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On a diophantine problem with one prime,
two squares of primes and s powers of two
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Alessandro Languasco and Valentina Settimi (Padova)

1. Introduction. In this paper we are interested in the values of the
form

(1.1) λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12

m1 + · · ·+ µs2
ms ,

where p1, p2, p3 are prime numbers, m1, . . . ,ms are positive integers, and
the coefficients λ1, λ2, λ3 and µ1, . . . , µs are real numbers satisfying suitable
relations.

This problem can be seen as a variation of the Waring–Goldbach and
the Goldbach–Linnik problems. A huge literature exists for both problems
and so we will mention just some of the most important results.

Concerning the Goldbach–Linnik problem, the first result was estab-
lished by Linnik himself [23, 24] who proved that every sufficiently large
even integer is a sum of two primes and a suitable number s of powers of
two; he gave no explicit estimate of s. Other results were proved by Gallagher
[6], J. Liu–M.-C. Liu–Wang [26, 27, 28], Wang [47] and H. Li [17, 18]. Now
the best conditional result is due to Pintz–Ruzsa [37] and Heath-Brown–
Puchta [11] (s = 7 suffices under the assumption of the Generalized Riemann
Hypothesis), while, unconditionally, it is due to Heath-Brown–Puchta [11]
(s = 13 suffices). Elsholtz, in unpublished work, improved it to s = 12. We
should also remark that Pintz–Ruzsa announced a proof for the case s = 8 in
their paper [37]. Looking for the size of the exceptional set of the Goldbach
problem we recall the fundamental paper by Montgomery–Vaughan [34] in
which they showed that the number of even integers up to X that are not
the sum of two primes is � X1−δ. Pintz [36] announced that δ = 1/3 is
admissible in the previous estimate. Concerning the exceptional set for the
Goldbach–Linnik problem, Languasco–Pintz–Zaccagnini [15] proved that for
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every s ≥ 1, there are � X3/5(logX)10 even integers in [1, X] that are not
the sum of two primes and s powers of two.

In diophantine approximation several results were proved concerning lin-
ear forms with primes that, in some sense, can be considered as the real ana-
logues of the binary and ternary Goldbach problems. On this topic we recall
the papers by Vaughan [43, 44, 45], Harman [9], Brüdern–Cook–Perelli [1],
and Cook–Harman [3]. A diophantine problem with two primes and powers
of two was solved by Parsell [35]; his estimate on the needed powers of two
was recently improved by Languasco–Zaccagnini [16].

The problem of representing an integer using a suitable number of prime
powers is usually called the Waring–Goldbach problem. We refer to the
beautiful Vaughan–Wooley survey paper [46] for the literature on this prob-
lem. Here we just mention that in 1938 Hua [12] proved that almost all the
integers n ≡ 3 mod 24 and n 6≡ 0 mod 5 are representable as sums of three
squares of primes, and all sufficiently large n ≡ 5 mod 24 are representable
as sums of five squares of primes. Also several results were obtained about
the size of the exceptional set for this problem. On this topic we just recall
a recent result of J. Liu, Wooley and Yu [30].

Concerning mixed problems with powers of primes and powers of two, we
recall the results by H. Li [19], [20], J. Liu and Lü [29], J. Liu and M.-C. Liu
[25], Lü and Sun [33], Z. Liu and Lü [32].

Replacing one of the prime summands in the problem in Parsell [35] with
the sum of two squares of primes, we obtain the problem in (1.1); the only
result we know about it is by W. P. Li and Wang [21]. We improve their
estimate on s with the following result whose quality depends on rational
approximations to λ2/λ3.

Theorem. Suppose that λ1 < 0 and λ2, λ3 > 0 with λ2/λ3 irrational.
Further suppose that µ1, . . . , µs are nonzero real numbers such that λi/µi ∈
Q for i ∈ {1, 2, 3}, and denote by ai/qi their reduced representations as
rational numbers. Let moreover η be a sufficiently small positive constant
such that η < min(|λ1/a1|;λ2/a2;λ3/a3). Finally let

(1.2)

s0 = 3 +

⌈
log(4C(q1, q2, q3, ε)(|λ1|+ |λ2|+ |λ3|))− log((3− 2

√
2− ε)η)

− log 0.8844472132

⌉
,

where ε > 0 is an arbitrarily small constant, C(q1, q2, q3, ε) satisfies

C(q1, q2, q3, ε) = (1 + ε)(log 2 + C ·S′(q1))1/2
(1.3)

× ((log 2)2 +D ·S′′(q2))1/4((log 2)2 +D ·S′′(q3))1/4,
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C = 10.0219168340, D = 17,646,979.6536361512, and

(1.4) S′(n) =
∏
p|n
p>2

p− 1

p− 2
, S′′(n) =

∏
p|n
p>2

p+ 1

p
.

Then for every real number $ and every integer s ≥ s0 the inequality

(1.5) |λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12

m1 + · · ·+ µs2
ms +$| < η

has infinitely many solutions in primes p1, p2, p3 and positive integers m1,
. . . , ms.

Arguing analogously we can prove the case λ1, λ2 < 0, λ3 > 0 (see the
argument at the end of §4).

Our value in (1.2) largely improves W. P. Li–Wang’s [21] one given by

(1.6)

s0 = 3 +

⌈
log(29C1(q1, q2, q3, ε)(|λ1|+ |λ2|+ |λ3|)2)− log((1− ε)|λ1|η)

− log 0.995

⌉
,

where

C1(q1, q2, q3, ε) = 5(1 + ε)

(
114 · 43 · π26

227 · 25
+ (log 2)2

)1/2

(1.7)

× (log 2q1)
1/2(log 2q2)

1/4(log 2q3)
1/4.

Comparing only denominators in (1.2) and in (1.6), we see that our gain is
about 95.9%. Moreover the numerical constants involved in the definition
(1.3) are better than the ones in (1.7) (see the remark after Lemma 3.6
below).

In practice, the following example shows that the gain is actually slightly
larger. For instance, taking λ1 = −

√
5 = µ−11 , λ2 =

√
3 = µ−12 , λ3 =

√
2 =

µ−13 , η = 1 and ε = 10−20, we get s0 = 120, while W. P. Li–Wang’s estimate
(1.6) gives s0 = 4120.

Moreover we remark that the works of Rosser–Schoenfeld [39] on n/ϕ(n)
and of Solé–Planat [41] on the Dedekind Ψ function (see Lemmas 3.1 and
3.2 below) give for S′(q) and S′′(q) a sharper estimate than 2 log(2q), used
in (1.7), for large values of q.

With respect to [21], our main gain comes from enlarging the size of
the major arc since this lets us use sharper estimates on the minor arc. In
particular, on the major arc we replaced the technique used in [21] with
an argument involving an L2-estimate of the exponential sum over prime
squares (S2(α)). This is a standard tool when working on primes (see, e.g.,
[16] for an application to a similar problem) but it seems that it is the first
time that a similar technique is used for prime squares so we inserted a
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detailed proof of the relevant lemmas (Lemmas 3.12 and 3.13 below) since
they could be of some independent interest.

On the minor arc we use the Ghosh estimate [7] to deal with the expo-
nential sum on primes squares while to treat the exponential sum on primes
(S1(α)) we follow the argument in [16]. To work with the exponential sum
over powers of two (G(α)), we applied Pintz–Ruzsa’s [37] algorithm to esti-
mate the measure of the subset of the minor arc on which |G(α)| is “large”.
These ingredients lead to a sharper estimate on the minor arc and let us
improve the size of the denominators in (1.2).

