On a diophantine problem with one prime, two squares of primes and $s$ powers of two

by

Alessandro Languasco and Valentina Settimi (Padova)

1. Introduction. In this paper we are interested in the values of the form

$$\lambda_1 p_1 + \lambda_2 p_2^2 + \lambda_3 p_3^2 + \mu_1 2^{m_1} + \cdots + \mu_s 2^{m_s},$$

where $p_1, p_2, p_3$ are prime numbers, $m_1, \ldots, m_s$ are positive integers, and the coefficients $\lambda_1, \lambda_2, \lambda_3$ and $\mu_1, \ldots, \mu_s$ are real numbers satisfying suitable relations.

This problem can be seen as a variation of the Waring–Goldbach and the Goldbach–Linnik problems. A huge literature exists for both problems and so we will mention just some of the most important results.

Concerning the Goldbach–Linnik problem, the first result was established by Linnik himself [23, 24] who proved that every sufficiently large even integer is a sum of two primes and a suitable number $s$ of powers of two; he gave no explicit estimate of $s$. Other results were proved by Gallagher [6], J. Liu–M.-C. Liu–Wang [26, 27, 28], Wang [47] and H. Li [17, 18]. Now the best conditional result is due to Pintz–Ruzsa [37] and Heath-Brown–Puchta [11] ($s = 7$ suffices under the assumption of the Generalized Riemann Hypothesis), while, unconditionally, it is due to Heath-Brown–Puchta [11] ($s = 13$ suffices). Elsholtz, in unpublished work, improved it to $s = 12$. We should also remark that Pintz–Ruzsa announced a proof for the case $s = 8$ in their paper [37]. Looking for the size of the exceptional set of the Goldbach problem we recall the fundamental paper by Montgomery–Vaughan [34] in which they showed that the number of even integers up to $X$ that are not the sum of two primes is $\ll X^{1-\delta}$. Pintz [36] announced that $\delta = 1/3$ is admissible in the previous estimate. Concerning the exceptional set for the Goldbach–Linnik problem, Languasco–Pintz–Zaccagnini [15] proved that for

2010 Mathematics Subject Classification: Primary 11D75; Secondary 11J25, 11P32, 11P55. Key words and phrases: Goldbach-type theorems, Hardy–Littlewood method, diophantine inequalities.
every $s \geq 1$, there are $\ll X^{3/5}(\log X)^{10}$ even integers in $[1, X]$ that are not
the sum of two primes and $s$ powers of two.

In diophantine approximation several results were proved concerning linear
forms with primes that, in some sense, can be considered as the real ana-
logues of the binary and ternary Goldbach problems. On this topic we recall
the papers by Vaughan [43, 44, 45], Harman [9], Brüdern–Cook–Perelli [1],
and Cook–Harman [3]. A diophantine problem with two primes and powers
of two was solved by Parsell [35]; his estimate on the needed powers of two
was recently improved by Languasco–Zaccagnini [16].

The problem of representing an integer using a suitable number of prime
powers is usually called the Waring–Goldbach problem. We refer to the
beautiful Vaughan–Wooley survey paper [46] for the literature on this prob-
lem. Here we just mention that in 1938 Hua [12] proved that almost all the
integers $n \equiv 3 \mod 24$ and $n \not\equiv 0 \mod 5$ are representable as sums of three
squares of primes, and all sufficiently large $n \equiv 5 \mod 24$ are representable
as sums of five squares of primes. Also several results were obtained about
the size of the exceptional set for this problem. On this topic we just recall
a recent result of J. Liu, Wooley and Yu [30].

Concerning mixed problems with powers of primes and powers of two, we
recall the results by H. Li [19], [20], J. Liu and Lü [29], J. Liu and M.-C. Liu
[25], Lü and Sun [33], Z. Liu and Lü [32].

Replacing one of the prime summands in the problem in Parsell [35] with
the sum of two squares of primes, we obtain the problem in (1.1); the only
result we know about it is by W. P. Li and Wang [21]. We improve their
estimate on $s$ with the following result whose quality depends on rational
approximations to $\lambda_2/\lambda_3$.

**THEOREM.** Suppose that $\lambda_1 < 0$ and $\lambda_2, \lambda_3 > 0$ with $\lambda_2/\lambda_3$ irrational.
Further suppose that $\mu_1, \ldots, \mu_s$ are nonzero real numbers such that $\lambda_i/\mu_i \in \mathbb{Q}$ for $i \in \{1, 2, 3\}$, and denote by $a_i/q_i$ their reduced representations as
rational numbers. Let moreover $\eta$ be a sufficiently small positive constant
such that $\eta < \min(|\lambda_1/a_1|; \lambda_2/a_2; \lambda_3/a_3)$. Finally let

$$s_0 = 3 + \left[ \log(4C(q_1, q_2, q_3, \epsilon)(|\lambda_1| + |\lambda_2| + |\lambda_3|)) - \log((3 - 2\sqrt{2} - \epsilon)\eta) \right]^{-1} \log 0.8844472132,$$

where $\epsilon > 0$ is an arbitrarily small constant, $C(q_1, q_2, q_3, \epsilon)$ satisfies

$$C(q_1, q_2, q_3, \epsilon) = (1 + \epsilon)(\log 2 + C \cdot \mathcal{S}'(q_1))^{1/2} \times ((\log 2)^2 + D \cdot \mathcal{S}''(q_2))^{1/4}((\log 2)^2 + D \cdot \mathcal{S}''(q_3))^{1/4},$$
A diophantine problem

\[ C = 10.0219168340, \quad D = 17,646,979.6536361512, \quad \text{and} \]

\[ (1.4) \quad \mathcal{S}'(n) = \prod_{p|n} \frac{p-1}{p-2}, \quad \mathcal{S}''(n) = \prod_{p|n} \frac{p+1}{p}. \]

Then for every real number \( \varpi \) and every integer \( s \geq s_0 \) the inequality

\[ (1.5) \quad |\lambda_1 p_1 + \lambda_2 p_2^2 + \lambda_3 p_3^2 + \mu_1 2^{m_1} + \cdots + \mu_s 2^{m_s} + \varpi| < \eta \]

has infinitely many solutions in primes \( p_1, p_2, p_3 \) and positive integers \( m_1, \ldots, m_s \).

Arguing analogously we can prove the case \( \lambda_1, \lambda_2 < 0, \lambda_3 > 0 \) (see the argument at the end of §4).

Our value in (1.2) largely improves W. P. Li–Wang’s [21] one given by

\[ (1.6) \quad s_0 = 3 + \left[ \frac{\log(2^9 C_1(q_1, q_2, q_3, \epsilon)(|\lambda_1| + |\lambda_2| + |\lambda_3|)^2) - \log((1 - \epsilon)|\lambda_1|\eta)}{-\log 0.995} \right], \]

where

\[ (1.7) \quad C_1(q_1, q_2, q_3, \epsilon) = 5(1 + \epsilon) \left( \frac{11^4 \cdot 43 \cdot \pi^{26}}{2^{27} \cdot 25} + (\log 2)^2 \right)^{1/2} \]

\[ \times (\log 2q_1)^{1/2}(\log 2q_2)^{1/4}(\log 2q_3)^{1/4}. \]

Comparing only denominators in (1.2) and in (1.6), we see that our gain is about 95.9%. Moreover the numerical constants involved in the definition (1.3) are better than the ones in (1.7) (see the remark after Lemma 3.6 below).

In practice, the following example shows that the gain is actually slightly larger. For instance, taking \( \lambda_1 = -\sqrt{5} = \mu_1^{-1}, \lambda_2 = \sqrt{3} = \mu_2^{-1}, \lambda_3 = \sqrt{2} = \mu_3^{-1}, \eta = 1 \) and \( \epsilon = 10^{-20} \), we get \( s_0 = 120 \), while W. P. Li–Wang’s estimate (1.6) gives \( s_0 = 4120 \).

Moreover we remark that the works of Rosser–Schoenfeld [39] on \( n/\varphi(n) \) and of Solé–Planat [41] on the Dedekind \( \Psi \) function (see Lemmas 3.1 and 3.2 below) give for \( \mathcal{S}'(q) \) and \( \mathcal{S}''(q) \) a sharper estimate than \( 2\log(2q) \), used in (1.7), for large values of \( q \).

With respect to [21], our main gain comes from enlarging the size of the major arc since this lets us use sharper estimates on the minor arc. In particular, on the major arc we replaced the technique used in [21] with an argument involving an \( L^2 \)-estimate of the exponential sum over prime squares \( (S_2(\alpha)) \). This is a standard tool when working on primes (see, e.g., [16] for an application to a similar problem) but it seems that it is the first time that a similar technique is used for prime squares so we inserted a
detailed proof of the relevant lemmas (Lemmas 3.12 and 3.13 below) since they could be of some independent interest.

On the minor arc we use the Ghosh estimate [7] to deal with the exponential sum on primes squares while to treat the exponential sum on primes \((S_1(\alpha))\) we follow the argument in [16]. To work with the exponential sum over powers of two \((G(\alpha))\), we applied Pintz–Ruzsa’s [37] algorithm to estimate the measure of the subset of the minor arc on which \(|G(\alpha)|\) is “large”. These ingredients lead to a sharper estimate on the minor arc and let us improve the size of the denominators in (1.2).

A second, less important, gain arises from our Lemmas 3.3 and 3.6 below, which improves the numerical values in (1.3) compared with the ones in (1.7) (see also Parsell [35, Lemma 3]).

