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On a class of equations with special degrees over finite fields

by

Wei Cao and Qi Sun (Chengdu)

1. Introduction. Let Fq be the finite field of q elements, where q = pr

and p is the characteristic of Fq. Let f(x1, . . . , xn) be a nonzero polynomial
in n variables over Fq and let N(f = 0) denote the number of Fq-rational
points on the affine hypersurface f = 0 in An(Fq), that is,

N(f = 0) = #{(x1, . . . , xn) ∈ An(Fq) | f(x1, . . . , xn) = 0}.

One of the main objectives of arithmetic of finite fields is to study the
value of N(f = 0). In general, it is difficult to give an explicit formula for
N(f = 0). Hence there are various estimates for N(f = 0). The degree of f ,
denoted deg f , plays an important role in these estimates. An elementary
upper bound for N(f = 0) (see [10, p. 147]) is

N(f = 0) ≤ qn−1 deg f.

Let ordp be the p-adic additive valuation normalized so that ordp p = 1.
The classical Chevalley–Warning theorem asserts that ordp(N(f = 0)) ≥ 1
if n > deg f . Further, Ax [2] showed that

ordp(N(f = 0)) ≥ r

⌈
n − deg f

deg f

⌉
.

Ax’s result was extended by Katz [6] to a system of equations. Note that
in [12] Katz’s theorem was proved by using elementary methods based on
Gauss sums, which is also a useful tool adopted in this paper. The Chevalley–
Warning–Ax–Katz-type estimates can be improved in many special cases;
see [1, 4, 5, 9].

However, the effort to find the formula for N(f = 0) under certain
conditions has never been given up. By observing that the explicit formula
for N(f = 0) can be obtained if the degrees of the variables in f satisfy
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certain conditions, Sun [11] gave the following result. Its generalizations as
well as a short proof to them are given in [3]. In what follows, let det denote
the determinant of a square matrix and F∗

q be the multiplicative group of Fq.

Theorem 1.1 (see [11, Theorem 2] or [3, Theorem 1.1]). Suppose

f = a1x
d11

1 xd21

2 · · ·xdn1

n + · · · + anxd1n

1 xd2n

2 · · ·xdnn
n

where dij > 0, ai ∈ F∗
q. Let D = (dij) be an n × n matrix with 1 ≤ i, j ≤ n.

If gcd(det(D), q − 1) = 1, then for b ∈ Fq we have

N(f = b) =





qn − (q − 1)n +
(q − 1)n + (−1)n(q − 1)

q
if b = 0,

(q − 1)n − (−1)n

q
if b 6= 0.

For the so-called “triangular equations”, Wang and Sun [14] showed

Theorem 1.2 (see [14, Corollary]). Suppose

f = a1x
d11

1 + a2x
d12

1 xd22

2 + · · · + anxd1n

1 xd2n

2 · · ·xdnn
n ,

where dij > 0, gcd(d11d22 · · · dnn, q − 1) = 1, ai ∈ F∗
q. Then

N(f = b) =





(−1)n−1 + 2
n−1∑
k=0

(−1)n−k−1qk if b = 0,

n−1∑
k=0

(−1)n−k−1qk if b 6= 0.

It is known that the coefficient matrix of a system of linear equations
can be used to find the solutions of the system. Inspired by Theorems 1.1
and 1.2, we will show that in some special cases the matrix formed by the
degrees of the variables of a “nonlinear” equation over finite fields can be
used to count the number of solutions of the equation. Thus the concept of
degree matrix of a given polynomial naturally arises.

Let D1, . . . , Dm be m distinct lattice points in Zn
≥0. ForDj =(d1j , . . . , dnj),

write xDj = x
d1j

1 · · ·x
dnj
n . Let f be written in the form

f(x1, . . . , xn) =
m∑

j=1

ajx
Dj , aj ∈ F∗

q .

The degree matrix of f , denoted Df , is defined to be the n × m matrix

Df = (D1, . . . , Dm) = (dij)1≤i≤n,1≤j≤m,

where each Dj is written as a column vector.
This paper will give the formulae for N(f = 0) provided the degree

matrix Df satisfies certain conditions. Note that in Theorems 1.1 and 1.2
the requirements for Df are similar: a) all the entries in Df are nonnegative
integers, which case will be denoted by Df ≥ 0 for short; b) Df is a square
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matrix, i.e. n = m; and c) gcd(det(Df ), q−1) = 1, which means that det(Df )
is invertible in the residue ring Z/(q − 1). The main theorem of this paper,
Theorem 2.1 in the next section, will weaken these constraints and hence
cover more general cases than Theorems 1.1 and 1.2.

2. The main result. Let us start by deriving a well known formula
for N(f = 0) in terms of Gauss sums. To do this, some knowledge of p-adic
analysis and character sums of finite fields are needed; those unfamiliar with
these subjects should consult the standard references [7] and [8].

