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1. Introduction. It is well known that there are infinitely many quad-
ratic number fields with class number divisible by a given integer n (see
Nagell [8] (1922) for imaginary fields and Yamamoto [11] (1970) and Wein-
berger [10] (1973) for real fields). A related question concerns the n-rank of
the field, that is, the greatest integer r for which the class group contains a
subgroup isomorphic to (Z/nZ)r. In [11], Yamamoto showed that infinitely
many imaginary quadratic number fields have n-rank ≥ 2 for any positive
integer n ≥ 2. In 1978, Diaz y Diaz [2] developed an algorithm for generating
imaginary quadratic fields with 3-rank at least 2, and Craig [1] showed in
1973 that there are infinitely many real quadratic number fields with 3-rank
at least 2 and infinitely many imaginary quadratic number fields with 3-rank
at least 3. A few examples of higher 3-rank have also been found (see for
instance Llorente and Quer [6, 9] who found in 1987/1988 three imaginary
quadratic number fields with 3-rank 6). In this paper, we give infinite, simply
parameterized families of real and imaginary quadratic fields with 3-rank 2.
Although the existence of such fields has been known, the fields here are
much easier to describe, and the parameterization yields a new lower bound
on the number of fields with discriminant < x and 3-rank ≥ 2 (see [7]).

The main result is as follows:

Theorem 1.1. Let w ≡ ±1 (mod6), and let c be any integer with c ≡ w
(mod6). Then

Q(
√

c(w2 + 18cw + 108c2)(4w3 − 27cw2 − 486c2w − 2916c3))

has 3-rank at least 2.
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Notice that if c and w are relatively prime, and p is an odd prime with
p2a+1 ‖ c for some non-negative integer a, then p is ramified. The parameter-
ization therefore yields infinitely many real and infinitely many imaginary
quadratic fields since only finitely many primes are ramified in a given field.

As a special case of the theorem where c = 1 and w = 6a + 1, we have
the following:

Corollary 1.2. For any integer a, Q(
√

f(a)) has 3-rank at least 2,
where

f(a) = 31104a5 + 84240a4 − 69120a3 − 572040a2 − 813336a − 434975

= (36a2 + 120a + 127)(864a3 − 540a2 − 3168a − 3425).

It is not hard to show that this special case itself yields infinitely many
real quadratic fields and infinitely many imaginary fields.

The idea of the proof is to construct, for each d of the prescribed form,
two distinct unramified, cyclic, cubic extensions of Q(

√
d). By class field

theory, then, the field has 3-rank at least 2. We use Kishi and Miyake’s [4]
characterization of quadratic number fields with class number divisible by 3
to construct two such extensions of the same quadratic field Q(

√
d); we guar-

antee that the fields are distinct by showing that the prime 3 decomposes
differently in each.

2. Proof. Recall that the Hilbert class field of a number field K is the
maximal unramified abelian extension of K, and that Gal(H/K) ∼= ClK ,
where ClK denotes the ideal class group of K. It follows that the class
number of K is divisible by 3 if and only if there is a cyclic, cubic, unramified
extension of K. In fact, Hasse’s theorem [3] states that if K is a quadratic
field, then K has 3-rank n if and only if there are exactly (3n − 1)/2 cyclic,
cubic, unramified extensions of K. To prove that a quadratic field K has
3-rank at least 2, therefore, it suffices to show that K has two distinct cyclic,
cubic, unramified extensions.

First, notice that we may assume that c and w are relatively prime,
because the quadratic field parameterized by c and w is the same as the
field parameterized by c/(c, w) and w/(c, w).

In [4], Kishi and Miyake give the following characterization of all quad-
ratic fields with class number divisible by 3.

Theorem 2.1. Choose u, w ∈ Z and let g(Z) = Z3 − uwZ − u2. If

(i) d = 4uw3 − 27u2 is not a square in Z,
(ii) u and w are relatively prime,
(iii) g(Z) is irreducible,
(iv) one of the following conditions holds:
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(I) 3 ∤ w,
(II) 3 |w, uw 6≡ 3 (mod9), u ≡ w ± 1 (mod9),

(III) 3 |w, uw ≡ 3 (mod9), u ≡ w ± 1 (mod27),

then the normal closure of Q(θ), where θ is a root of g(Z), is a cyclic, cubic,
unramified extension of Q(

√
d); in particular , then, K = Q(

√
d) has class

number divisible by 3. Conversely , every quadratic number field K with class

number divisible by 3 and every unramified , cyclic, cubic extension of K is

given by a suitable choice of integers u and w.