Using the notation \(\lambda = (\lambda_1, \lambda_2, \lambda_3), \mu = (\mu_1, \mu_2, \mu_3)\), as a consequence of the Theorem we have

**Corollary.** Suppose that \(\lambda_1, \lambda_2, \lambda_3\) are nonzero real numbers, not all of the same sign, such that \(\lambda_2/\lambda_3\) is irrational. Further suppose \(\mu_1, \ldots, \mu_s\) are nonzero real numbers such that \(\lambda_i/\mu_i \in \mathbb{Q}\) for \(i \in \{1, 2, 3\}\), and denote by \(a_i/q_i\) their reduced representations as rational numbers. Let moreover \(\eta\) be a sufficiently small positive constant such that \(\eta < \min(\|\lambda_1/a_1\|; \|\lambda_2/a_2\|; \|\lambda_3/a_3\|)\) and \(\tau \geq \eta > 0\). Finally let \(s_0 = s_0(\lambda, \mu, \eta, \epsilon)\) as defined in (1.2), where \(\epsilon > 0\) is arbitrarily small. Then for every real number \(\varpi\) and every integer \(s \geq s_0\) the inequality

\[|\lambda_1p_1 + \lambda_2p_2^2 + \lambda_3p_3^2 + \mu_12^{m_1} + \cdots + \mu_s2^{m_s} + \varpi| < \tau\]

has infinitely many solutions in primes \(p_1, p_2, p_3\) and positive integers \(m_1, \ldots, m_s\).

This Corollary immediately follows from the Theorem by rearranging the \(\lambda\)'s. Hence the Theorem ensures that (1.5) has infinitely many solutions and the Corollary immediately follows from the condition \(\tau \geq \eta\).

**2. Definitions.** Let \(\epsilon\) be a sufficiently small positive constant (not necessarily the same at each occurrence), \(X\) be a large parameter, \(M = |\mu_1| + \cdots + |\mu_s|\) and \(L = \log_2(\epsilon X/(2M))\), where \(\log_2 v\) is the base 2 logarithm of \(v\). We will use the Davenport–Heilbronn variation of the Hardy–Littlewood method to count the number \(\mathfrak{N}(X)\) of solutions of the inequality (1.5) with \(\epsilon X \leq p_1, p_2, p_3 \leq X\) and \(1 \leq m_1, \ldots, m_s \leq L\). Let now \(e(u) = \exp(2\pi i u)\) and

\[S_1(\alpha) = \sum_{\epsilon X \leq p \leq X} \log p e(p\alpha), \quad S_2(\alpha) = \sum_{\epsilon X \leq p^2 \leq X} \log p e(p^2\alpha), \quad G(\alpha) = \sum_{1 \leq m \leq L} e(2^m \alpha).\]
For $\alpha \neq 0$, we also define

$$K(\alpha, \eta) = \left(\frac{\sin \pi \eta \alpha}{\pi \alpha}\right)^2.$$ 

It is well-known that

$$(2.1) \quad \hat{K}(t, \eta) = \int_{\mathbb{R}} K(\alpha, \eta)e(t\alpha) \, d\alpha = \max(0; \eta - |t|)$$

and

$$(2.2) \quad K(\alpha, \eta) \ll \min(\eta^2; \alpha^{-2}).$$

Letting

$$I(X; \mathbb{R}) = \int_{\mathbb{R}} S_1(\lambda_1 \alpha)S_2(\lambda_2 \alpha)S_2(\lambda_3 \alpha)G(\mu_1 \alpha) \cdots G(\mu_s \alpha)e(\omega \alpha)K(\alpha, \eta) \, d\alpha,$$

it follows from (2.1) that

$$I(X; \mathbb{R}) \ll \eta(\log X)^3 \cdot \mathcal{M}(X).$$

We will prove, for $X \to +\infty$ running over a suitable integral sequence, that

$$(2.3) \quad I(X; \mathbb{R}) \gg_{s, \lambda, \epsilon} \eta^2 X(\log X)^s$$

thus obtaining

$$\mathcal{M}(X) \gg_{s, \lambda, \epsilon} \eta X(\log X)^{s-3}$$

and hence the Theorem follows.

To prove (2.3) we first dissect the real line into the major, minor and trivial arcs, by choosing $P = X^{2/5}/\log X$ and letting

$$(2.4) \quad \mathfrak{M} = \{\alpha \in \mathbb{R} : |\alpha| \leq P/X\}, \quad \mathfrak{m} = \{\alpha \in \mathbb{R} : P/X < |\alpha| \leq L^2\},$$

and $t = \mathbb{R} \setminus (\mathfrak{M} \cup \mathfrak{m})$. Accordingly, we write

$$(2.5) \quad I(X; \mathbb{R}) = I(X; \mathfrak{M}) + I(X; \mathfrak{m}) + I(X; t).$$

We will prove that

$$(2.6) \quad I(X; \mathfrak{M}) \geq c_1 \eta^2 X L^s,$$

$$(2.7) \quad |I(X; t)| = o(XL^s)$$

both hold for all sufficiently large $X$, and

$$(2.8) \quad |I(X; \mathfrak{m})| \leq c_2(s) \eta X L^s$$

holds for $X \to +\infty$ running over a suitable integral sequence, where $c_2(s) > 0$ depends on $s$, $c_2(s) \to 0$ as $s \to +\infty$, and $c_1 = c_1(\epsilon, \lambda) > 0$ is a constant such that

$$(2.9) \quad c_1 \eta - c_2(s) \geq c_3 \eta$$

for some absolute positive constant $c_3$ and $s \geq s_0$. Inserting (2.6)–(2.9) into (2.5), we finally conclude that (2.3) holds, thus proving the Theorem.
3. Lemmas. Let $n$ be a positive integer. We denote by $\mathcal{S}(n)$ the singular series and set $\mathcal{S}(n) = 2c_0 \mathcal{S}'(n)$ where $\mathcal{S}'(n)$ is defined in [1.4] and
\[
c_0 = \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right).
\]
Notice that $\mathcal{S}'(n)$ is a multiplicative function. According to Gourdon–Sebah [8], we have $0.66016181584 < c_0 < 0.66016181585$.

The first lemma is an upper bound for the multiplicative part of the singular series.

**Lemma 3.1** (Languasco–Zaccagnini [16, Lemma 2]). For $n \in \mathbb{N}$, $n \geq 3$, we have
\[
\mathcal{S}'(n) < \frac{n}{c_0 \varphi(n)} < \frac{e^\gamma \log \log n}{c_0} + \frac{2.50637}{c_0 \log \log n},
\]
where $\gamma = 0.5772156649\ldots$ is the Euler constant.

Letting $f(1) = f(2) = 1$ and $f(n) = n/(c_0 \varphi(n))$ for $n \geq 3$, we can see that the inequality $\mathcal{S}'(n) \leq f(n)$ is sharper than Parsell’s estimate $\mathcal{S}'(n) \leq 2 \log(2n)$ (see [35, p. 369]) for every $n \geq 1$. Since it is clear that computing the exact value of $f(n)$ for large values of $n$ is not easy (it requires the knowledge of every prime factor of $n$), we also remark that the second estimate in Lemma 3.1 leads to a sharper bound than $\mathcal{S}'(n) \leq 2 \log(2n)$ for every $n \geq 14$.

Let now $\mathcal{S}''(n)$ be defined as in [1.4]. We first remark that it is connected with the Dedekind $\Psi$ function defined by
\[
\Psi(n) = n \prod_{p|n} \frac{p+1}{p}
\]
since $\mathcal{S}''(n) = \Psi(n)/n$ for $n$ odd and $\mathcal{S}''(n) = (2/3)\Psi(n)/n$ for $n$ even. We also have

**Lemma 3.2.** For $n \in \mathbb{N}$, $n \geq 31$, we have
\[
\mathcal{S}''(n) < e^\gamma \log \log n,
\]
where $\gamma$ is the Euler constant.

**Proof.** This follows immediately from Corollary 2 of Solé–Planat [41] and the previous remarks.

The estimate in Lemma 3.2 is sharper than W. P. Li–Wang’s one $\mathcal{S}''(n) \leq 2 \log(2n)$ (see [22, p. 171]) for every $n \geq 31$. We also remark that $\mathcal{S}''(1) = \mathcal{S}''(2) = 1$, and that the computation of $\mathcal{S}''(n)$ in the remaining interval $3 \leq n \leq 30$ is an easy task.

Now we state some lemmas we need to estimate $I(X; m)$.

Lemma 3.3 (Languasco–Zaccagnini [16, Lemma 4]). Let $X$ be a sufficiently large parameter and let $\lambda, \mu \neq 0$ be two real numbers such that $\lambda/\mu \in \mathbb{Q}$. Let $a, q \in \mathbb{Z} \setminus \{0\}$ with $q > 0$ and $(a, q) = 1$ be such that $\lambda/\mu = a/q$. Let further $0 < \eta < |\lambda/a|$. Then
\[
\int_{\mathbb{R}} |S_1(\lambda \alpha)G(\mu \alpha)|^2 K(\alpha, \eta) \, d\alpha < \eta XL^2((1-\epsilon) \log 2 + C \cdot \mathcal{S}'(q)) + O_{M, \epsilon}(\eta XL),
\]
where $C = 10.0219168340$.

Lemma 3.4. Let $\epsilon$ be an arbitrarily small positive constant. Let $n \in \mathbb{Z}$, $n \neq 0$, $|n| \leq X$, $n \equiv 0 \mod 24$ and
\[
r(n) = |\{n = p_1^2 + p_2^2 - p_3^2 - p_4^2, \text{ where } p_j \leq X^{1/2}, j = 1, \ldots, 4\}|.
\]
Then
\[
r(n) \leq (1 + \epsilon)c_4 \frac{\pi^2}{16} \mathcal{S}_-(n) \frac{X}{(\log X)^4},
\]
where
\[
\mathcal{S}_-(n) = \left(2 - \frac{1}{2 \beta_0 - 1} - \frac{1}{2 \beta_0}\right) \prod_{\substack{p > 2 \mid n \beta \geq 0}} \left(1 + \frac{1}{p} - \frac{1}{p^{\beta + 1}} - \frac{1}{p^{\beta + 2}}\right).
\]
c_4 = 101 \cdot 2^{20} \text{ and } \beta_0 \text{ is such that } 2^{\beta_0} \parallel n.