Let Qp be the field of p-adic numbers and let Cp be the completion
of an algebraic closure of Qp. Let χ be the Teichmüller character of the
multiplicative group F∗

q . For a ∈ F∗
q , the value χ(a) is just the (q − 1)th

root of unity in Cp such that χ(a) modulo p reduces to a. Define the (q− 2)
Gauss sums over Fq by

G(k) =
∑

a∈F∗

q

χ(a)−kζTr(a)
p , 1 ≤ k ≤ q − 2,

where ζp is a primitive pth root of unity in Cp and Tr denotes the trace map
from Fq to the prime field Fp. We claim that for all a ∈ Fq, the Gauss sums
satisfy the following interpolation relation:

ζTr(a)
p =

q−1∑

k=0

G(k)

q − 1
χ(a)k,

where

G(0) = q − 1, G(q − 1) = −q.

In fact, by the Vandermonde determinant, there are numbers C(k) (0 ≤ k ≤
q − 1) such that for all a ∈ Fq, one has

ζTr(a)
p =

q−1∑

k=0

C(k)

q − 1
χ(a)k.

It suffices to prove that C(k) = G(k) for all k. Taking a = 0, one finds that
C(0)/(q − 1) = 1. This proves that C(0) = q − 1 = G(0). For 1 ≤ k ≤ q − 2,
one computes that

G(k) =
∑

a∈F∗

q

χ(a)−kζTr(a)
p =

C(k)

q − 1
(q − 1) = C(k).

Finally,

0 =
∑

a∈Fq

ζTr(a)
p =

C(0)

q − 1
q +

C(q − 1)

q − 1
(q − 1).

This gives C(q − 1) = −q = G(q − 1). The claim is proved.
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With the notation as introduced in Section 1, write D̃j = (1, Dj) ∈ Zn+1
≥0 .

Then

x0f(x1, . . . , xn) =

m∑

j=1

ajx
D̃j =

m∑

j=1

ajx0x
d1j

1 · · ·x
dnj
n ,

where x now has n + 1 variables {x0, . . . , xn}.

Let R = {0, 1, . . . , q − 1} ⊂ Z and Rm =
∏m

j=1 R be the direct product
of R. For any k = (k1, . . . , km) ∈ Rm, define

σ(k) = #{1 ≤ j ≤ m | kj > 0},

and let s(k) be the number of nonzero entries in k1D̃1 + · · · + kmD̃m. Let
d0j = 1 for j = 1, . . . , m. Then we have

s(k) = #{0 ≤ i ≤ n | kjdij > 0 for some 1 ≤ j ≤ m}.

Using the formula

∑

t∈Fq

χ(t)k =





0 if (q − 1) ∤ k,

q − 1 if (q − 1) | k and k > 0,

q if k = 0,

one then calculates that

qN(f = 0) =
∑

x0,...,xn∈Fq

ζTr(x0f(x))
p =

∑

x0,...,xn∈Fq

m∏

j=1

ζ
Tr(ajx

D̃j )
p

=
∑

x0,...,xn∈Fq

m∏

j=1

q−1∑

kj=0

G(kj)

q − 1
χ(aj)

kjχ(xD̃j )kj

=

q−1∑

k1=0

· · ·

q−1∑

km=0

( m∏

j=1

G(kj)

q − 1
χ(aj)

kj

) ∑

x0,...,xn∈Fq

χ(xk1D̃1+···+kmD̃m)

=
∑

∑m
j=1

kjD̃j≡0 (mod q−1)

(q − 1)s(k)qn+1−s(k)

(q − 1)m

m∏

j=1

χ(aj)
kjG(kj).

The above deduction can also be found in [13]. Now we can state the
main theorem of this paper.

Theorem 2.1. With the notation as above, if there is an m×m (m ≤ n)
submatrix of Df with determinant coprime to q−1, then R = {0, q − 1} and

N(f = b)

=





∑

k∈Rm

(−1)σ(k)(q − 1)s(k)−σ(k)qn−s(k)+σ(k) if b = 0,

qn(q − 1)−1 −
∑

k∈Rm

(−1)σ(k)(q − 1)s(k)−σ(k)−1qn−s(k)+σ(k) if b 6= 0.
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In this case, for any b ∈ Fq the value of N(f = b) is completely determined

by the degree matrix Df .

Proof. Suppose there exists an m × m submatrix of Df whose determi-
nant is coprime to q−1. Then from linear algebra, we know that the follow-
ing congruence system has only the zero solution, i.e., k1 ≡ · · · ≡ km ≡ 0
(mod q − 1):

k1D̃1 + · · · + kmD̃m ≡ 0 (mod q − 1).

Note that χ(aj)
0 = χ(aj)

q−1 = 1 for aj ∈ F∗
q and G(0) = q−1, G(q−1) = −q.

Thus we have

N(f = 0) =
∑

k∈Rm

(−1)σ(k)(q − 1)s(k)−σ(k)qn−s(k)+σ(k).

Now let b ∈ F∗
q . It is easy to see that the degree matrix Df−b is obtained

from Df by adjoining (1, 0, . . . , 0)T as the right most column. Consider the
congruence system

(2.1)




1 · · · 1 1

d11 · · · d1m 0
...