A second, less important, gain arises from our Lemmas 3.3 and 3.6 below,
which improves the numerical values in (1.3) compared with the ones in (1.7)
(see also Parsell [35, Lemma 3]).

Using the notation λ = (λ1, λ2, λ3), µ = (µ1, µ2, µ3), as a consequence
of the Theorem we have

Corollary. Suppose that λ1, λ2, λ3 are nonzero real numbers, not all
of the same sign, such that λ2/λ3 is irrational. Further suppose µ1, . . . , µs
are nonzero real numbers such that λi/µi ∈ Q for i ∈ {1, 2, 3}, and denote
by ai/qi their reduced representations as rational numbers. Let moreover η
be a sufficiently small positive constant such that η < min(|λ1/a1|; |λ2/a2|;
|λ3/a3|) and τ ≥ η > 0. Finally let s0 = s0(λ,µ, η, ε) as defined in (1.2),
where ε > 0 is arbitrarily small. Then for every real number $ and every
integer s ≥ s0 the inequality

|λ1p1 + λ2p
2
2 + λ3p

2
3 + µ12

m1 + · · ·+ µs2
ms +$| < τ

has infinitely many solutions in primes p1, p2, p3 and positive integers
m1, . . . ,ms.

This Corollary immediately follows from the Theorem by rearranging
the λ’s. Hence the Theorem ensures that (1.5) has infinitely many solutions
and the Corollary immediately follows from the condition τ ≥ η.

2. Definitions. Let ε be a sufficiently small positive constant (not
necessarily the same at each occurrence), X be a large parameter, M =
|µ1| + · · · + |µs| and L = log2(εX/(2M)), where log2 v is the base 2 loga-
rithm of v. We will use the Davenport–Heilbronn variation of the Hardy–
Littlewood method to count the number N(X) of solutions of the inequal-
ity (1.5) with εX ≤ p1, p

2
2, p

2
3 ≤ X and 1 ≤ m1, . . . ,ms ≤ L. Let now

e(u) = exp(2πiu) and

S1(α) =
∑

εX≤p≤X
log p e(pα), S2(α) =

∑
εX≤p2≤X

log p e(p2α),

G(α) =
∑

1≤m≤L
e(2mα).
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For α 6= 0, we also define

K(α, η) =

(
sinπηα

πα

)2

.

It is well-known that

(2.1) K̂(t, η) =
�

R

K(α, η)e(tα) dα = max(0; η − |t|)

and

(2.2) K(α, η)� min(η2;α−2).

Letting

I(X;R) =
�

R

S1(λ1α)S2(λ2α)S2(λ3α)G(µ1α) · · ·G(µsα)e($α)K(α, η) dα,

it follows from (2.1) that

I(X;R)� η(logX)3 ·N(X).

We will prove, for X → +∞ running over a suitable integral sequence, that

(2.3) I(X;R)�s,λ,ε η
2X(logX)s

thus obtaining

N(X)�s,λ,ε ηX(logX)s−3

and hence the Theorem follows.
To prove (2.3) we first dissect the real line into the major, minor and

trivial arcs, by choosing P = X2/5/logX and letting

(2.4) M = {α ∈ R : |α| ≤ P/X}, m = {α ∈ R : P/X < |α| ≤ L2},
and t = R \ (M ∪m). Accordingly, we write

(2.5) I(X;R) = I(X;M) + I(X;m) + I(X; t).

We will prove that

I(X;M) ≥ c1η2XLs,(2.6)

|I(X; t)| = o(XLs)(2.7)

both hold for all sufficiently large X, and

(2.8) |I(X;m)| ≤ c2(s)ηXLs

holds for X → +∞ running over a suitable integral sequence, where c2(s) >
0 depends on s, c2(s) → 0 as s → +∞, and c1 = c1(ε,λ) > 0 is a constant
such that

(2.9) c1η − c2(s) ≥ c3η
for some absolute positive constant c3 and s ≥ s0. Inserting (2.6)–(2.9) into
(2.5), we finally conclude that (2.3) holds, thus proving the Theorem.
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3. Lemmas. Let n be a positive integer. We denote by S(n) the singular
series and set S(n) = 2c0S

′(n) where S′(n) is defined in (1.4) and

c0 =
∏
p>2

(
1− 1

(p− 1)2

)
.

Notice that S′(n) is a multiplicative function. According to Gourdon–Sebah
[8], we have 0.66016181584 < c0 < 0.66016181585.

The first lemma is an upper bound for the multiplicative part of the
singular series.

Lemma 3.1 (Languasco–Zaccagnini [16, Lemma 2]). For n ∈ N, n ≥ 3,
we have

S′(n) <
n

c0ϕ(n)
<
eγ log logn

c0
+

2.50637

c0 log logn
,

where γ = 0.5772156649 . . . is the Euler constant.

Letting f(1) = f(2) = 1 and f(n) = n/(c0ϕ(n)) for n ≥ 3, we can
see that the inequality S′(n) ≤ f(n) is sharper than Parsell’s estimate
S′(n) ≤ 2 log(2n) (see [35, p. 369]) for every n ≥ 1. Since it is clear that
computing the exact value of f(n) for large values of n is not easy (it requires
the knowledge of every prime factor of n), we also remark that the second
estimate in Lemma 3.1 leads to a sharper bound than S′(n) ≤ 2 log(2n) for
every n ≥ 14.

Let now S′′(n) be defined as in (1.4). We first remark that it is connected
with the Dedekind Ψ function defined by

Ψ(n) = n
∏
p|n

p+ 1

p

since S′′(n) = Ψ(n)/n for n odd and S′′(n) = (2/3)Ψ(n)/n for n even. We
also have

Lemma 3.2. For n ∈ N, n ≥ 31, we have

S′′(n) < eγ log logn,

where γ is the Euler constant.

Proof. This follows immediately from Corollary 2 of Solé–Planat [41]
and the previous remarks.

The estimate in Lemma 3.2 is sharper than W. P. Li–Wang’s one S′′(n) ≤
2 log(2n) (see [22, p. 171]) for every n ≥ 31. We also remark that S′′(1) =
S′′(2) = 1, and that the computation of S′′(n) in the remaining interval
3 ≤ n ≤ 30 is an easy task.

Now we state some lemmas we need to estimate I(X;m).
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Lemma 3.3 (Languasco–Zaccagnini [16, Lemma 4]). Let X be a suf-
ficiently large parameter and let λ, µ 6= 0 be two real numbers such that
λ/µ ∈ Q. Let a, q ∈ Z\{0} with q > 0 and (a, q) = 1 be such that λ/µ = a/q.
Let further 0 < η < |λ/a|. Then
�

R

|S1(λα)G(µα)|2K(α, η) dα < ηXL2((1− ε) log 2+C ·S′(q))+OM,ε(ηXL),

where C = 10.0219168340.