Lemma 3.4 follows by inserting the remark of H. Li [19, p. 385] into the proof of Lemma 2.2 of J. Liu–Lü [29]. We immediately remark that $\mathcal{S}_-(n) \leq 2 \mathcal{S}''(n)$.

We will also need the following

Lemma 3.5 (H. Li [19]). Let $d$ be a positive odd integer and $\xi(d)$ be the quantity $\min\{\mu: 2^\mu \equiv 1 \pmod{d}\}$. Then the series
\[
\sum_{d=1, d \mid 2}^{\infty} \frac{\mu^2(d)}{d \xi(d)}
\]
is convergent and its value $c_5$ satisfies $c_5 < 1.620767$.

The next lemma is the analogue of Lemma 3.3 for exponential sums over prime squares.

Lemma 3.6. Let $X$ be a sufficiently large parameter and let $\lambda, \mu \neq 0$ be two real numbers such that $\lambda/\mu \in \mathbb{Q}$. Let $a, q \in \mathbb{Z} \setminus \{0\}$ with $q > 0$ and $(a, q) = 1$ be such that $\lambda/\mu = a/q$. Let further $0 < \eta < |\lambda/a|$. Then
\[
\int_{\mathbb{R}} |S_2(\lambda \alpha)G(\mu \alpha)|^4 K(\alpha, \eta) \, d\alpha < (1 + \epsilon)\eta XL^4((\log 2)^2 + D \cdot \mathcal{S}''(q)),
\]
where \( D = c_4 c_5 \pi^2/96 \), \( c_4, c_5 \) are as in Lemmas 3.4, 3.5 respectively and \( \epsilon \) is an arbitrarily small positive constant.

This should be compared with Lemma 4.3 of W. P. Li–Wang [22] (see also Lemma 4.2 of [21]) in which the value \( D_1 = 2^{-27} \cdot 11^4 \cdot 43 \cdot \pi^{26}/25 \) plays the role of \( D \). Using the values \( c_4 = 101 \cdot 2^{20} \) and \( c_5 < 1.620767 \) as in Lemmas 3.4, 3.5, we see that \( D < 17,646,979.6536361512 \) while \( D_1 = 1,581,925,383.079848770 \). We remark that \( D < 0.0112 \cdot D_1 \) and so the reduction factor here is close to 98.8\%. With an abuse of notation, in the statement of the Theorem we will set \( D = 17,646,979.6536361512 \).

**Proof of Lemma 3.6.** Letting now

\[
I = \int_{\mathbb{R}} |S_2(\lambda \alpha)G(\mu \alpha)|^4 K(\alpha, \eta) \, d\alpha,
\]

by (2.1) we immediately have

\[
(3.1) \quad I = \sum_{\epsilon X \leq p_1^2, p_2^2, p_3^2, p_4^2 \leq X} \log p_1 \log p_2 \log p_3 \log p_4 \times \sum_{1 \leq m_1, m_2, m_3, m_4 \leq L} \max(0; \eta - |\nu(p_1^2 + p_2^2 - p_3^2 - p_4^2) + \mu(2^{m_1} + 2^{m_2} - 2^{m_3} - 2^{m_4})|).
\]

Let \( \delta = \lambda(p_1^2 + p_2^2 - p_3^2 - p_4^2) + \mu(2^{m_1} + 2^{m_2} - 2^{m_3} - 2^{m_4}) \). For a sufficiently small \( \eta > 0 \), we claim that

\[
(3.2) \quad |\delta| < \eta \quad \text{is equivalent to} \quad \delta = 0.
\]

Recall our hypothesis on \( a \) and \( q \), and assume that \( \delta \neq 0 \) in (3.2). For \( \eta < |\lambda/a| \) this leads to a contradiction. In fact we have

\[
1 \left| \frac{a}{|a|} \right| > \frac{\eta}{|\lambda|} > \left| \frac{p_1^2 + p_2^2 - p_3^2 - p_4^2 + q}{a} \left( 2^{m_1} + 2^{m_2} - 2^{m_3} - 2^{m_4} \right) \right| = \left| \frac{a(p_1^2 + p_2^2 - p_3^2 - p_4^2) + q(2^{m_1} + 2^{m_2} - 2^{m_3} - 2^{m_4})}{a} \right| \geq \frac{1}{|a|},
\]

since \( a(p_1^2 + p_2^2 - p_3^2 - p_4^2) + q(2^{m_1} + 2^{m_2} - 2^{m_3} - 2^{m_4}) \neq 0 \) is a linear integral combination. Inserting (3.2) in (3.1), for \( \eta < |\lambda/a| \) we can write

\[
(3.3) \quad I = \eta \sum_{\epsilon X \leq p_1^2, p_2^2, p_3^2, p_4^2 \leq X} \sum_{1 \leq m_1, m_2, m_3, m_4 \leq L} \log p_1 \log p_2 \log p_3 \log p_4.
\]

The diagonal contribution in (3.3) is equal to

\[
(3.4) \quad \eta \sum_{\epsilon X \leq p_1^2, p_2^2, p_3^2, p_4^2 \leq X} \sum_{1 \leq m_1, m_2, m_3, m_4 \leq L} \frac{1}{p_1^2 + p_2^2 - p_3^2 - p_4^2}.
\]
The number of solutions of \( p_1^2 + p_2^2 = p_3^2 + p_4^2 \) when \( p_1 p_2 \neq p_3 p_4 \) can be estimated using Satz 3, p. 94 of Rieger [38] and it is \( \ll X (\log X)^{-3} \). This gives a contribution to the first sum which is \( \ll X \log X \). In the remaining case \( p_1 p_2 = p_3 p_4 \) the first sum becomes

\[
2 \sum_{\epsilon X \leq p_1^2, p_2^2 \leq X} (\log p_1)^2 (\log p_2)^2 = 2 \left( \sum_{\sqrt{\epsilon X} \leq p \leq \sqrt{X}} (\log p)^2 \right)^2 < (1 - \epsilon) \frac{X}{2} (\log X)^2,
\]

where we used the Prime Number Theorem and the fact that \( \epsilon \) is a sufficiently small positive constant. The sum over the powers of two in (3.4) can be evaluated by fixing first \( m_1 = m_3 \) (thus getting exactly \( L^2 \) solutions) and then fixing \( m_1 \neq m_3 \) (which gives other \( L^2 - L \) solutions). Hence the contribution of the second sum in (3.4) is \( 2L^2 - L \).

Combining these results we see that the total contribution of (3.4) is

\[
(3.5) \quad < (1 - \epsilon) \eta X L^2 (\log X)^2 < \eta X L^4 (\log 2)^2.
\]

Now we have to estimate the contribution \( I' \) of the nondiagonal solutions of \( \delta = 0 \) and we will achieve this by connecting \( I' \) with the singular series of Lemma 3.4. First, we remark that if \( p_j > 3 \) for every \( j = 1, \ldots, 4 \), then \( n = p_1^2 + p_2^2 - p_3^2 - p_4^2 \equiv 0 \mod 24 \). So if \( n = p_1^2 + p_2^2 - p_3^2 - p_4^2 \neq 0 \mod 24 \) then at least one of the \( p_j \) must be equal to 2 or 3, and hence \( r(n) \), defined as in the statement of Lemma 3.4, satisfies \( r(n) \ll X^{1/2 + \epsilon} \). Recalling that \( \lambda/\mu = a/q \neq 0 \), \( (a, q) = 1 \), if \( 2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2} \neq 0 \) and \( (q/a)(2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}) \neq 0 \mod 24 \), we have

\[
|\{(p_1, \ldots, p_4) : p_1^2 + p_2^2 - p_3^2 - p_4^2 = (q/a)(2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2})\}| \ll X^{1/2 + \epsilon}.
\]

Otherwise, by Lemma 3.4, \( \mathcal{S}_-(n) \leq 2 \mathcal{S}''(n) \), \( r((q/a)(2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2})) \neq 0 \) if and only if \( a \mid (2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}) \), \( \log p_j \leq (1/2) \log X \) and \( |(q/a)(2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2})| \leq |q/a|2 \epsilon X / M \leq 2 \epsilon X / |\lambda| \ll X \) for \( \epsilon \) sufficiently small, we have

\[
(3.6) \quad I' \leq \frac{\eta}{16} (\log X)^4 \sum_{1 \leq m_1, m_2, m_3, m_4 \leq L} r\left( \frac{q}{a} (2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}) \right)
\]

\[
< (1 + \epsilon)c_4 \frac{\pi^2}{128} \eta X \sum_{1 \leq m_1, m_2, m_3, m_4 \leq L} \mathcal{S}''\left( \frac{q}{a} (2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}) \right).
\]

Using the multiplicativity of \( \mathcal{S}''(n) \) (defined in (1.4)), we get

\[
\mathcal{S}''\left( \frac{q}{a} (2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}) \right) \leq \mathcal{S}''(q) \mathcal{S}''\left( \frac{2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}}{a} \right)
\]

\[
\leq \mathcal{S}''(q) \mathcal{S}''(2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2})
\]

A diophantine problem 393
and so, by (3.6), we can write, for every sufficiently large $X$,

$$I' \leq (1 + \epsilon)c_4\frac{\pi^2}{128}S''(q)\eta X \sum_{1 \leq m_1, m_2, m_3, m_4 \leq L} S''(2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}).$$

Arguing now as at pages 63–64 of J. Liu–Lü [29] we have

$$\sum_{1 \leq m_1, m_2, m_3, m_4 \leq L} S''(2^{m_3} + 2^{m_4} - 2^{m_1} - 2^{m_2}) \leq \frac{4}{3}c_5(1 + \epsilon)L^4,$$

thus getting

$$(3.7) \quad I' \leq (1 + \epsilon)c_4c_5\frac{\pi^2}{96}S''(q)\eta XL^4,$$

for a sufficiently small $\epsilon$. Hence, by (3.3)–(3.5) and (3.7), we finally get

$$I < (1 + \epsilon)\eta XL^4\left((\log 2)^2 + c_4c_5\frac{\pi^2}{96}S''(q)\right),$$

this way proving Lemma 3.6.