Given integers c and w with c ≡ w ≡ ±1 (mod6), we define integers
u, x, and y so that the two pairs of integers u, w and x, y each satisfy the
conditions of Theorem 2.1. In addition, if θ1 is a root of g1(Z) = Z3 − uwZ
− u2 and θ2 is a root of g2(Z) = Z3 − xyZ − x2, then the cubic fields Q(θ1)
and Q(θ2) have discriminants with the same square free part as

d = c(w2 + 18cw + 108c2)(4w3 − 27cw2 − 486c2w − 2916c3).

By Theorem 2.1, then, Q(
√

d) has two cyclic, cubic, unramified extensions
L1 and L2 (we also show that L1 and L2 are distinct by showing that the
prime 3 splits differently in each). It then follows from Hasse’s theorem that
Q(

√
d) has 3-rank at least 2. Here L1 and L2 are the normal closures of

Q(θ1) and Q(θ2); since d is not a square, each has Galois group S3 over Q.

Lemma 2.2. Let c and w be integers with c ≡ w ≡ ±1 (mod6). If

u = c(w2 + 18cw + 108c2), x = 9u, y = w + 18c,

then the pairs u, w and x, y each satisfy the hypotheses of Theorem 2.1,

that is, Q(
√

4uw3 − 27u2) and Q(
√

4xy3 − 27x2) each admit cyclic, cubic,
unramified extensions.

Proof. First note that since c ≡ w ≡ ±1 (mod6) and (c, w) = 1, we have
(6c, w) = 1. It follows that (u, w) = 1 since u ≡ 108c3 (modw). Also, since

x = 9c(w2 + 18cw + 108c2) = 9cw(w + 18c) + 972c3 ≡ 972c3 (mod y),

and y ≡ w (mod6c), we see that any prime factor of x and y would divide
6c and therefore w. Since (6c, w) = 1, this implies that (x, y) = 1 as well.
Thus condition (ii) in Theorem 2.1 is satisfied.

For condition (iii), observe that c and w are odd, so u, x, and y are odd
as well. Then

g1(Z) = Z3 − uwZ − u2 ≡ Z3 + Z + 1

≡ Z3 − xyZ − x2 = g2(Z) (mod2),

so g1 and g2 are both irreducible over Z.

Condition (iv) is clearly satisfied since w and therefore y are not divisible
by 3.
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Finally, we show that condition (i) is also satisfied, namely, that 4uw3 −
27u2 and 4xy3 − 27x2 are not squares in Z. This follows, in fact, from the
other conditions. Let θ1 and θ2 be roots of g1(Z) and g2(Z), respectively,
and let L1 and L2 be the normal closures of Q(θ1) and Q(θ2), respectively.
It suffices to show that the Galois groups of L1 and L2 over Q are S3 since
cubic fields with square discriminants are normal. So let i = 1, 2 and suppose,
for contradiction, that the Galois group of Li over Q is Z/3Z. Let p be a
prime in Z that is totally ramified in Li. If vp(a) denotes the exact power of p
dividing a, then Llorente and Nart’s characterization of prime decomposition
in cubic fields [5] implies that either

(1) 1 ≤ vp(bi) ≤ vp(ai), where g∗i (Z) = Z3 + aiZ + bi is obtained from
gi(Z) by substituting Z/t for Z with appropriate t ∈ Z so that
vq(ai) ≤ 1 or vq(bi) ≤ 2 for all primes q,

or

(2) p = 3, 3 | ai.

If p ∤ uw, then clearly the first condition does not hold. If p |w, then
vp(bi) = 0 since u and w are relatively prime, so the first condition cannot
hold for i = 1 or 2. Neither can it hold if p |u, for then as in [4, Lemma 2]
we see that vp(ai) = β and vp(bi) = n + 2β for some integers n and β,
with β = 0 or 1, where vp(u) = 2n + β (resp. vp(x) = 2n + β). The second
condition is impossible for i = 1, because 3 ∤ cw and therefore 3 ∤ a1. If i = 2,
after substitution (with t = 3), v3(a1) = v3(u(w + 18c)) = 0, so the second
condition does not hold. Thus, no prime is totally ramified in L1, contra-
dicting the assumption that the splitting field of g1(Z) is a Z3-extension
of Q. The argument for L2 is similar. The pairs u, w and x, y must there-
fore each generate cubic, cyclic, unramified extensions of the quadratic fields
Q(

√

4uw3 − 27u2) and Q(
√

4xy3 − 27x2), respectively.

The following lemma follows from Theorem 1 in Llorente and Nart [5].

Lemma 2.3. For u, w ∈ Z, set g(Z) = Z3 − uwZ − u2, and let θ be a

root of g.

(i) If uw ≡ 1 (mod3), then 3 is inert in Q(θ).
(ii) If v3(x) = 2n for some n > 0 with xy/32n ≡ 1 (mod3), then 3 splits

completely in Q(θ).