Lemma 3.4. Let ε be an arbitrarily small positive constant. Let n ∈ Z,
n 6= 0, |n| ≤ X, n ≡ 0 mod 24 and

r(n) = |{n = p21 + p22 − p23 − p24, where pj ≤ X1/2, j = 1, . . . , 4}|.
Then

r(n) ≤ (1 + ε)c4
π2

16
S−(n)

X

(logX)4
,

where

S−(n) =

(
2− 1

2β0−1
− 1

2β0

) ∏
p>2
pβ‖n
β≥0

(
1 +

1

p
− 1

pβ+1
− 1

pβ+2

)
,

c4 = 101 · 220 and β0 is such that 2β0 ‖ n.

Lemma 3.4 follows by inserting the remark of H. Li [19, p. 385] into
the proof of Lemma 2.2 of J. Liu–Lü [29]. We immediately remark that
S−(n) ≤ 2S′′(n).

We will also need the following

Lemma 3.5 (H. Li [19]). Let d be a positive odd integer and ξ(d) be the
quantity min{µ : 2µ ≡ 1 (mod d)}. Then the series

+∞∑
d=1
2-d

µ2(d)

dξ(d)

is convergent and its value c5 satisfies c5 < 1.620767.

The next lemma is the analogue of Lemma 3.3 for exponential sums over
prime squares.

Lemma 3.6. Let X be a sufficiently large parameter and let λ, µ 6= 0 be
two real numbers such that λ/µ ∈ Q. Let a, q ∈ Z \ {0} with q > 0 and
(a, q) = 1 be such that λ/µ = a/q. Let further 0 < η < |λ/a|. Then

�

R

|S2(λα)G(µα)|4K(α, η) dα < (1 + ε)ηXL4((log 2)2 +D ·S′′(q)),
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where D = c4c5π
2/96, c4, c5 are as in Lemmas 3.4–3.5 respectively and ε is

an arbitrarily small positive constant.

This should be compared with Lemma 4.3 of W. P. Li–Wang [22] (see
also Lemma 4.2 of [21]) in which the value D1 = 2−27 · 114 · 43 · π26/25
plays the role of D. Using the values c4 = 101 · 220 and c5 < 1.620767 as
in Lemmas 3.4–3.5, we see that D < 17,646,979.6536361512 while D1 =
1,581,925,383.0798448770. We remark that D < 0.0112 ·D1 and so the re-
duction factor here is close to 98.8%. With an abuse of notation, in the
statement of the Theorem we will set D = 17,646,979.6536361512.

Proof of Lemma 3.6. Letting now

I =
�

R

|S2(λα)G(µα)|4K(α, η) dα,

by (2.1) we immediately have

(3.1) I =
∑

εX≤p21,p22,p23,p24≤X

log p1 log p2 log p3 log p4

×
∑

1≤m1,m2,m3,m4≤L
max

(
0; η−|λ(p21+p22−p23−p24)+µ(2m1+2m2−2m3−2m4)|

)
.

Let δ = λ(p21 + p22 − p23 − p24) + µ(2m1 + 2m2 − 2m3 − 2m4). For a sufficiently
small η > 0, we claim that

(3.2) |δ| < η is equivalent to δ = 0.

Recall our hypothesis on a and q, and assume that δ 6= 0 in (3.2). For
η < |λ/a| this leads to a contradiction. In fact we have

1

|a|
>

η

|λ|
>

∣∣∣∣p21 + p22 − p23 − p24 +
q

a
(2m1 + 2m2 − 2m3 − 2m4)

∣∣∣∣
=

∣∣∣∣a(p21 + p22 − p23 − p24) + q(2m1 + 2m2 − 2m3 − 2m4)

a

∣∣∣∣ ≥ 1

|a|
,

since a(p21 + p22− p23− p24) + q(2m1 + 2m2 − 2m3 − 2m4) 6= 0 is a linear integral
combination. Inserting (3.2) in (3.1), for η < |λ/a| we can write

(3.3) I = η
∑

εX≤p21,p22,p23,p24≤X

∑
1≤m1,m2,m3,m4≤L

λ(p21+p
2
2−p23−p24)+µ(2m1+2m2−2m3−2m4 )=0

log p1 log p2 log p3 log p4.

The diagonal contribution in (3.3) is equal to

(3.4) η
∑

εX≤p21,p22,p23,p24≤X
p21+p

2
2=p

2
3+p

2
4

log p1 log p2 log p3 log p4
∑

1≤m1,m2,m3,m4≤L
2m1+2m2=2m3+2m4

1.
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The number of solutions of p21 + p22 = p23 + p24 when p1p2 6= p3p4 can be
estimated using Satz 3, p. 94 of Rieger [38] and it is � X(logX)−3. This
gives a contribution to the first sum which is � X logX. In the remaining
case p1p2 = p3p4 the first sum becomes

2
∑

εX≤p21,p22≤X

(log p1)
2(log p2)

2=2

( ∑
√
εX≤p≤

√
X

(log p)2
)2

<(1− ε)X
2

(logX)2,

where we used the Prime Number Theorem and the fact that ε is a suf-
ficiently small positive constant. The sum over the powers of two in (3.4)
can be evaluated by fixing first m1 = m3 (thus getting exactly L2 solutions)
and then fixing m1 6= m3 (which gives other L2 − L solutions). Hence the
contribution of the second sum in (3.4) is 2L2 − L.

Combining these results we see that the total contribution of (3.4) is

(3.5) < (1− ε)ηXL2(logX)2 < ηXL4(log 2)2.

Now we have to estimate the contribution I ′ of the nondiagonal solutions
of δ = 0 and we will achieve this by connecting I ′ with the singular series
of Lemma 3.4. First, we remark that if pj > 3 for every j = 1, . . . , 4, then
n = p21 + p22 − p23 − p24 ≡ 0 mod 24. So if n = p21 + p22 − p23 − p24 6≡ 0 mod 24
then at least one of the pj must be equal to 2 or 3, and hence r(n), defined
as in the statement of Lemma 3.4, satisfies r(n) � X1/2+ε. Recalling that
λ/µ = a/q 6= 0, (a, q) = 1, if 2m3 + 2m4 − 2m1 − 2m2 6= 0 and (q/a)(2m3 +
2m4 − 2m1 − 2m2) 6≡ 0 mod 24, we have

|{(p1, . . . , p4) : p21 +p22−p23−p24 = (q/a)(2m3 +2m4−2m1−2m2)}| � X1/2+ε.

Otherwise, by Lemma 3.4, S−(n) ≤ 2S′′(n), r((q/a)(2m3 + 2m4 − 2m1 −
2m2)) 6= 0 if and only if a | (2m3 + 2m4 − 2m1 − 2m2), log pj ≤ (1/2) logX
and |(q/a)(2m3 + 2m4 − 2m1 − 2m2)| ≤ |q/a|2εX/M ≤ 2εX/|λ| < X for ε
sufficiently small, we have

(3.6) I ′ ≤ η

16
(logX)4

∑
1≤m1,m2,m3,m4≤L

r

(
q

a
(2m3 + 2m4 − 2m1 − 2m2)

)

< (1 + ε)c4
π2

128
ηX

∑
1≤m1,m2,m3,m4≤L

S′′
(
q

a
(2m3 + 2m4 − 2m1 − 2m2)

)
.

Using the multiplicativity of S′′(n) (defined in (1.4)), we get

S′′
(
q

a
(2m3 + 2m4 − 2m1 − 2m2)

)
≤ S′′(q)S′′

(
2m3 + 2m4 − 2m1 − 2m2

a

)
≤ S′′(q)S′′(2m3 + 2m4 − 2m1 − 2m2)
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and so, by (3.6), we can write, for every sufficiently large X,

I ′ ≤ (1 + ε)c4
π2

128
S′′(q)ηX

∑
1≤m1,m2,m3,m4≤L

S′′(2m3 + 2m4 − 2m1 − 2m2).