We now recall a famous result by Ghosh about $S_2(\alpha)$.

**Lemma 3.7 (Ghosh [7, Theorem 2]).** Let $\alpha$ be a real number and $a, q$ be positive integers satisfying $(a, q) = 1$ and $|\alpha - a/q| < q^{-2}$. Let moreover $\epsilon > 0$. Then

$$S_2(\alpha) \ll \epsilon X^{1/2+\epsilon}\left(\frac{1}{q} + \frac{1}{X^{1/4}} + \frac{q}{X}\right)^{1/4}.$$

As an application of the previous lemma, we get the following result.

**Lemma 3.8.** Suppose that $\lambda_2/\lambda_3$ is irrational, and let $X = q^2$ where $q$ is the denominator of a convergent of the continued fraction for $\lambda_2/\lambda_3$. Let $V(\alpha) = \min(|S_2(\lambda_2\alpha)|, |S_2(\lambda_3\alpha)|)$. Then for arbitrarily small $\epsilon$ we have

$$\sup_{\alpha \in \mathfrak{m}} V(\alpha) \ll X^{7/16+\epsilon}.$$

**Proof.** Let $\alpha \in \mathfrak{m}$ and $Q = X^{1/4}/(\log X)^2 \leq P$. By the Dirichlet Theorem, there exist integers $a_i, q_i$ with $1 \leq q_i \leq X/Q$ and $(a_i, q_i) = 1$ such that $|\lambda_i \alpha q_i - a_i| \leq Q/X$, $i = 2, 3$. We remark that $a_2a_3 \neq 0$, otherwise we would have $\alpha \in \mathfrak{m}$. Now suppose that $q_i \leq Q$, $i = 2, 3$. In this case we get

$$a_3q_2\frac{\lambda_2}{\lambda_3} - a_2q_3 = (\lambda_2\alpha q_2 - a_2)\frac{a_3}{\lambda_3\alpha} - (\lambda_3\alpha q_3 - a_3)\frac{a_2}{\lambda_3\alpha}$$

and hence

$$\left|a_3q_2\frac{\lambda_2}{\lambda_3} - a_2q_3\right| \leq 2\left(1 + \left|\frac{\lambda_2}{\lambda_3}\right|\right)\frac{Q^2}{X} < \frac{1}{2q}.$$
for a sufficiently large $X$. Then, from the law of best approximation and the definition of $m$, we obtain

$$X^{1/2} = q \leq |a_3 q_2| \ll q_2 q_3 (\log X)^2 \leq Q^2 (\log X)^2 \leq X^{1/2} (\log X)^{-2}.$$ 

Hence either $q_2 > Q$ or $q_3 > Q$. Assume, without loss of generality, that $q_2 > Q$. Using Lemma 3.7 for $S_2(\lambda_2 \alpha)$, we have

$$V(\alpha) \leq |S_2(\lambda_2 \alpha)| \ll \varepsilon X^{1/2 + \varepsilon} \sup_{Q < q_2 \leq X / Q} \left( \frac{1}{q_2} + \frac{1}{X^{1/4}} + \frac{q_2}{X} \right)^{1/4} \ll \varepsilon X^{7/16 + \varepsilon} (\log X)^{1/2},$$

thus proving Lemma 3.8. ■

To estimate the contribution of $G(\alpha)$ on the minor arc we use Pintz–Ruzsa’s method as developed in [37, §3–7].

**Lemma 3.9 (Pintz–Ruzsa [37, §7]).** Let $0 < c < 1$. Then there exists $\nu = \nu(c) \in (0, 1)$ such that

$$|E(\nu)| := |\{ \alpha \in (0, 1) : |G(\alpha)| > \nu L \}| \ll M, \varepsilon X^{-c}.$$ 

To obtain explicit values for $\nu$ we used the version of the Pintz–Ruzsa algorithm already implemented to get the results used in Languasco–Zaccagnini [16]. We used the PARI/GP [42] language and the gp2c compiling tool to compute fifty decimal digits (but we write here just ten) of the constant involved in the previous lemma. If we run the program in our case, Lemma 3.9 gives the following result:

(3.8) 

$$|G(\alpha)| \leq 0.8844472132 \cdot L$$ 

if $\alpha \in [0, 1] \setminus E$ where $|E| \ll M, \varepsilon X^{-3/4 - 10^{-20}}$. The computing time to get (3.8) on an Apple MacBook Pro was 26 minutes and 28 seconds (but to get 30 correct digits just 3 minutes and 31 seconds suffice). You can download the PARI/GP source code of our program together with the cited numerical values at www.math.unipd.it/~languasc/PintzRuzsaMethod.html.

Now we state some lemmas we will use to work on the major arc. Let $\theta(x) = \sum_{p \leq x} \log p$,

(3.9) 

$$J(X, h) = \int_{e^X}^X (\theta(x + h) - \theta(x) - h)^2 \, dx$$

and

(3.10) 

$$J^*(X, h) = \int_{e^X}^X \left( \theta(\sqrt{x + h}) - \theta(\sqrt{x}) - (\sqrt{x + h} - \sqrt{x}) \right)^2 \, dx$$
be two different versions of the Selberg integral, and
\[ U_1(\alpha) = \sum_{\epsilon X \leq n \leq X} e(\alpha n) \quad \text{and} \quad U_2(\alpha) = \sum_{\epsilon X \leq n^2 \leq X} e(\alpha n^2). \]

Applying Gallagher’s famous lemma on the truncated \(L^2\)-norm of exponential sums to \(S_1(\alpha) - U_1(\alpha)\), one gets the following well-known statement which we quote from Brüdern–Cook–Perelli [1, Lemma 1].

**Lemma 3.10.** For \(1/X \leq Y \leq 1/2\) we have
\[
\int_{-Y}^{Y} |S_1(\alpha) - U_1(\alpha)|^2 \, d\alpha \ll \epsilon \frac{(\log X)^2}{Y} + Y^2 X + Y^2 J \left( X, \frac{1}{2Y} \right),
\]
where \(J(X, h)\) is defined in (3.9).

To estimate the Selberg integral, we use the next result.

**Lemma 3.11 (Saffari–Vaughan [40, §6]).** Let \(\epsilon\) be an arbitrarily small positive constant. There exists a positive constant \(c_6(\epsilon)\) such that
\[
J(X, h) \ll \epsilon h^2 X \exp \left( -c_6 \left( \frac{\log X}{\log \log X} \right)^{1/3} \right)
\]
uniformly for \(X^{1/6+\epsilon} \leq h \leq X\).

In a similar way we can also prove

**Lemma 3.12.** For \(1/X \leq Y \leq 1/2\) we have
\[
\int_{-Y}^{Y} |S_2(\alpha) - U_2(\alpha)|^2 \, d\alpha \ll \epsilon \frac{(\log X)^2}{YX} + Y^2 X + Y^2 J^* \left( X, \frac{1}{2Y} \right),
\]
where \(J^*(X, h)\) is defined in (3.10).

**Proof.** Letting \(I := \int_{-Y}^{Y} |S_2(\alpha) - U_2(\alpha)|^2 \, d\alpha\), we can write
\[
I = \int_{-Y}^{Y} \left| \sum_{\epsilon X \leq p^2 \leq X} \log p \, e(p^2 \alpha) - \sum_{\epsilon X \leq n^2 \leq X} e(\alpha n^2) \right|^2 \, d\alpha
= \int_{-Y}^{Y} \left| \sum_{\epsilon X \leq n^2 \leq X} (k(n) - 1) e(n^2 \alpha) \right|^2 \, d\alpha,
\]
where \(k(n) = \log p\) if \(n = p\) prime and \(k(n) = 0\) otherwise. By Gallagher’s lemma (Lemma 1 of [5]) we obtain
\[
I \ll Y^2 \int_{-\infty}^{\infty} \left( \sum_{x \leq n^2 \leq x + H} (k(n) - 1) \right)^2 \, dx
\]
where we defined $H = 1/(2Y)$. We can restrict the integration range to $E = [\epsilon X - H, X]$ since otherwise the inner sum is empty. Moreover we split $E$ as $E = E_1 \sqcup E_2 \sqcup E_3$ where $\sqcup$ represents disjoint union and $E_1 = [\epsilon X - H, \epsilon X]$, $E_2 = [\epsilon X, X - H]$, $E_3 = [X - H, X]$. Accordingly,

$$I \ll Y^2 \left( \int_{E_1} + \int_{E_2} + \int_{E_3} \right) \left( \sum_{x \leq n^2 \leq x + H} (k(n) - 1) \right)^2 dx = Y^2(I_1 + I_2 + I_3),$$

say. We now proceed to estimate $I_i$ for $i = 1, 2, 3$.

**Estimation of $I_1$.** By trivial estimates we have

$$I_1 = \int_{E_1} \left( \sum_{\epsilon X \leq n^2 \leq x + H} (k(n) - 1) \right)^2 dx$$

$$= \int_{\epsilon X - H}^{\epsilon X} \left( \theta(\sqrt{x + H}) - \theta(\sqrt{\epsilon X}) - (\sqrt{x + H} - \sqrt{\epsilon X}) + O(1) \right)^2 dx$$

$$\ll \int_{\epsilon X - H}^{\epsilon X} \left( \theta(\sqrt{x + H}) - \theta(\sqrt{\epsilon X}) - (\sqrt{x + H} - \sqrt{\epsilon X}) \right)^2 dx + H.$$ 

Using a trivial estimate in (3.12) we have

$$I_1 \ll (\log X)^2 \int_{\epsilon X - H}^{\epsilon X} (\sqrt{x + H} - \sqrt{\epsilon X})^2 dx + H \ll \epsilon \frac{H^3(\log X)^2}{X} + H,$$

where the last step follows by applying the Mean Value Theorem to the integrand.