. . .
...

...

dn1 · · · dnm 0







k1

...

km

km+1




≡ 0 (mod q − 1).

By the last n congruences of (2.1) and the previous discussion, we have
k1 ≡ · · · ≡ km ≡ 0 (mod q − 1). So km+1 ≡ 0 (mod q − 1) by the first
congruence of (2.1). This shows that the congruence system (2.1) also has
only the zero solution. Thus the value of N(f = b) is completely determined
by the degree matrix Df−b, and in particular does not depend on the choice
of the concrete value of b. So N(f = b) = (qn − N(f = 0))/(q − 1). The
result follows.

3. Corollaries. Finally, we give two corollaries to Theorem 2.1, which
generalize Theorems 1.1 and 1.2 respectively. For the convenience of discus-
sion, we introduce some notation. For a zero vector k = (0, . . . , 0) ∈ Rm, we
simply write k = 0. Observe that

N(f = 0) =
( ∑

k=0

+
∑

k∈Rm\{0}

)
(−1)σ(k)(q − 1)s(k)−σ(k)qn−s(k)+σ(k).

Let N0(f = 0) denote the former sum on the right side and N∗(f = 0) the
latter. Clearly, for k = 0 we get s(k) = σ(k) = 0, implying N0(f = 0) = qn.
Thus N(f = 0) = qn + N∗(f = 0). So we only need to calculate N∗(f = 0).
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Corollary 3.1. With the notation as before, if Df > 0 and there exists

an m × m submatrix of Df whose determinant is coprime to q − 1, then

N(f = b) =

{
qn − q−1(q − 1)n−m+1((q − 1)m − (−1)m) if b = 0,

q−1(q − 1)n−m((q − 1)m − (−1)m) if b 6= 0.

In particular , if n = m, then

N(f = b) =

{
qn − q−1(q − 1)((q − 1)n − (−1)n) if b = 0,

q−1((q − 1)n − (−1)n) if b 6= 0.

Proof. Clearly, s(k) = n+1 for any k ∈ Rm \ {0}. Then by Theorem 2.1
and the binomial theorem, we have

N∗(f = 0) =

m∑

σ(k)=1

(−1)σ(k)(q − 1)n+1−σ(k)qn−(n+1)+σ(k)

= q−1(q − 1)n−m+1
m∑

σ(k)=1

(q − 1)m−σ(k)(−q)σ(k)

= −q−1(q − 1)n−m+1((q − 1)m − (−1)m).

The other statements follow.

Corollary 3.2. With the notation as before, suppose that Df is of the

form

Df =




M

dn−m+1,1 · · · dn−m+1,m

...
. . .

...

0 · · · dnm




whereM>0 is an (n−m)×mmatrix and the submatrix (dij)n−m+1≤i≤n,1≤j≤m

is upper triangular with dij = 0 for i − j > n − m and dij > 0 otherwise.

If there exists an m × m submatrix of Df whose determinant is coprime to

q − 1, then

N(f = b) =

{
qn + (q + 1)−1(1 − q)n−m+1((−1)n−mqm − (−1)n) if b = 0,

(q + 1)−1(1 − q)n−m((−1)n−mqm − (−1)n) if b 6= 0.

In particular , if n = m, then

N(f = b) =

{
qn + (q + 1)−1(1 − q)(qn − (−1)n) if b = 0,

(q + 1)−1(qn − (−1)n) if b 6= 0.

Proof. Let l = n − m. For a k ∈ Rm \ {0}, s(k) can be expressed as
follows:

s(k) = l + 1 + max{1 ≤ j ≤ m | kj > 0}.
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For a fixed s(k), only the entries in the set of {k1, . . . , ks(k)−l−1} can take
nonzero values and ks(k)−l−1 must be nonzero. Thus by Theorem 2.1 and
the binomial theorem, we obtain

N∗(f = 0)

=

n+1∑

s(k)=l+2

s(k)−l−1∑

σ(k)=1

(
s(k) − l − 2

σ(k) − 1

)
(−1)σ(k)(q − 1)s(k)−σ(k)qn−s(k)+σ(k)

=
n+1∑

s(k)=l+2

s(k)−l−2∑

i=0

(
s(k) − l − 2

i

)
(−1)i+1(q − 1)s(k)−i−1qn−s(k)+i+1

=
n+1∑

s(k)=l+2

(−1)(q−1)l+1qn−s(k)+1

s(k)−l−2∑

i=0

(
s(k)− l−2

i

)
(q−1)s(k)−l−2−i(−q)i

= (1 − q)l+1qn+1
n+1∑

s(k)=l+2

(−q−1)s(k)

= (q + 1)−1(1 − q)l+1((−1)lqn−l − (−1)n).

The other statements follow.

Remark. We noticed that in [3] and [14], other forms of the generaliza-
tions of Theorems 1.1 and 1.2 are given. Similar to the proofs of the above
two corollaries, these as well as other possible generalizations can also be
derived from Theorem 2.1 via some combinatorial tricks.
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