Arguing now as at pages 63–64 of J. Liu–Lü [29] we have∑
1≤m1,m2,m3,m4≤L

S′′(2m3 + 2m4 − 2m1 − 2m2) ≤ 4

3
c5(1 + ε)L4,

thus getting

(3.7) I ′ ≤ (1 + ε)c4c5
π2

96
S′′(q)ηXL4,

for a sufficiently small ε. Hence, by (3.3)–(3.5) and (3.7), we finally get

I < (1 + ε)ηXL4

(
(log 2)2 + c4c5

π2

96
S′′(q)

)
,

this way proving Lemma 3.6.

We now recall a famous result by Ghosh about S2(α).

Lemma 3.7 (Ghosh [7, Theorem 2]). Let α be a real number and a, q
be positive integers satisfying (a, q) = 1 and |α − a/q| < q−2. Let moreover
ε > 0. Then

S2(α)�ε X
1/2+ε

(
1

q
+

1

X1/4
+

q

X

)1/4

.

As an application of the previous lemma, we get the following result.

Lemma 3.8. Suppose that λ2/λ3 is irrational, and let X = q2 where q
is the denominator of a convergent of the continued fraction for λ2/λ3. Let
V (α) = min(|S2(λ2α)|; |S2(λ3α)|). Then for arbitrarily small ε we have

sup
α∈m

V (α)� X7/16+ε.

Proof. Let α ∈ m and Q = X1/4/(logX)2 ≤ P . By the Dirichlet Theo-
rem, there exist integers ai, qi with 1 ≤ qi ≤ X/Q and (ai, qi) = 1 such that
|λiαqi − ai| ≤ Q/X, i = 2, 3. We remark that a2a3 6= 0, otherwise we would
have α ∈M. Now suppose that qi ≤ Q, i = 2, 3. In this case we get

a3q2
λ2
λ3
− a2q3 = (λ2αq2 − a2)

a3
λ3α
− (λ3αq3 − a3)

a2
λ3α

and hence ∣∣∣∣a3q2λ2λ3 − a2q3
∣∣∣∣ ≤ 2

(
1 +

∣∣∣∣λ2λ3
∣∣∣∣)Q2

X
<

1

2q
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for a sufficiently large X. Then, from the law of best approximation and the
definition of m, we obtain

X1/2 = q ≤ |a3q2| � q2q3(logX)2 ≤ Q2(logX)2 ≤ X1/2(logX)−2.

Hence either q2 > Q or q3 > Q. Assume, without loss of generality, that
q2 > Q. Using Lemma 3.7 for S2(λ2α), we have

V (α) ≤ |S2(λ2α)| �ε X
1/2+ε sup

Q<q2≤X/Q

(
1

q2
+

1

X1/4
+
q2
X

)1/4

�ε X
7/16+ε(logX)1/2,

thus proving Lemma 3.8.

To estimate the contribution of G(α) on the minor arc we use Pintz–
Ruzsa’s method as developed in [37, §3–7].

Lemma 3.9 (Pintz–Ruzsa [37, §7]). Let 0 < c < 1. Then there exists
ν = ν(c) ∈ (0, 1) such that

|E(ν)| := |{α ∈ (0, 1) : |G(α)| > νL}| �M,ε X
−c.

To obtain explicit values for ν we used the version of the Pintz–Ruzsa
algorithm already implemented to get the results used in Languasco–Zacca-
gnini [16]. We used the PARI/GP [42] language and the gp2c compiling tool
to compute fifty decimal digits (but we write here just ten) of the constant
involved in the previous lemma. If we run the program in our case, Lemma
3.9 gives the following result:

(3.8) |G(α)| ≤ 0.8844472132 · L

if α ∈ [0, 1] \ E where |E| �M,ε X
−3/4−10−20

. The computing time to get
(3.8) on an Apple MacBook Pro was 26 minutes and 28 seconds (but to get
30 correct digits just 3 minutes and 31 seconds suffice). You can download
the PARI/GP source code of our program together with the cited numerical
values at www.math.unipd.it/˜languasc/PintzRuzsaMethod.html.

Now we state some lemmas we will use to work on the major arc. Let
θ(x) =

∑
p≤x log p,

(3.9) J(X,h) =

X�

εX

(θ(x+ h)− θ(x)− h)2 dx

and

(3.10) J∗(X,h) =

X�

εX

(
θ(
√
x+ h)− θ(

√
x)− (

√
x+ h−

√
x)
)2
dx
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be two different versions of the Selberg integral, and

U1(α) =
∑

εX≤n≤X
e(αn) and U2(α) =

∑
εX≤n2≤X

e(αn2).

Applying Gallagher’s famous lemma on the truncated L2-norm of expo-
nential sums to S1(α)−U1(α), one gets the following well-known statement
which we quote from Brüdern–Cook–Perelli [1, Lemma 1].

Lemma 3.10. For 1/X ≤ Y ≤ 1/2 we have

Y�

−Y
|S1(α)− U1(α)|2 dα�ε

(logX)2

Y
+ Y 2X + Y 2J

(
X,

1

2Y

)
,

where J(X,h) is defined in (3.9).

To estimate the Selberg integral, we use the next result.

Lemma 3.11 (Saffari–Vaughan [40, §6]). Let ε be an arbitrarily small
positive constant. There exists a positive constant c6(ε) such that

J(X,h)�ε h
2X exp

(
−c6

(
logX

log logX

)1/3)
uniformly for X1/6+ε ≤ h ≤ X.

In a similar way we can also prove

Lemma 3.12. For 1/X ≤ Y ≤ 1/2 we have

Y�

−Y
|S2(α)− U2(α)|2 dα�ε

(logX)2

Y X
+ Y 2X + Y 2J∗

(
X,

1

2Y

)
,

where J∗(X,h) is defined in (3.10).

Proof. Letting I :=
	Y
−Y |S2(α)− U2(α)|2 dα, we can write

I =

Y�

−Y

∣∣∣ ∑
εX≤p2≤X

log p e(p2α)−
∑

εX≤n2≤X

e(αn2)
∣∣∣2 dα

=

Y�

−Y

∣∣∣ ∑
εX≤n2≤X

(k(n)− 1)e(n2α)
∣∣∣2 dα,

where k(n) = log p if n = p prime and k(n) = 0 otherwise. By Gallagher’s
lemma (Lemma 1 of [5]) we obtain

I � Y 2
∞�

−∞

( ∑
x≤n2≤x+H
εX≤n2≤X

(k(n)− 1)

)2

dx
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where we defined H = 1/(2Y ). We can restrict the integration range to E =
[εX −H,X] since otherwise the inner sum is empty. Moreover we split E as
E = E1tE2tE3 where t represents disjoint union and E1 = [εX −H, εX] ,
E2 = [εX,X −H] , E3 = [X −H,X] . Accordingly,

(3.11)

I � Y 2
( �

E1

+
�

E2

+
�

E3

)( ∑
x≤n2≤x+H
εX≤n2≤X

(k(n)− 1)
)2
dx = Y 2(I1 + I2 + I3),

say. We now proceed to estimate Ii for i = 1, 2, 3.