**Estimation of $I_3$.** The estimation of $I_3$ is similar to the one of $I_1$. We have

$$I_3 = \int_{E_3} \left( \sum_{x \leq n^2 \leq X} (k(n) - 1) \right)^2 dx$$

$$\ll \int_{X - H}^{X} \left( \theta(\sqrt{X}) - \theta(\sqrt{x}) - (\sqrt{X} - \sqrt{x}) \right)^2 dx + H.$$ 

Again using a trivial estimate and the Mean Value Theorem we get

$$I_3 \ll (\log X)^2 \int_{X - H}^{X} (\sqrt{X} - \sqrt{x})^2 dx + H \ll \epsilon \frac{H^3(\log X)^2}{X} + H.$$
Estimation of $I_2$. We have

$$I_2 = \int_{E_2} \left( \sum_{x \leq n^2 \leq x+H} (k(n) - 1) \right)^2 dx$$

$$\ll \int_{\epsilon X} \left( \theta(\sqrt{x+H}) - \theta(\sqrt{x}) - (\sqrt{x+H} - \sqrt{x}) \right)^2 dx + X$$

$$= J^*(X, H) + X,$$

where we used the definition (3.10). Therefore, by (3.11), (3.13)–(3.15) and $Y \geq 1/X$, and recalling $H = 1/(2Y)$, we have

$$\mathcal{I} \ll \epsilon \frac{(\log X)^2}{XY^2} + X Y^2 + Y^2 J^*(X, \frac{1}{2Y}),$$

and this proves Lemma 3.12.

To estimate $J^*(X, h)$, we use the next result.

**Lemma 3.13.** Let $\epsilon$ be an arbitrarily small positive constant. There exists a positive constant $c_6(\epsilon)$ such that

$$J^*(X, h) \ll \epsilon h^2 \exp \left( -c_6 \left( \frac{\log X}{\log \log X} \right)^{1/3} \right)$$

uniformly for $X^{7/12+\epsilon} \leq h \leq X$.

**Proof.** We reduce our problem to estimating

$$J^*_\psi(X, h) := \int_{\epsilon X} X \left( \psi(\sqrt{x+h}) - \psi(\sqrt{x}) - (\sqrt{x+h} - \sqrt{x}) \right)^2 dx$$

since, using $|a+b|^2 \leq 2|a|^2 + 2|b|^2$, it is easy to see that

$$J^*(X, h) \ll J^*_\psi(X, h)$$

$$+ \int_{\epsilon X} X \left( \psi(\sqrt{x+h}) - \psi(\sqrt{x}) - \theta(\sqrt{x+h}) + \theta(\sqrt{x}) \right)^2 dx.$$ 

By a trivial estimate and the Mean Value Theorem we obtain

$$J^*(X, h) \ll \epsilon J^*_\psi(X, h) + \int_{\epsilon X} \frac{h^2}{X^{3/2}} (\log X)^4 dx \ll \epsilon J^*_\psi(X, h) + h^2 \frac{(\log X)^4}{X^{1/2}}.$$ 

To estimate the right hand side of (3.17), we use the following result we will prove later.
Lemma 3.14. Let $\epsilon$ be an arbitrarily small positive constant. There exists a positive constant $c_6(\epsilon)$ such that

$$J^*_\psi(X,h) \ll_{\epsilon} h^2 \exp \left(-c_6 \left( \frac{\log X}{\log \log X} \right)^{1/3} \right)$$

uniformly for $X^{7/12+\epsilon} \leq h \leq X$, where $J^*_\psi(X,h)$ is defined in (3.16).

Therefore, by (3.17) and Lemma 3.14, we obtain

$$J^*(X,h) \ll_{\epsilon} h^2 \exp \left(-c_6 \left( \frac{\log X}{\log \log X} \right)^{1/3} \right),$$

thus proving Lemma 3.13.

Lemma 3.14 will follow from the following lemma.

Lemma 3.15. Let $\epsilon$ be an arbitrarily small positive constant. There exists a positive constant $c_6(\epsilon)$ such that

$$\tilde{J}^*_\psi(X,\delta) := \int_X^{\delta} \left( \psi(\sqrt{x+\delta x}) - \psi(\sqrt{x}) - (\sqrt{x+\delta x} - \sqrt{x}) \right)^2 dx \ll_{\epsilon} \delta^2 X^2 \exp \left(-c_6 \left( \frac{\log X}{\log \log X} \right)^{1/3} \right)$$

uniformly for $X^{-5/12+\epsilon} \leq \delta \leq 1$.

Proof. We follow the argument of Saffari–Vaughan [40, §5]. To estimate $\tilde{J}^*_\psi(X,\delta)$, we use the truncated explicit formula for $\psi(x)$ (see, e.g., Davenport [4, eq. (9)–(10) of §17]):

$$\psi(x) = x - \sum_{|\gamma| \leq T} \frac{x^\rho}{\rho} + O \left( \frac{x}{T} (\log(xT))^2 + \log x \right)$$

uniformly in $T \geq 2$ and for $\rho = \beta + i\gamma$ nontrivial zeros of $\zeta(s)$. So

$$\tilde{J}^*_\psi(X,\delta) \ll \int_X^{X} \left| \sum_{|\gamma| \leq T} \frac{x^\rho/2((1+\delta)^{\rho/2} - 1)}{\rho} \right|^2 dx + \frac{X^2}{T^2} (\log(XT))^4 + X \log^2 X.$$

As in Ivić [13, p. 316], we define $c(\delta,\rho) = ((1+\delta)^{\rho} - 1)/\rho$, and remark

$$|c(\delta,\rho/2)| \ll \min(1/|\gamma|; \delta).$$

Assuming $T \geq 1/\delta$, we can split the summation in (3.18) into two cases defined according to (3.19). We obtain

$$\tilde{J}^*_\psi(X,\delta) \ll A_{[0,1/\delta]} + A_{[1/\delta,T]} + \frac{X^2}{T^2} (\log(XT))^4 + X (\log X)^2,$$
with
\[(3.21)\]
\[A_I = \int_{\epsilon X}^{X} \left| \sum_{|\gamma| \in I} x^{\rho/2} c\left(\delta, \frac{\rho}{2}\right) \right|^2 dx \]
\[= \sum_{|\gamma_1| \in I} \sum_{|\gamma_2| \in I} c\left(\delta, \frac{\rho_1}{2}\right) c\left(\delta, \frac{\rho_2}{2}\right) \frac{2X^{(\rho_1 + \rho_2)/2 + 1}}{\rho_1 + \rho_2 + 2} \]
\[\ll \sum_{|\gamma_1| \in I} \sum_{|\gamma_2| \in I} \left| c\left(\delta, \frac{\rho_1}{2}\right) \right| \left| c\left(\delta, \frac{\rho_2}{2}\right) \right| \frac{X^{\beta_1 + 1}}{1 + |\gamma_1 - \gamma_2|}.\]

Now we deal separately with \(A_{[0, 1/\delta]}\) and \(A_{[1/\delta, T]}\).

**Estimation of \(A_{[0, 1/\delta]}\).** From \((3.19)\) and \((3.21)\) we can write
\[(3.22)\]
\[A_{[0, 1/\delta]} \ll \delta^2 X \sum_{|\gamma_1| < \delta^{-1}} X^{\beta_1} \sum_{|\gamma_2| < \delta^{-1}} \frac{1}{1 + |\gamma_1 - \gamma_2|} \ll \delta^2 X (\log X)^2 \sum_{|\gamma_1| < \delta^{-1}} X^{\beta_1}, \]
where the last inequality follows from \((3.23)\)
\[\sum_{|\gamma_2| < \delta^{-1}} \frac{1}{1 + |\gamma_1 - \gamma_2|} \ll \frac{2/\delta}{1/2 \leq \beta_2 \leq \beta_1} \ll \log(\gamma_1 + n) \frac{1 + n}{1 + n} \ll \left(\log\left(\frac{3}{\delta}\right)\right)^2 \ll (\log X)^2 \]
in which we used the Riemann–von Mangoldt formula and \(\delta > X^{-1}\). Denoting by \(S_{[0, 1/\delta]}\) the sum on the right hand side of \((3.22)\), we get
\[S_{[0, 1/\delta]} := \sum_{|\gamma| < 1/\delta} X^\beta \ll \log X \max_{1/2 \leq u \leq 1} X^u N(u, 1/\delta).\]

We recall the Ingham–Huxley zero-density estimate: for \(1/2 \leq \sigma \leq 1\) we have \(N(\sigma, t) \ll t^{(12/5)(1-\sigma)}(\log t)^B\), and the Vinogradov–Korobov zero-free region: there are no zeros \(\beta + i\gamma\) of the Riemann zeta function having
\[\beta \geq 1 - \frac{c_7}{(\log(|\gamma| + 2))^{2/3}(\log \log(|\gamma| + 2))^{1/3}},\]
where \(c_7 > 0\) is an absolute constant. In the following \(c_7\) will not necessarily be the same at each occurrence. Here we have \(|\gamma| \leq T\), and so \(N(u, t) = 0\).
for every $t \leq T$ and $u \geq 1 - K$ with

$$K = \frac{c_7}{(\log T)^{2/3}(\log \log T)^{1/3}}.$$  

From the previous remarks, we obtain

$$S_{[0, 1/\delta]} \ll \log X \max_{1/2 \leq u \leq 1 - K} (\delta^{-1})^{(12/5)(1-u)} (\log(\delta^{-1}))^B X^u \ll (\log X)^{B+1} \delta^{-12/5} \max_{1/2 \leq u \leq 1 - K} (\delta^{12/5} X)^u,$$

since $\delta > X^{-1}$. The maximum is attained at $u = 1 - K$ and so

$$S_{[0, 1/\delta]} \ll (\log X)^{B+1} \delta^{-12/5} \delta^{(12/5)(1-K)} X^{1-K} = X(\log X)^{B+1}(\delta^{12/5} X)^{-K}.$$  

