rb) (DY + 4ra)) + O(|A]).
acAbeB

By Lemma 2.1, the first two sums above are O(y/q|A||B|) =O(|A| | B|'/?¢'/%).
By Cauchy’s inequality, the final sum is bounded by

2\ 1/2
|B|!/2 (Z \Z X((Da? + 4rb)(Db? + 4m))( ) .
beF, acA
Expanding the square modulus, the second factor is the square-root of
> ) x((Daf + 4rb) (DY + 4ray)(Da3 + 4rb)(Db? + 4ras)).
a1,a2€A bely
By Weil’s theorem, the inner sum is bounded by 6,/¢ when the polynomial
f(b) = (Da? + 47b)(DV? + 4ray)(Da + 4rb)(Db* 4 4ras)
is not a square. This happens for all but O(|A|) pairs (a1, a2). Hence the
bound is O(|A|q+|A|?,/q). Since |A| > /g, this is O(|A|*\/q) and the overall
bound is O(|A| |B|'/2¢"/*). =
We immediately deduce the following.

COROLLARY 3.4. There is an absolute constant ¢ > 0 such that if B C F,
with |B| > ¢,/q then there is an element a € B such that

e B Xa(b) =1} > 5Bl
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Proof. Indeed, taking A = B in the preceding theorem,

B

1/4)p|1/2 >|

?Eag{xxa(b)} ‘B’ S Xu(d) +0( BV = 2
beB a,beB

when |B| > ¢,/q for some appropriately chosen c. =

COROLLARY 3.5. Let Q € Fy[X,Y] be a binary quadratic form and let
L € Fy[X,Y] be a binary linear form not dividing Q. Then if disc(Q) # 0
we have Ny(L, Q) > logq.

Proof. We will construct a clique in the graph I introduced above. First
we claim that |V| = (¢ —1)/2+4 O(1). Indeed

Z x(Da® +4ra) = Z x(a=3)x(Da? +4ra) = Z x(D+4ra™t) = O(1)

acFy acFy a€Fg

by orthogonality. The final term is O(1) and the claim follows since x takes
on the values &1 on F.

Now set Vp = V and assume g is large. Write |Vo| = ¢/q > ¢/q (with ¢
as in the preceding corollary and ¢’ & 1/2). For a € Vj, let N(a) denote the
neighbours of a (i.e. those b which are joined to a by an edge). Then there is
an a; € Vp such that |[N(a1)| > q/8. Let Ay = {a1}, let Vi = N(a1) C W,
and for a € V; let Ni(a) = N(a) N Vi. By choice, all elements of V; are
connected to a;. Now [Vi1\A1| > /q/8—1 > ¢/q/16 so, provided this is at least
c'q/16, there is some element ay of V7 \ A such that |Ny(az2)| > |V1\ A1]/8.
Let Ay = A; U{az}, Vo = Ni(az) C Vi and define Nao(a) = N(a)N Va. Once
again each element of V5 is connected to each element of As. We repeat
this process provided that at stage i there exists an element a;11 € V; \ A4;
with |Nj(ai+1)] > |Vi \ Ail/8. We set A;j11 = A; U{ai+1} and observe that
Aiy1 induces a clique. We may iterate provided [V; \ A;| > ¢,/q, which is
guaranteed for ¢ < loggq. The final set A; (which has size i) will be the
desired set A. m

The combination of this corollary and [2.5] completes the proof of [I.3]

4. Remarks for composite modulus. Consider the analogous ques-
tion in the ring Z/NZ with N odd. Let L(X,Y)=a; X +a2Y with (a1, N)=1
and Q(X,Y) = by X2+by XY +b3Y 2. We then let A C Z/NZ and wish to find
(x,y) € (Z/NZ)? such that L(z,y),Q(x,y) € A. As before, this amounts to
finding a solution to

Qla; (@ —aY),Y)=b

for some a,b € A. In general, one cannot find a solution based on the size
of A alone unless A is very large. Indeed, if p is a small prime dividing N,
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and ¢t mod p is chosen such that the discriminant of
Qay ' (t —a2Y),Y) —t

is a non-residue modulo p, then taking A = {a mod N : a = ¢t mod p}
provides a set of density 1/p which fails to admit a solution.
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