Estimation of I1. By trivial estimates we have

I1 =
�

E1

( ∑
εX≤n2≤x+H

(k(n)− 1)
)2
dx

(3.12)

=

εX�

εX−H

(
θ
(√
x+H

)
− θ
(√
εX
)
−
(√
x+H −

√
εX
)

+O(1)
)2
dx

�
εX�

εX−H

(
θ
(√
x+H

)
− θ
(√
εX
)
−
(√
x+H −

√
εX
))2

dx+H.

Using a trivial estimate in (3.12) we have

I1 � (logX)2
εX�

εX−H

(√
x+H −

√
εX
)2
dx+H �ε

H3(logX)2

X
+H,

(3.13)

where the last step follows by applying the Mean Value Theorem to the
integrand.

Estimation of I3. The estimation of I3 is similar to the one of I1. We
have

I3 =
�

E3

( ∑
x≤n2≤X

(k(n)− 1)
)2
dx

�
X�

X−H

(
θ(
√
X)− θ

(√
x
)
−
(√
X −

√
x
))2

dx+H.

Again using a trivial estimate and the Mean Value Theorem we get

I3 � (logX)2
X�

X−H

(√
X −

√
x
)2
dx+H �ε

H3(logX)2

X
+H.(3.14)
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Estimation of I2. We have

I2 =
�

E2

( ∑
x≤n2≤x+H

(k(n)− 1)
)2
dx(3.15)

�
X�

εX

(
θ(
√
x+H)− θ(

√
x)− (

√
x+H −

√
x)
)2
dx+X

= J∗ (X,H) +X,

where we used the definition (3.10). Therefore, by (3.11), (3.13)–(3.15) and
Y ≥ 1/X, and recalling H = 1/(2Y ), we have

I �ε
(logX)2

XY
+XY 2 + Y 2J∗

(
X,

1

2Y

)
,

and this proves Lemma 3.12.

To estimate J∗(X,h), we use the next result.

Lemma 3.13. Let ε be an arbitrarily small positive constant. There exists
a positive constant c6(ε) such that

J∗(X,h)�ε h
2 exp

(
−c6

(
logX

log logX

)1/3)
uniformly for X7/12+ε ≤ h ≤ X.

Proof. We reduce our problem to estimating

(3.16) J∗ψ(X,h) :=

X�

εX

(
ψ(
√
x+ h)− ψ(

√
x)− (

√
x+ h−

√
x)
)2
dx

since, using |a+ b|2 ≤ 2|a|2 + 2|b|2, it is easy to see that

J∗(X,h)� J∗ψ(X,h)

+

X�

εX

(
ψ(
√
x+ h)− ψ(

√
x)− θ(

√
x+ h) + θ(

√
x)
)2
dx.

By a trivial estimate and the Mean Value Theorem we obtain

(3.17)

J∗(X,h)�ε J
∗
ψ(X,h) +

X�

εX

h2

X3/2
(logX)4 dx�ε J

∗
ψ(X,h) + h2

(logX)4

X1/2
.

To estimate the right hand side of (3.17), we use the following result we
will prove later.
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Lemma 3.14. Let ε be an arbitrarily small positive constant. There exists
a positive constant c6(ε) such that

J∗ψ(X,h)�ε h
2 exp

(
−c6

(
logX

log logX

)1/3)
uniformly for X7/12+ε ≤ h ≤ X, where J∗ψ(X,h) is defined in (3.16).

Therefore, by (3.17) and Lemma 3.14, we obtain

J∗(X,h)�ε h
2 exp

(
−c6

(
logX

log logX

)1/3)
,

thus proving Lemma 3.13.

Lemma 3.14 will follow from the following lemma.

Lemma 3.15. Let ε be an arbitrarily small positive constant. There exists
a positive constant c6(ε) such that

J̃∗ψ(X, δ) :=

X�

εX

(
ψ(
√
x+ δx)− ψ(

√
x)− (

√
x+ δx−

√
x)
)2
dx

�ε δ
2X2 exp

(
−c6

(
logX

log logX

)1/3)
uniformly for X−5/12+ε ≤ δ ≤ 1.

Proof. We follow the argument of Saffari–Vaughan [40, §5]. To estimate

J̃∗ψ(X, δ), we use the truncated explicit formula for ψ(x) (see, e.g., Davenport
[4, eq. (9)–(10) of §17]):

ψ(x) = x−
∑
|γ|≤T

xρ

ρ
+O

(
x

T
(log(xT ))2 + log x

)
uniformly in T ≥ 2 and for ρ = β + iγ nontrivial zeros of ζ(s). So

(3.18)

J̃∗ψ(X, δ)�
X�

εX

∣∣∣∣ ∑
|γ|≤T
β≥1/2

xρ/2
((1 + δ)ρ/2 − 1)

ρ

∣∣∣∣2 dx+
X2

T 2
(log(XT ))4 +X log2X.

As in Ivić [13, p. 316], we define c(δ, ρ) = ((1 + δ)ρ − 1)/ρ, and remark

(3.19) |c(δ, ρ/2)| � min(1/|γ|; δ).
Assuming T ≥ 1/δ, we can split the summation in (3.18) into two cases
defined according to (3.19). We obtain

(3.20) J̃∗ψ(X, δ)� A[0,1/δ) +A[1/δ,T ] +
X2

T 2
(log(XT ))4 +X(logX)2,
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with

AI =

X�

εX

∣∣∣∣ ∑
|γ|∈I
β≥1/2

xρ/2c

(
δ,
ρ

2

)∣∣∣∣2 dx
(3.21)

=
∑
|γ1|∈I
β1≥1/2

∑
|γ2|∈I
β2≥1/2

c

(
δ,
ρ1
2

)
c

(
δ,
ρ2
2

)
2X(ρ1+ρ2)/2+1(1− ε(ρ1+ρ2)/2+1)

ρ1 + ρ2 + 2

�
∑
|γ1|∈I
β1≥1/2

∑
|γ2|∈I

1/2≤β2≤β1

∣∣∣∣c(δ, ρ12
)∣∣∣∣∣∣∣∣c(δ, ρ22

)∣∣∣∣ Xβ1+1

1 + |γ1 − γ2|
.

Now we deal separately with A[0,1/δ) and A[1/δ,T ].

Estimation of A[0,1/δ). From (3.19) and (3.21) we can write

A[0,1/δ) � δ2X
∑

|γ1|<δ−1

β1≥1/2

Xβ1
∑

|γ2|<δ−1

1/2≤β2≤β1

1

1 + |γ1 − γ2|
(3.22)

� δ2X(logX)2
∑

|γ1|<δ−1

β1≥1/2

Xβ1 ,

where the last inequality follows from

∑
|γ2|<δ−1

1/2≤β2≤β1

1

1 + |γ1 − γ2|
�

2/δ∑
n=0

log(γ1 + n)

1 + n
�
(

log

(
3

δ

))2

� (logX)2

(3.23)

in which we used the Riemann–von Mangoldt formula and δ > X−1. Denot-
ing by S[0,1/δ) the sum on the right hand side of (3.22), we get

S[0,1/δ) :=
∑
|γ|<1/δ
β≥1/2

Xβ � logX max
1/2≤u≤1

XuN(u, 1/δ).