Inserting the last estimate into (3.22), we can write

(3.24)  

$$A_{[0, 1/\delta]} \ll \delta^2 X^2 (\log X)^{B+3}(\delta^{12/5} X)^{-K}.$$

**Estimation of $A_{[1/\delta, T]}$.** From (3.19) and (3.21) we get

$$A_{[1/\delta, T]} \ll X \sum_{1/\delta \leq |\gamma_1| \leq T} \frac{X^{\beta_1}}{|\gamma_1|} \sum_{1/\delta \leq |\gamma_2| \leq T} \frac{1}{1 + |\gamma_1 - \gamma_2|} \sum_{1/2 \leq \beta_2 \leq \beta_1} X^{\beta_1}$$

$$\ll X \sum_{1/\delta \leq |\gamma_1| \leq T} \frac{X^{\beta_1}}{|\gamma_1|^2} \sum_{1/2 \leq \beta_2 \leq \beta_1} \frac{1}{1 + |\gamma_1 - \gamma_2|} \sum_{1/2 \leq \beta_2 \leq \beta_1} X^{\beta_1}$$

$$\ll X(\log T)^2 \sum_{1/\delta \leq |\gamma_1| \leq T} \frac{X^{\beta_1}}{|\gamma_1|^2},$$

where the last step follows from (3.23) with $T$ instead of $1/\delta$. By a simple trick, we can rewrite the previous inequality as

(3.25)  

$$A_{[1/\delta, T]} \ll X(\log T)^2(S'_{[1/\delta, T]} + S''_{[1/\delta, T]})$$

with

$$S'_{[1/\delta, T]} = \sum_{1/\delta \leq |\gamma| \leq T} X^\beta \left(\frac{1}{|\gamma|^2} - \frac{1}{T^2}\right) \quad \text{and} \quad S''_{[1/\delta, T]} = \frac{1}{T^2} \sum_{1/\delta \leq |\gamma| \leq T} X^\beta.$$

For $S''_{[1/\delta, T]}$ we can argue as we did for $S_{[0, 1/\delta]}$, just keeping in mind that this time $1/\delta \leq |\gamma| \leq T$. Hence

$$S''_{[1/\delta, T]} \ll \frac{\log X}{T^2} \max_{1/2 \leq u \leq 1 - K} X^u [N(u, T) - N(u, 1/\delta)].$$
Concerning $S'_{[1/\delta,T]}$ we immediately obtain

$$S'_{[1/\delta,T]} = \sum_{1/\delta \leq |\gamma| \leq T} X^\beta \frac{2}{t^3} dt = 2 \int_1^T \left( \sum_{1/\delta \leq |\gamma| \leq t} X^\beta \right) \frac{dt}{t^3}.$$ 

Using $t \leq T$, we can write

$$S'_{[1/\delta,T]} \ll \log X \int_1^T \max_{1/\delta \leq u \leq 1-K} X^u [N(u,t) - N(u,1/\delta)] \frac{dt}{t^3}.$$ 

Therefore

$$S'_{[1/\delta,T]} + S''_{[1/\delta,T]} \ll \log X \log(T\delta) \times \max_{1/\delta \leq t \leq T} \left( \frac{1}{t^2} \max_{1/\delta \leq u \leq 1-K} X^u t^{(12/5)(1-u)} (\log t)^B \right),$$

by the Ingham–Huxley zero-density estimate. So, by (3.25), this estimate and $t \leq T$, we get

$$A_{[1/\delta,T]} \ll X \log(T\delta) \max_{1/\delta \leq t \leq T} \left( \frac{1}{t^2} \max_{1/\delta \leq u \leq 1-K} X^u t^{(12/5)(1-u)-2} \right).$$

To compute the inner maximum above, we just remark that $(12/5)(1-u) - 2 < 0$ (which holds for $u > 1/6$), and hence it is attained at $t = 1/\delta$. So

$$A_{[1/\delta,T]} \ll X \log(T\delta) \max_{1/\delta \leq t \leq T} \left( \frac{1}{t^2} \max_{1/\delta \leq u \leq 1-K} X^u (\delta^{-1})(12/5)(1-u)^{-2} \right).$$

The maximum is attained at $u = 1-K$, thus

$$A_{[1/\delta,T]} \ll \delta^{-2/5} X \log(T\delta) \max_{1/\delta \leq t \leq T} \left( X^u (\delta^{-1})(12/5)(1-u)^{-2} \right).$$

**Conclusion of the proof.** Inserting (3.24) and (3.26) into (3.20) and choosing $T \leq X^{1/2}$, we get

$$\tilde{J}_\psi^*(X,\delta) \ll \delta^2 X^2 (X^{12/5})^{-K} \log X ((\log X)^{B+2} + (\log T)^{B+2} (\log(T\delta)) + \frac{X^2}{T^2} (\log(XT))^4 + X(\log X)^2.$$ 

Choosing $T \leq X^{1/2}$ we have

$$K = \frac{c_7}{(\log T)^{2/3} (\log \log T)^{1/3}} \geq \frac{c_8}{(\log X)^{2/3} (\log \log X)^{1/3}}.$$
A diophantine problem

for a suitable positive constant \( c_8 \). If we now take \( T \geq X^{5/12-\epsilon}(X\delta^{12/5})^{K/2} \times (\log X)^{-B/2} \) and recall \( \delta > X^{-5/12+\epsilon} \), estimate (3.27) becomes

\[
\tilde{J}^*_{\psi}(X, \delta) \ll \delta^2 X^2 (X\delta^{12/5})^{-K} (\log X)^{B+4}
\]
since the conditions on \( T \) are compatible. Hence we immediately obtain

\[
\tilde{J}^*_{\psi}(X, \delta) \ll \delta^2 X^2 (log X)^{B+4} \exp\left(-\frac{c_8 (log X + (12/5)\log \delta)}{(log X)^{2/3}(log \log X)^{1/3}}\right)
\]

for a sufficiently large \( X \) and \( c_9 = c_9(\epsilon) \). Hence Lemma 3.15 is proved.

**Proof of Lemma 3.14.** We follow the argument of [40, §6]. Let now \( 2h \leq v \leq 3h \). To estimate \( J_{\psi}^*(X, h) \) (defined in (3.16)), we first remark

\[
(3.28) \quad hJ_{\psi}^*(X, h) \ll \int_{\epsilon X}^{X} \int_{2h}^{3h} (\psi(\sqrt{x} + v) - \psi(\sqrt{x}) - (\sqrt{x} + v - \sqrt{x}))^2 \, dv \, dx
\]

We set \( z = v - h, y = x + h \) and change variables in the last integration, so that the right hand side of (3.28) becomes

\[
\ll \int_{\epsilon X}^{X} \int_{2h}^{3h} (\psi(\sqrt{x} + v) - \psi(\sqrt{x}) - (\sqrt{x} + v - \sqrt{x}))^2 \, dv \, dx
\]

Since both the integrands are nonnegative, we can extend the integration ranges merging \( x \) with \( y \) and \( v \) with \( z \). Hence

\[
hJ_{\psi}^*(X, h) \ll \int_{\epsilon X}^{X} \int_{h}^{3h} (\psi(\sqrt{x} + v) - \psi(\sqrt{x}) - (\sqrt{x} + v - \sqrt{x}))^2 \, dv \, dx
\]

where in the last step we made the change of variable \( \delta = v/x \), thus getting \( \delta \geq h/x \geq X^{-5/12+\epsilon} \) as in the hypothesis of Lemma 3.15. Interchanging the
integration order we obtain
\[ hJ^*_\psi(X, h) \ll (X + h) \]
\[ \times \int_{h/(X+h)}^{3h/(\epsilon X)} \int_{\epsilon X}^{X+h} \left( \psi(\sqrt{x + x\delta}) - \psi(\sqrt{x}) - (\sqrt{x + x\delta} - \sqrt{x}) \right)^2 dx \, d\delta. \]

Finally, using Lemma 3.15 we get
\[ J^*_\psi(X, h) \ll \epsilon X + h \]
\[ \delta^2 X^2 \exp \left( -c_6 \left( \log X \log \log X \right)^{1/3} \right) d\delta \]
\[ \ll \epsilon h^2 \exp \left( -c_6 \left( \log X \log \log X \right)^{1/3} \right). \]

This concludes the proof of Lemma 3.14.