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Given c ≡ w ≡ ±1 (mod6), set

u = c(w2 + 18cw + 108c2), x = 9u, y = w + 18c.

Let θ1 be a root of g1(Z) = Z3 − uwZ − u2 and θ2 a root of g2(Z) =
Z3−xyZ−x2. Let L1 and L2 denote the normal closures of Q(θ1) and Q(θ2),
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respectively. By Lemma 2.2, the pairs u, w and x, y satisfy the hypotheses of
Theorem 2.1, so that L1 and L2 are unramified, cyclic, cubic extensions of
Q(θ1) and Q(θ2), respectively. Notice, however, that the cubic fields Q(θ1)
and Q(θ2) have discriminants which differ by a square factor:

4xy3 − 27x2 = 4(9u)(w + 18c)3 − 27(9u)2

= 9[4u(w3 + 54c(w2 + 18wc + 108c2)) − 243u2]

= 9[4u(w3 + 54u) − 243u2] = 9(4uw3 − 27u2).

Thus L1 and L2 are both S3-extensions of Q with the same quadratic subfield
Q(

√
d), where

d =
√

4uw3 − 27u2

=
√

c(w2 + 18cw + 108c2)(w3 − 27cw2 − 486c2w − 2916c3).

Finally, we claim that L1 and L2 are not isomorphic. We will show that
the prime 3 splits differently in the two fields. Since v3(x) = 2, and xy/9 =
u(w + 18c) ≡ uw ≡ 1 (mod3), Lemma 2.3 shows that 3 splits completely in
Q(θ2). It follows that 3 must also split completely in its normal closure L2.
Since uw ≡ 1 (mod3), Lemma 2.3 implies that 3 is inert in Q(θ1). Thus
3 does not split completely in L1 (in fact, 3 must factor as the product
of two distinct primes in L1), and so L1 and L2 are not isomorphic. Thus
Q(

√
d) has two distinct cubic, cyclic, unramified extensions, and therefore

has 3-rank at least 2.

Proof of Corollary 1.2. The given example results from letting c = 1
and writing w = 6a + 1 for some integer a. Then u = w2 + 18w + 108 =
36a2+120a+127 and 4w3−27u = 864a3−540a2−3168a−3425. We will show
that the family above gives infinitely many imaginary quadratic number
fields with 3-rank at least 2 and infinitely many real quadratic number fields
with 3-rank at least 2. To see that this is the case, let p be any prime with
p ≡ 1 (mod3). We claim that there exists some integer a such that f(a)
is positive and p divides f(a) an odd number of times. Thus p divides the
discriminant of Q(

√

f(a)). Since there are infinitely many primes p ≡ 1
(mod3), and only finitely many primes can divide a given discriminant,
it follows that there are infinitely many real quadratic fields of the form
Q(

√

f(a)) with 3-rank at least 2. The same is true for negative f(a), giving

the same result for imaginary quadratic fields of the form Q(
√

f(a)) with
3-rank at least 2.

Let p be any prime with p ≡ 1 (mod3). Then −3 is a square mod p, so
there exists some z ∈ Z such that z2 ≡ −27 (mod p). Choose a′ ∈ Z with

6a′ ≡ z − 10 (mod p).
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Choose an integer b with (72a′ + 120)b ≡ 1 (modp). This is possible since

72a′ + 120 ≡ 12z (mod p),

which implies that (p, 72a′ + 120) = 1. Define a as follows:

a =

{

a′ if (6a′ + 10)2 6≡ −27 (modp2),

a′ + bp if (6a′ + 10)2 ≡ −27 (modp2).

In either case, then, (6a + 10)2 6≡ −27 (mod p2). It follows that vp(u) = 1,
since u = 36a2 + 120a + 127 ≡ (6a + 10)2 + 27 6≡ 0 (modp2), but

u = 36a2 + 120a + 127 ≡ (6a + 10)2 + 27 ≡ 6a(6a + 20) + 127

≡ (z − 10)(z + 10) + 127 ≡ z2 + 27 ≡ 0 (mod p).

Since u is odd for any a, and (u, w) = 1, we see that u and 4w3 − 27u are
relatively prime for any a. So p exactly divides f(a) = u(4w3 − 27u). This

implies that p divides the discriminant of Q(
√

f(a)) exactly once, and so,

p is ramified in Q(
√

f(a)), as claimed.

Note that we can always choose a′ and b above so that a ≤ 2; this yields
infinitely many imaginary quadratic fields with 3-rank at least 2. Similarly,
we can choose a′ and b so that a ≥ 3, so there are also infinitely many real
quadratic fields with 3-rank at least 2.
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