We recall the Ingham–Huxley zero-density estimate: for 1/2 ≤ σ ≤ 1 we
have N(σ, t) � t(12/5)(1−σ)(log t)B, and the Vinogradov–Korobov zero-free
region: there are no zeros β + iγ of the Riemann zeta function having

β ≥ 1− c7

(log(|γ|+ 2))2/3(log log(|γ|+ 2))1/3
,

where c7 > 0 is an absolute constant. In the following c7 will not necessarily
be the same at each occurrence. Here we have |γ| ≤ T , and so N(u, t) = 0
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for every t ≤ T and u ≥ 1−K with

K =
c7

(log T )2/3(log log T )1/3
.

From the previous remarks, we obtain

S[0,1/δ) � logX max
1/2≤u≤1−K

(δ−1)(12/5)(1−u)(log(δ−1))BXu

� (logX)B+1δ−12/5 max
1/2≤u≤1−K

(δ12/5X)u,

since δ > X−1. The maximum is attained at u = 1−K and so

S[0,1/δ) � (logX)B+1δ−12/5δ(12/5)(1−K)X1−K = X(logX)B+1(δ12/5X)−K .

Inserting the last estimate into (3.22), we can write

(3.24) A[0,1/δ) � δ2X2(logX)B+3(δ12/5X)−K .

Estimation of A[1/δ,T ]. From (3.19) and (3.21) we get

A[1/δ,T ] � X
∑

1/δ≤|γ1|≤T
β1≥1/2

Xβ1

|γ1|
∑

1/δ≤|γ2|≤T
1/2≤β2≤β1

1

|γ2|(1 + |γ1 − γ2|)

� X
∑

1/δ≤|γ1|≤T
β1≥1/2

Xβ1

|γ1|2
∑

|γ1|≤|γ2|≤T
1/2≤β2≤β1

1

1 + |γ1 − γ2|

� X(log T )2
∑

1/δ≤|γ1|≤T
β1≥1/2

Xβ1

|γ1|2
,

where the last step follows from (3.23) with T instead of 1/δ. By a simple
trick, we can rewrite the previous inequality as

(3.25) A[1/δ,T ] � X(log T )2(S′[1/δ,T ] + S′′[1/δ,T ])

with

S′[1/δ,T ] =
∑

1/δ≤|γ|≤T
β≥1/2

Xβ

(
1

|γ|2
− 1

T 2

)
and S′′[1/δ,T ] =

1

T 2

∑
1/δ≤|γ|≤T
β≥1/2

Xβ.

For S′′[1/δ,T ] we can argue as we did for S[0,1/δ), just keeping in mind that

this time 1/δ ≤ |γ| ≤ T . Hence

S′′[1/δ,T ] �
logX

T 2
max

1/2≤u≤1−K
Xu[N(u, T )−N(u, 1/δ)].
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Concerning S′[1/δ,T ] we immediately obtain

S′[1/δ,T ] =
∑

1/δ≤|γ|≤T
β≥1/2

Xβ
T�

|γ|

2

t3
dt = 2

T�

1/δ

( ∑
1/δ≤|γ|≤t
β≥1/2

Xβ

)
dt

t3
.

Using t ≤ T , we can write

S′[1/δ,T ] � logX

T�

1/δ

max
1/2≤u≤1−K

Xu[N(u, t)−N(u, 1/δ)]
dt

t3
.

Therefore

S′[1/δ,T ] + S′′[1/δ,T ] � logX log(Tδ)

× max
1/δ≤t≤T

(
1

t2
max

1/2≤u≤1−K
Xut(12/5)(1−u)(log t)B

)
,

by the Ingham–Huxley zero-density estimate. So, by (3.25), this estimate
and t ≤ T , we get

A[1/δ,T ]�X(log T )B+2 logX log(Tδ) max
1/2≤u≤1−K

(
Xu max

1/δ≤t≤T
t(12/5)(1−u)−2

)
.

To compute the inner maximum above, we just remark that (12/5)(1 − u)
− 2 < 0 (which holds for u > 1/6), and hence it is attained at t = 1/δ. So

A[1/δ,T ] � X(log T )B+2 logX log(Tδ) max
1/2≤u≤1−K

Xu(δ−1)(12/5)(1−u)−2

= δ−2/5X(log T )B+2 logX log(Tδ) max
1/2≤u≤1−K

(Xδ12/5)u.

The maximum is attained at u = 1−K, thus

A[1/δ,T ] � δ−2/5X(log T )B+2 logX log(Tδ)(Xδ12/5)1−K(3.26)

= δ2X2(log T )B+2 logX log(Tδ)(Xδ12/5)−K .

Conclusion of the proof. Inserting (3.24) and (3.26) into (3.20), we
get

(3.27) J̃∗ψ(X, δ)� δ2X2(Xδ12/5)−K logX((logX)B+2

+ (log T )B+2 log(Tδ)) +
X2

T 2
(log(XT ))4 +X(logX)2.

Choosing T ≤ X1/2 we have

K =
c7

(log T )2/3(log log T )1/3
≥ c8

(logX)2/3(log logX)1/3
,
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for a suitable positive constant c8. If we now take T ≥ X5/12−ε(Xδ12/5)K/2

×(logX)−B/2 and recall δ > X−5/12+ε, estimate (3.27) becomes

J̃∗ψ(X, δ)� δ2X2(Xδ12/5)−K(logX)B+4

since the conditions on T are compatible. Hence we immediately obtain

J̃∗ψ(X, δ)� δ2X2(logX)B+4 exp

(
− c8(logX + (12/5) log δ)

(logX)2/3(log logX)1/3

)
� δ2X2 exp

(
−c9

(
logX

log logX

)1/3)
for a sufficiently large X and c9 = c9(ε). Hence Lemma 3.15 is proved.

Proof of Lemma 3.14. We follow the argument of [40, §6]. Let now 2h ≤
v ≤ 3h. To estimate J∗ψ(X,h) (defined in (3.16)), we first remark

(3.28) hJ∗ψ(X,h)�
X�

εX

3h�

2h

(
ψ(
√
x+ v)− ψ(

√
x)− (

√
x+ v −

√
x)
)2
dv dx

+

X�

εX

3h�

2h

(
ψ(
√
x+ v)− ψ(

√
x+ h)− (

√
x+ v −

√
x+ h)

)2
dv dx.

We set z = v − h, y = x+ h and change variables in the last integration, so
that the right hand side of (3.28) becomes

�
X�

εX

3h�

2h

(
ψ(
√
x+ v)− ψ(

√
x)− (

√
x+ v −

√
x)
)2
dv dx

+

X+h�

εX+h

2h�

h

(
ψ(
√
y + z)− ψ(

√
y)− (

√
y + z −√y)

)2
dz dy.

Since both the integrands are nonnegative, we can extend the integration
ranges merging x with y and v with z. Hence

hJ∗ψ(X,h)�
X+h�

εX

3h�

h

(
ψ(
√
x+ v)− ψ(

√
x)− (

√
x+ v −

√
x)
)2
dv dx

=

X+h�

εX

x

3h/x�

h/x

(
ψ(
√
x+ xδ)− ψ(

√
x)− (

√
x+ xδ −

√
x)
)2
dδ dx,

where in the last step we made the change of variable δ = v/x, thus getting
δ ≥ h/x ≥ X−5/12+ε as in the hypothesis of Lemma 3.15. Interchanging the
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integration order we obtain

hJ∗ψ(X,h)� (X + h)

×
3h/(εX)�

h/(X+h)

X+h�

εX

(
ψ(
√
x+ xδ)− ψ(

√
x)− (

√
x+ xδ −

√
x)
)2
dx dδ.