4. The major arc. Letting
\[ (4.1) \quad T_1(\alpha) = \int_{\epsilon X}^{X} e(t\alpha) \, dt \ll \epsilon \min(X; 1/|\alpha|) \]
and
\[ (4.2) \quad T_2(\alpha) = \int_{(\epsilon X)^{1/2}}^{X^{1/2}} e(t^2\alpha) \, dt = \frac{1}{2} \int_{\epsilon X}^{X} v^{-1/2} e(v\alpha) \, dv \ll \epsilon X^{-1/2} \min(X; 1/|\alpha|), \]
we first write
\[ (4.3) \quad I(X; \mathfrak{M}) = \int_{\mathfrak{M}} T_1(\lambda_1 \alpha)T_2(\lambda_2 \alpha)T_2(\lambda_3 \alpha) \prod_{i=1}^{s} G(\mu_i \alpha) e(\varpi \alpha) K(\alpha, \eta) \, d\alpha \]
\[ + \int_{\mathfrak{M}} (S_1(\lambda_1 \alpha) - T_1(\lambda_1 \alpha))T_2(\lambda_2 \alpha)T_2(\lambda_3 \alpha) \prod_{i=1}^{s} G(\mu_i \alpha) e(\varpi \alpha) K(\alpha, \eta) \, d\alpha \]
\[ + \int_{\mathfrak{M}} S_1(\lambda_1 \alpha)(S_2(\lambda_2 \alpha) - T_2(\lambda_2 \alpha))T_2(\lambda_3 \alpha) \prod_{i=1}^{s} G(\mu_i \alpha) e(\varpi \alpha) K(\alpha, \eta) \, d\alpha \]
\[ + \int_{\mathfrak{M}} S_1(\lambda_1 \alpha)S_2(\lambda_2 \alpha)(S_2(\lambda_3 \alpha) - T_2(\lambda_3 \alpha)) \prod_{i=1}^{s} G(\mu_i \alpha) e(\varpi \alpha) K(\alpha, \eta) \, d\alpha \]
\[ = J_1 + J_2 + J_3 + J_4, \]
say. In what follows we will prove that...
(4.4) \[ J_1 \geq \frac{(3 - 2\sqrt{2})\eta^2 XL^s}{4|\lambda_1| + |\lambda_2| + |\lambda_3|} + O_\varepsilon(\eta^2 X^{1/5}L^{s+2}) \]

and

(4.5) \[ J_2 + J_3 + J_4 = o(\eta^2 X L^s), \]

thus obtaining, by (4.3)–(4.5),

\[ I(X; \mathfrak{M}) \geq \frac{3 - 2\sqrt{2} - \varepsilon}{4(|\lambda_1| + |\lambda_2| + |\lambda_3|)} \eta^2 X L^s, \]

proving that (2.6) holds with \( c_1 = 2^{-2}(3 - 2\sqrt{2} - \varepsilon)(|\lambda_1| + |\lambda_2| + |\lambda_3|)^{-1} \) and \( \varepsilon > 0 \) an arbitrarily small constant.

We will need the following estimates. The first one is a consequence of the Prime Number Theorem:

(4.6) \[ \int_0^1 |S_1(\alpha)|^2 d\alpha \ll_\varepsilon X \log X, \]

while the second one is based on Satz 3 of Rieger [38, p. 94] (see also the estimate of \( H_{12} \) of T. Liu [31, p. 106]):

(4.7) \[ \int_0^1 |S_2(\alpha)|^4 d\alpha \ll_\varepsilon X (\log X)^2. \]

**Estimation of** \( J_2, J_3 \) and \( J_4 \). We first estimate \( J_4 \). We remark that, by Euler’s summation formula,

(4.8) \[ T_i(\alpha) - U_i(\alpha) \ll 1 + X|\alpha| \quad \text{for} \quad i = 1, 2. \]

So, by (2.4), the Cauchy–Schwarz inequality, and (4.6)–(4.8), we get

\[ \int_{\mathfrak{M}} \left| S_1(\lambda_1 \alpha) \right| \left| S_2(\lambda_2 \alpha) \right| \left| T_2(\lambda_3 \alpha) - U_2(\lambda_3 \alpha) \right| d\alpha \]

\[ \ll_\lambda \left( \int_0^{1/X} |S_1(\alpha)|^2 d\alpha \right)^{1/2} \left( \int_0^{1/X} |S_2(\alpha)|^4 d\alpha \right)^{1/4} \]

\[ + X \left( \int_0^{1/X} \alpha^4 d\alpha \right)^{1/4} \left( \int_0^{1/X} |S_2(\alpha)|^4 d\alpha \right)^{1/4} \left( \int_0^{1/X} |S_1(\alpha)|^2 d\alpha \right)^{1/2} \]

\[ \ll_\lambda \varepsilon X^{1/2} \log X + P^{5/4} X^{1/2} \log X = o(X) \]
by P = X^{2/5}/\log X. Hence, using the trivial estimates |G(\mu_i\alpha)| \leq L, K(\alpha, \eta) \ll \eta^2, we can write

\[ J_4 = \int_{\mathbb{R}} S_1(\lambda_1\alpha)S_2(\lambda_2\alpha)(S_2(\lambda_3\alpha) - U_2(\lambda_3\alpha)) \prod_{i=1}^{s} G(\mu_i\alpha)e(\varpi\alpha)K(\alpha, \eta) \, d\alpha \\
+ o_{\lambda,M,\epsilon}(\eta^2 XL^s). \]

Now using (2.4), \( |S_2(\lambda_2\alpha)| \ll X^{1/2} \), the Cauchy–Schwarz inequality, (4.6), Lemmas 3.12–3.13 with \( Y = P/X \), and again the trivial estimates \( |G(\mu_i\alpha)| \leq L, K(\alpha, \eta) \ll \eta^2 \), we have

\[ J_4 \ll \eta^2 L^s X^{1/2} \left( \int_{\mathbb{R}} |S_2(\lambda_3\alpha) - U_2(\lambda_3\alpha)|^2 \, d\alpha \right)^{1/2} \left( \int_{\mathbb{R}} |S_1(\lambda_1\alpha)|^2 \, d\alpha \right)^{1/2} \\
+ o_{\lambda,M,\epsilon}(\eta^2 XL^s) \\
\ll_{\lambda,M,\epsilon} \eta^2 L^s X^{1/2} \left( \frac{1}{0} \int |S_1(\alpha)|^2 \, d\alpha \right)^{1/2} \exp \left(-\frac{c_6(\epsilon)}{2} \left( \frac{\log X}{\log \log X} \right)^{1/3} \right) \\
+ o_{\lambda,M}(\eta^2 XL^s) \\
\ll_{\lambda,M,\epsilon} \eta^2 XL^{s+1/2} \exp \left(-\frac{c_6(\epsilon)}{2} \left( \frac{\log X}{\log \log X} \right)^{1/3} \right) = o(\eta^2 XL^s). \]

The integral \( J_3 \) can be estimated analogously using (4.2) instead of \( |S_2(\lambda_3\alpha)| \ll X^{1/2} \).

For \( J_2 \) we argue as follows. First of all, using again (4.8) and (4.2) for \( i = 2, 3 \), we get

\[ \int_{\mathbb{R}} |T_1(\lambda_1\alpha) - U_1(\lambda_1\alpha)| |T_2(\lambda_2\alpha)| |T_2(\lambda_3\alpha)| \, d\alpha \\
\ll_{\lambda} X^{1/X} \int_{-1/X}^{1/X} d\alpha + \int_{1/X}^{P/X} \frac{X|\alpha|}{X\alpha^2} \, d\alpha \ll_{\lambda} 1 + \log P = o(X) \]

since \( P = X^{2/5}/\log X \). Hence, using the trivial estimates |G(\mu_i\alpha)| \leq L, K(\alpha, \eta) \ll \eta^2, we can write

\[ J_2 = \int_{\mathbb{R}} (S_1(\lambda_1\alpha) - U_1(\lambda_1\alpha))T_2(\lambda_2\alpha)T_2(\lambda_3\alpha) \prod_{i=1}^{s} G(\mu_i\alpha)e(\varpi\alpha)K(\alpha, \eta) \, d\alpha \\
+ o_{\lambda,M}(\eta^2 XL^s). \]

Using (2.4), the Cauchy–Schwarz inequality, Lemmas 3.10–3.11 with \( Y = P/X \), and the trivial estimates |G(\mu_i\alpha)| \leq L, K(\alpha, \eta) \ll \eta^2, we have
\[ J_2 \ll \eta^2 L^s \left( \int_{\mathbb{R}} |S_1(\lambda_1 \alpha) - U_1(\lambda_1 \alpha)|^2 d\alpha \right)^{1/2} \left( \int_{\mathbb{R}} |T_2(\lambda_2 \alpha)T_2(\lambda_3 \alpha)|^2 d\alpha \right)^{1/2} \]

\[ + o_{\lambda, M}(\eta^2 XL^s) \leq \ll_{\lambda, M, \epsilon} \eta^2 XL^s \exp \left( -\frac{c_6(\epsilon)}{2} \left( \frac{\log X}{\log \log X} \right)^{1/3} \right) + o_{\lambda, M}(\eta^2 XL^s) = o(\eta^2 XL^s), \]

since, by (4.2), \[ \int_{\mathbb{R}} |T_2(\lambda_2 \alpha)T_2(\lambda_3 \alpha)|^2 d\alpha \ll X. \] Hence (4.5) holds.

**Estimation of \( J_1 \).** Recalling that \( P = X^{2/5}/\log X \), using (2.4) and (4.1)–(4.3) we obtain

\[ (4.9) \]

\[ J_1 = \sum_{1 \leq m_1 \leq L} \cdots \sum_{1 \leq m_s \leq L} \mathcal{J}(\mu_1 2^{m_1} + \cdots + \mu_s 2^{m_s} + \varpi, \eta) + O_{\epsilon}(\eta^2 X^{1/5} L^{s+2}), \]

where \( \mathcal{J}(u, \eta) \) is defined by

\[ \mathcal{J}(u, \eta) := \int_{\mathbb{R}} T_1(\lambda_1 \alpha)T_2(\lambda_2 \alpha)T_2(\lambda_3 \alpha)e(u \alpha)K(\alpha, \eta) d\alpha \]

\[ = \frac{1}{4} \int_{\epsilon X} X \int_{\epsilon X} X \int_{\epsilon X} \hat{K}(\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 + u, \eta) u_2^{-1/2} u_3^{-1/2} du_1 du_2 du_3 \]

and the second relation follows by (4.1)–(4.2) and interchanging the integration order. We recall that \( \lambda_1 < 0 \) and \( \lambda_2, \lambda_3 > 0 \). If \( |u| \leq \epsilon X \), for \( \frac{X|\lambda_1|}{2(|\lambda_1| + \lambda_2 + \lambda_3)} \leq u_2, u_3 \leq \frac{X|\lambda_1|}{|\lambda_1| + \lambda_2 + \lambda_3} \), sufficiently large \( X \) and sufficiently small \( \epsilon \), we get

\[ -\frac{\eta}{2} - (\lambda_2 u_2 + \lambda_3 u_3 + u) \leq |\lambda_1| u_1 \leq \eta/2 - (\lambda_2 u_2 + \lambda_3 u_3 + u). \]

Hence there exists an interval for \( u_1 \) of length \( \eta|\lambda_1|^{-1} \) and contained in \( [\epsilon X, X] \) such that \( \hat{K}(\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 + u, \eta) \geq \eta/2 \). So, letting \( b = X|\lambda_1|/(|\lambda_1| + \lambda_2 + \lambda_3) \), we can write

\[ \mathcal{J}(u, \eta) \geq \frac{\eta^2}{8|\lambda_1|} \left( \int_{b/2}^{b} v^{-1/2} dv \right)^2 = \frac{(3 - 2\sqrt{2})\eta^2 X}{4(|\lambda_1| + \lambda_2 + \lambda_3)}. \]

By the definition of \( L \) we have \( |\mu_1 2^{m_1} + \cdots + \mu_s 2^{m_s} + \varpi| \leq \epsilon X \) for \( X \) sufficiently large. Hence by (4.9) we obtain

\[ J_1 \geq \frac{(3 - 2\sqrt{2})\eta^2 \epsilon^2 XL^s}{4(|\lambda_1| + \lambda_2 + \lambda_3)} + O_{\epsilon}(\eta^2 X^{1/5} L^{s+2}), \]
thus proving (4.4). Arguing analogously we can prove the case \( \lambda_1, \lambda_2 < 0, \lambda_3 > 0 \).

5. The trivial arc. Recalling (2.4), the trivial estimate \(|G(\mu_i\alpha)| \leq L\) and using twice the Cauchy–Schwarz inequality, we get

\[
|I(X; t)| \ll L^8 \left( \int_{L^2}^{+\infty} |S_1(\lambda_1\alpha)|^2 K(\alpha, \eta) \, d\alpha \right)^{1/2} \\
\times \left( \int_{L^2}^{+\infty} |S_2(\lambda_2\alpha)|^{4} K(\alpha, \eta) \, d\alpha \right)^{1/4} \left( \int_{L^2}^{+\infty} |S_2(\lambda_3\alpha)|^{4} K(\alpha, \eta) \, d\alpha \right)^{1/4}.
\]

By (2.2) and making a change of variable, we have, for \( i = 2, 3 \),

\[
\int_{L^2}^{+\infty} |S_2(\lambda_i\alpha)|^{4} K(\alpha, \eta) \, d\alpha \ll \lambda \int_{\lambda_i L^2}^{+\infty} \frac{|S_2(\alpha)|^{4}}{\alpha^2} \, d\alpha
\]

\[
\ll \sum_{n \geq \lambda_i L^2} \frac{1}{(n-1)^2} \int_{n-1}^{n} |S_2(\alpha)|^{4} \, d\alpha \ll \lambda L^{-2} \int_{0}^{1} |S_2(\alpha)|^{4} \, d\alpha \ll \lambda, M, \epsilon X,
\]

by (4.7). Moreover, arguing analogously,

\[
\int_{L^2}^{+\infty} |S_1(\lambda_1\alpha)|^{2} K(\alpha, \eta) \, d\alpha \ll \lambda \int_{|\lambda_1| L^2}^{+\infty} \frac{|S_1(\alpha)|^{2}}{\alpha^2} \, d\alpha
\]

\[
\ll \sum_{n \geq |\lambda_1| L^2} \frac{1}{(n-1)^2} \int_{n-1}^{n} |S_1(\alpha)|^{2} \, d\alpha \ll \lambda L^{-2} \int_{0}^{1} |S_1(\alpha)|^{2} \, d\alpha \ll \lambda, M, \epsilon \frac{X}{\log X},
\]

by (4.6). Hence (2.7) holds.

6. The minor arc. Recalling first

\[
I(X; \mathfrak{m}) = \int_{\mathfrak{m}} S_1(\lambda_1\alpha) S_2(\lambda_2\alpha) S_2(\lambda_3\alpha) \prod_{i=1}^{s} G(\mu_i\alpha) e(\varpi\alpha) K(\alpha, \eta) \, d\alpha,
\]

and letting \( c \in (0, 1) \) be chosen later, we first split \( \mathfrak{m} \) as \( \mathfrak{m}_1 \cup \mathfrak{m}_2 \), where \( \mathfrak{m}_2 \) is the set of \( \alpha \in \mathfrak{m} \) such that \(|G(\mu_i\alpha)| > \nu(c)L\) for some \( i \in \{1, \ldots, s\} \), and \( \nu(c) \) is defined in Lemma 3.9. We will choose \( c \) to get \(|I(X; \mathfrak{m}_2)| = o(\eta X)\), since, again by Lemma 3.9, we know that \( |\mathfrak{m}_2| \ll M, \epsilon s^2 X^{-c} \).

To this end, we first use the trivial estimates \(|G(\mu_i\alpha)| \leq L\) and \( K(\alpha, \eta) \ll \eta^2 \) and Lemma 3.8 (assuming, without any loss of generality, that \( V(\alpha) = |S_2(\lambda_2\alpha)| \)). Then, using twice the Cauchy–Schwarz inequality and (4.6)–(4.7), we get
\[ |I(X; m_2)| \leq \eta^2 L^s \left( \sup_{\alpha \in m} |V(\alpha)| \right) \left( \int_{m_2} |S_1(\lambda_1 \alpha) S_2(\lambda_3 \alpha)| \, d\alpha \right) \]

\[ \ll \eta^2 L^s X^{7/16+\epsilon} |m_2|^{1/4} \left( \int_{m_2} |S_1(\lambda_1 \alpha)|^2 \, d\alpha \right)^{1/2} \left( \int_{m_2} |S_2(\lambda_3 \alpha)|^4 \, d\alpha \right)^{1/4} \]

\[ \ll \lambda \eta^2 L^s X^{7/16+\epsilon} |m_2|^{1/4} \left( \int_{0}^{1} |S_1(\alpha)|^2 \, d\alpha \right)^{1/2} \left( \int_{0}^{1} |S_2(\alpha)|^4 \, d\alpha \right)^{1/4} \]

\[ \ll \lambda, \mu, \epsilon \ s^{1/4} \eta^2 L^{s+3} X^{19/16+\epsilon-c/4}, \]

where \( X = q^2 \) and \( q \) is the denominator of a convergent of the continued fraction for \( \lambda_2/\lambda_3 \). Taking \( c = 3/4 + 10^{-20} \) and using (3.8), we get, for \( \nu = 0.8844472132 \) and a sufficiently small \( \epsilon > 0 \),

\[ |I(X; m_2)| = o(\eta X). \]

We remark that neither the result of Kumchev [14] nor the approach of Cook, Fox and Harman (see [2], [3], [10]) seem to give any improvement of the previous estimates.

Now we evaluate the contribution of \( m_1 \). Using the Cauchy–Schwarz inequality, and Lemmas 3.3 and 3.6, we have

\[ |I(X; m_1)| \leq (\nu L)^{s-3} \left( \int_{m} |S_1(\lambda_1 \alpha) G(\mu_1 \alpha)|^2 K(\alpha, \eta) \, d\alpha \right)^{1/2} \]

\[ \times \left( \int_{m} |S_2(\lambda_2 \alpha) G(\mu_2 \alpha)|^4 K(\alpha, \eta) \, d\alpha \right)^{1/4} \]

\[ \times \left( \int_{m} |S_2(\lambda_3 \alpha) G(\mu_3 \alpha)|^4 K(\alpha, \eta) \, d\alpha \right)^{1/4} \]

\[ < \nu^{s-3} C(q_1, q_2, q_3, \epsilon) \eta X L^s, \]

where \( C(q_1, q_2, q_3, \epsilon) \) is defined as in (1.3).

Hence, by (6.1)–(6.2), for \( X \) sufficiently large we finally get

\[ |I(X; m)| < (0.8844472132)^{s-3} C(q_1, q_2, q_3, \epsilon) \eta X L^s. \]

This means that (2.8) holds with \( c_2(s) = (0.8844472132)^{s-3} C(q_1, q_2, q_3, \epsilon) \).

**7. Proof of the Theorem.** We have to verify that there is an \( s_0 \in \mathbb{N} \) such that (2.9) holds for \( X \) sufficiently large, where \( X = q^2 \) and \( q \) is the denominator of a convergent of the continued fraction for \( \lambda_2/\lambda_3 \). Combining the inequalities (2.6)–(2.8), where \( c_2(s) = (0.8844472132)^{s-3} C(q_1, q_2, q_3, \epsilon) \), we conclude that (2.9) holds for \( s \geq s_0 \) where \( s_0 \) defined in (1.2).
Acknowledgements. This research was partially supported by the PRIN 2008 grant LMSMTY_005. We would like to thank the anonymous referee for his/her suggestions.

References


[18] H. Li, The number of powers of 2 in a representation of large even integers by sums of such powers and two primes (II), Acta Arith. 96 (2001), 369–379.


A diophantine problem

[31] T. Liu, Representation of odd integers as the sum of one prime, two squares of primes and powers of 2, Acta Arith. 115 (2004), 97–118.


Alessandro Languasco, Valentina Settimi
Dipartimento di Matematica
Università di Padova
Via Trieste 63
35121 Padova, Italy
E-mail: languasco@math.unipd.it
valentina.settimi@gmail.com

Received on 10.3.2011
and in revised form on 8.10.2011 (6645)