Finally, using Lemma 3.15, we get

J∗ψ(X,h)�ε
X + h

h

3h/(εX)�

h/(X+h)

δ2X2 exp

(
−c6

(
logX

log logX

)1/3)
dδ

�ε h
2 exp

(
−c6

(
logX

log logX

)1/3)
.

This concludes the proof of Lemma 3.14.

4. The major arc. Letting

(4.1) T1(α) =

X�

εX

e(tα) dt�ε min(X; 1/|α|)

and

(4.2)

T2(α) =

X1/2�

(εX)1/2

e(t2α) dt =
1

2

X�

εX

v−1/2e(vα) dv �ε X
−1/2 min(X; 1/|α|),

we first write

(4.3) I(X;M) =
�

M

T1(λ1α)T2(λ2α)T2(λ3α)

s∏
i=1

G(µiα)e($α)K(α, η) dα

+
�

M

(S1(λ1α)− T1(λ1α))T2(λ2α)T2(λ3α)
s∏
i=1

G(µiα)e($α)K(α, η) dα

+
�

M

S1(λ1α)(S2(λ2α)− T2(λ2α))T2(λ3α)

s∏
i=1

G(µiα)e($α)K(α, η) dα

+
�

M

S1(λ1α)S2(λ2α)(S2(λ3α)− T2(λ3α))
s∏
i=1

G(µiα)e($α)K(α, η) dα

= J1 + J2 + J3 + J4,

say. In what follows we will prove that



A diophantine problem 405

(4.4) J1 ≥
(3− 2

√
2)η2XLs

4|λ1|+ |λ2|+ |λ3|
+Oε(η2X1/5Ls+2)

and

(4.5) J2 + J3 + J4 = o(η2XLs),

thus obtaining, by (4.3)–(4.5),

I(X;M) ≥ 3− 2
√

2− ε
4 (|λ1|+ |λ2|+ |λ3|)

η2XLs,

proving that (2.6) holds with c1 = 2−2(3−2
√

2− ε)(|λ1|+ |λ2|+ |λ3|)−1 and
ε > 0 an arbitrarily small constant.

We will need the following estimates. The first one is a consequence of
the Prime Number Theorem:

(4.6)

1�

0

|S1(α)|2 dα�ε X logX,

while the second one is based on Satz 3 of Rieger [38, p. 94] (see also the
estimate of H12 of T. Liu [31, p. 106]):

(4.7)

1�

0

|S2(α)|4 dα�ε X(logX)2.

Estimation of J2, J3 and J4. We first estimate J4. We remark that,
by Euler’s summation formula,

(4.8) Ti(α)− Ui(α)� 1 +X|α| for i = 1, 2.

So, by (2.4), the Cauchy–Schwarz inequality, and (4.6)–(4.8), we get
�

M

|S1(λ1α)| |S2(λ2α)| |T2(λ3α)− U2(λ3α)| dα

�λ

1/X�

−1/X

|S1(λ1α)| |S2(λ2α)| dα+X

P/X�

1/X

|α| |S1(λ1α)| |S2(λ2α)| dα

�λ X
−1/4

( 1�

0

|S1(α)|2 dα
)1/2( 1�

0

|S2(α)|4 dα
)1/4

+X
( P/X�

1/X

α4 dα
)1/4( 1�

0

|S2(α)|4 dα
)1/4( 1�

0

|S1(α)|2 dα
)1/2

�λ,ε X
1/2 logX + P 5/4X1/2 logX = o(X)
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since P = X2/5/logX. Hence, using the trivial estimates |G(µiα)| ≤ L,
K(α, η)� η2, we can write

J4 =
�

M

S1(λ1α)S2(λ2α)(S2(λ3α)− U2(λ3α))

s∏
i=1

G(µiα)e($α)K(α, η) dα

+ oλ,M,ε(η
2XLs).

Now using (2.4), |S2(λ2α)| � X1/2, the Cauchy–Schwarz inequality,
(4.6), Lemmas 3.12–3.13 with Y = P/X, and again the trivial estimates
|G(µiα)| ≤ L, K(α, η)� η2, we have

J4 � η2LsX1/2
( �

M

|S2(λ3α)− U2(λ3α)|2 dα
)1/2( �

M

|S1(λ1α)|2 dα
)1/2

+ oλ,M,ε(η
2XLs)

�λ,M,ε η
2LsX1/2

( 1�

0

|S1(α)|2 dα
)1/2

exp

(
−c6(ε)

2

(
logX

log logX

)1/3)
+ oλ,M (η2XLs)

�λ,M,ε η
2XLs+1/2 exp

(
−c6(ε)

2

(
logX

log logX

)1/3)
= o(η2XLs).

The integral J3 can be estimated analogously using (4.2) instead of
|S2(λ3α)| � X1/2.

For J2 we argue as follows. First of all, using again (4.8) and (4.2) for
i = 2, 3, we get

�

M

|T1(λ1α)− U1(λ1α)| |T2(λ2α)| |T2(λ3α)| dα

�λ X

1/X�

−1/X

dα+

P/X�

1/X

X|α|
Xα2

dα�λ 1 + logP = o(X)

since P = X2/5/logX. Hence, using the trivial estimates |G(µiα)| ≤ L,
K(α, η)� η2, we can write

J2 =
�

M

(
S1(λ1α)− U1(λ1α)

)
T2(λ2α)T2(λ3α)

s∏
i=1

G(µiα)e($α)K(α, η) dα

+ oλ,M (η2XLs).

Using (2.4), the Cauchy–Schwarz inequality, Lemmas 3.10–3.11 with Y =
P/X, and the trivial estimates |G(µiα)| ≤ L, K(α, η)� η2, we have
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J2 � η2Ls
( �

M

|S1(λ1α)− U1(λ1α)|2 dα
)1/2( �

M

|T2(λ2α)T2(λ3α)|2 dα
)1/2

+ oλ,M (η2XLs)

�λ,M,ε η
2XLs exp

(
−c6(ε)

2

(
logX

log logX

)1/3)
+ oλ,M (η2XLs)

= o(η2XLs),

since, by (4.2),
	
M |T2(λ2α)T2(λ3α)|2 dα�λ X. Hence (4.5) holds.

Estimation of J1. Recalling that P = X2/5/logX, using (2.4) and
(4.1)–(4.3) we obtain

(4.9)

J1 =
∑

1≤m1≤L
· · ·

∑
1≤ms≤L

J (µ12
m1 + · · ·+ µs2

ms +$, η) +Oε(η2X1/5Ls+2),

where J (u, η) is defined by

J (u, η) :=
�

R

T1(λ1α)T2(λ2α)T2(λ3α)e(uα)K(α, η) dα

=
1

4

X�

εX

X�

εX

X�

εX

K̂(λ1u1 + λ2u2 + λ3u3 + u, η)u
−1/2
2 u

−1/2
3 du1 du2 du3

and the second relation follows by (4.1)–(4.2) and interchanging the inte-
gration order. We recall that λ1 < 0 and λ2, λ3 > 0. If |u| ≤ εX, for

X|λ1|
2(|λ1|+ λ2 + λ3)

≤ u2, u3 ≤
X|λ1|

|λ1|+ λ2 + λ3
,

sufficiently large X and sufficiently small ε, we get

−η
2
− (λ2u2 + λ3u3 + u) ≤ |λ1|u1 ≤ η/2− (λ2u2 + λ3u3 + u).

Hence there exists an interval for u1 of length η|λ1|−1 and contained in

[εX,X] such that K̂(λ1u1 + λ2u2 + λ3u3 + u, η) ≥ η/2. So, letting b =
X|λ1|/(|λ1|+ λ2 + λ3), we can write

J (u, η) ≥ η2

8|λ1|

( b�

b/2

v−1/2 dv
)2

=
(3− 2

√
2)η2X

4(|λ1|+ λ2 + λ3)
.

By the definition of L, we have |µ12m1 + · · · + µs2
ms + $| ≤ εX for X

sufficiently large. Hence by (4.9) we obtain

J1 ≥
(3− 2

√
2)η2XLs

4(|λ1|+ λ2 + λ3)
+Oε(η2X1/5Ls+2),
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thus proving (4.4). Arguing analogously we can prove the case λ1, λ2 < 0,
λ3 > 0.

5. The trivial arc. Recalling (2.4), the trivial estimate |G(µiα)| ≤ L
and using twice the Cauchy–Schwarz inequality, we get

|I(X; t)| � Ls
(+∞�

L2

|S1(λ1α)|2K(α, η) dα
)1/2

×
(+∞�

L2

|S2(λ2α)|4K(α, η) dα
)1/4(+∞�

L2

|S2(λ3α)|4K(α, η) dα
)1/4

.

By (2.2) and making a change of variable, we have, for i = 2, 3,

+∞�

L2

|S2(λiα)|4K(α, η) dα�λ

+∞�

λiL2

|S2(α)|4

α2
dα

�
∑

n≥λiL2

1

(n− 1)2

n�

n−1
|S2(α)|4 dα�λ L

−2
1�

0

|S2(α)|4 dα�λ,M,ε X,

by (4.7). Moreover, arguing analogously,

+∞�

L2

|S1(λ1α)|2K(α, η) dα�λ

+∞�

|λ1|L2

|S1(α)|2

α2
dα

�
∑

n≥|λ1|L2

1

(n− 1)2

n�

n−1
|S1(α)|2 dα�λ L

−2
1�

0

|S1(α)|2 dα�λ,M,ε
X

logX
,

by (4.6). Hence (2.7) holds.

6. The minor arc. Recalling first

I(X;m) =
�

m

S1(λ1α)S2(λ2α)S2(λ3α)

s∏
i=1

G(µiα)e($α)K(α, η) dα,

and letting c ∈ (0, 1) be chosen later, we first split m as m1 tm2, where m2

is the set of α ∈ m such that |G(µiα)| > ν(c)L for some i ∈ {1, . . . , s}, and
ν(c) is defined in Lemma 3.9. We will choose c to get |I(X;m2)| = o(ηX),
since, again by Lemma 3.9, we know that |m2| �M,ε sL

2X−c.

To this end, we first use the trivial estimates |G(µiα)| ≤ L and K(α, η)
� η2 and Lemma 3.8 (assuming, without any loss of generality, that V (α) =
|S2(λ2α)|). Then, using twice the Cauchy–Schwarz inequality and (4.6)–
(4.7), we get
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|I(X;m2)| ≤ η2Ls
(

sup
α∈m
|V (α)|

)( �

m2

|S1(λ1α)S2(λ3α)| dα
)

� η2LsX7/16+ε|m2|1/4
( �

m2

|S1(λ1α)|2 dα
)1/2( �

m2

|S2(λ3α)|4 dα
)1/4

�λ η
2LsX7/16+ε|m2|1/4

(
L2

1�

0

|S1(α)|2 dα
)1/2(

L2
1�

0

|S2(α)|4 dα
)1/4

�λ,M,ε s
1/4η2Ls+3X19/16+ε−c/4,

where X = q2 and q is the denominator of a convergent of the continued
fraction for λ2/λ3. Taking c = 3/4 + 10−20 and using (3.8), we get, for
ν = 0.8844472132 and a sufficiently small ε > 0,

(6.1) |I(X;m2)| = o(ηX).

We remark that neither the result of Kumchev [14] nor the approach of
Cook, Fox and Harman (see [2], [3], [10]) seem to give any improvement of
the previous estimates.

Now we evaluate the contribution of m1. Using the Cauchy–Schwarz
inequality, and Lemmas 3.3 and 3.6, we have

|I(X;m1)| ≤ (νL)s−3
( �

m

|S1(λ1α)G(µ1α)|2K(α, η) dα

)1/2

(6.2)

×
( �

m

|S2(λ2α)G(µ2α)|4K(α, η) dα

)1/4

×
( �

m

|S2(λ3α)G(µ3α)|4K(α, η) dα

)1/4

< νs−3C(q1, q2, q3, ε)ηXL
s,

where C(q1, q2, q3, ε) is defined as in (1.3).

Hence, by (6.1)–(6.2), for X sufficiently large we finally get

|I(X;m)| < (0.8844472132)s−3C(q1, q2, q3, ε)ηXL
s.

This means that (2.8) holds with c2(s) = (0.8844472132)s−3 C(q1, q2, q3, ε).

7. Proof of the Theorem. We have to verify that there is an s0 ∈ N
such that (2.9) holds for X sufficiently large, where X = q2 and q is the
denominator of a convergent of the continued fraction for λ2/λ3. Combining
the inequalities (2.6)–(2.8), where c2(s) = (0.8844472132)s−3C(q1, q2, q3, ε),
we conclude that (2.9) holds for s ≥ s0 where s0 defined in (1.2).
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[41] P. Solé and M. Planat, Extreme values of the Dedekind ψ function, J. Combin.

Number Theory 3 (2011), 1–6.

[42] The PARI Group, Bordeaux, PARI/GP, version 2.3.5, http://pari.math.

u-bordeaux.fr/, 2010.

[43] R. C. Vaughan, Diophantine approximation by prime numbers. I, Proc. London

Math. Soc. 28 (1974), 373–384.

http://dx.doi.org/10.1006/jnth.1999.2500
http://dx.doi.org/10.1007/BF02882266
http://dx.doi.org/10.5802/jtnb.242
http://dx.doi.org/10.4064/aa114-1-4
http://dx.doi.org/10.1016/j.jnt.2004.04.011
http://dx.doi.org/10.4064/aa115-2-1
http://dx.doi.org/10.4064/aa145-2-6
http://dx.doi.org/10.4064/aa109-2-6
http://dx.doi.org/10.1112/plms/s3-28.2.373


412 A. Languasco and V. Settimi

[44] R. C. Vaughan, Diophantine approximation by prime numbers. II, Proc. London

Math. Soc. 28 (1974), 385–401.

[45] R. C. Vaughan, Diophantine approximation by prime numbers. III, Proc. London

Math. Soc. 33 (1976), 177–192.

[46] R. C. Vaughan and T. D. Wooley, Waring’s problem: a survey, in: Number Theory

for the Millennium, Vol. III, A. K. Peters, 2002, 301–340.

[47] T. Z. Wang, On Linnik’s almost Goldbach theorem, Sci. China Ser. A 42 (1999),

1155–1172.

Alessandro Languasco, Valentina Settimi
Dipartimento di Matematica
Università di Padova
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