Inhomogeneous approximation with coprime integers and lattice orbits

by

Michel Laurent and Arnaldo Nogueira (Marseille)

1. Introduction and results. Minkowski proved that for every real irrational ξ and every real $y \notin \mathbb{Z} \xi+\mathbb{Z}$, there exist infinitely many pairs of integers p, q such that

$$
|q \xi+p-y| \leq \frac{1}{4|q|}
$$

(see for instance Theorem II in Chapter 3 of Cassels' monograph [4]). The statement is optimal in the sense that the approximating function $\ell \mapsto$ $(4 \ell)^{-1}$ cannot be decreased. Note that the restriction $y \notin \mathbb{Z} \xi+\mathbb{Z}$ can be dropped at the cost of replacing the upper bound $(4|q|)^{-1}$ by $c|q|^{-1}$ for any constant c greater than $1 / \sqrt{5}$. When $y=0$, the primitive point $(p / \operatorname{gcd}(p, q), q / \operatorname{gcd}(p, q))$ remains a solution to the above inequality, therefore we may moreover require that the integers p, q be coprime. However, for a non-zero y, this extra requirement is far from being obvious to satisfy. In this direction, Chalk and Erdős [6] obtained the following result:

Theorem (Chalk-Erdős). Let ξ be an irrational real number and let y be a real number. There exists an absolute constant c such that the inequality

$$
\begin{equation*}
|q \xi+p-y| \leq \frac{c(\log q)^{2}}{q(\log \log q)^{2}} \tag{1}
\end{equation*}
$$

holds for infinitely many pairs of coprime integers (p, q) with q positive.
We study more generally the diophantine inequality

$$
|q \xi+p-y| \leq \psi(|q|)
$$

for coprime integers p and q, where $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$is a given function. Two types of questions naturally arise. First, finding unconditional results which are valid for every real pair (ξ, y) with ξ irrational as in (1), and secondly

[^0]getting metrical results valid for almost all points (ξ, y). Here is an example of the first kind.

Theorem 1. Let ξ be an irrational real number and let y be a non-zero real number. There exist infinitely many integer quadruples ($p_{1}, q_{1}, p_{2}, q_{2}$) satisfying

$$
q_{1} p_{2}-p_{1} q_{2}=1
$$

and

$$
\begin{equation*}
\left|q_{i} \xi+p_{i}-y\right| \leq \frac{c}{\max \left(\left|q_{1}\right|,\left|q_{2}\right|\right)^{1 / 2}} \leq \frac{c}{\sqrt{\left|q_{i}\right|}} \quad(i=1,2) \tag{2}
\end{equation*}
$$

with $c=2 \sqrt{3} \max (1,|\xi|)^{1 / 2}|y|^{1 / 2}$.
Theorem 1 will be deduced in Section 2 from our results [10] on effective density for $\operatorname{SL}(2, \mathbb{Z})$-orbits in \mathbb{R}^{2}. The estimate (2) is best possible, up to the value of the constant c. However, the optimality of (1) remains unclear. We address the following

Problem. Can we replace the function $\psi(\ell)=c(\log \ell)^{2} / \ell(\log \log \ell)^{2}$ occurring in (1) by a smaller one, possibly $\psi(\ell)=c \ell^{-1}$?

We shall further discuss this problem in Section 4 for the function $\psi(\ell)=$ $2 \ell^{-1}$, offering some hints and indicating the difficulties which then arise. It turns out that the approximating function $\psi(\ell)=\ell^{-1}$ is permitted for almost all pairs (ξ, y) of real numbers relative to Lebesgue measure. The last assertion follows from the following metrical statement:

Theorem 2. Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. Assume that ψ is nonincreasing, tends to 0 at infinity and that for every positive integer c there exists a positive real number c_{1} satisfying

$$
\begin{equation*}
\psi(c \ell) \geq c_{1} \psi(\ell), \quad \forall \ell \geq 1 . \tag{3}
\end{equation*}
$$

Furthermore assume that

$$
\sum_{\ell \geq 1} \psi(\ell)=+\infty
$$

Then for almost all pairs (ξ, y) of real numbers there exist infinitely many primitive points (p, q) such that

$$
\begin{equation*}
q \geq 1 \quad \text { and } \quad|q \xi+p-y| \leq \psi(q) . \tag{4}
\end{equation*}
$$

If $\sum_{\ell \geq 1} \psi(\ell)$ converges, the pairs (ξ, y) satisfying (4) for infinitely many primitive points (p, q) form a set of zero Lebesgue measure.

Note that we could have equivalently required in (4) that q be negative. Such a refinement could as well be achieved in the setting of Theorem 1, with a weaker approximating function of the form $\psi(\ell)=\ell^{-\mu}$ for any given real $\mu<1 / 3$, by employing alternatively Theorem 5 in Section 9 of [10. We
leave the details of the proof, obtained by arguing as in Section 2, to the interested reader. For questions of density involving signs, see also [7].

The proof of Theorem 2 is given in Section 3. It combines standard tools from metrical number theory with the ergodic properties of the linear action of $\operatorname{SL}(2, \mathbb{Z})$ on \mathbb{R}^{2} (see [13]). We refer to Harman's book [8] for closely related results. See also the recent overview [1] and the monographs [14], [15].

Theorem 2 is a metrical statement about pairs (ξ, y) of real numbers. A natural question is to understand what happens on each fiber when we fix either ξ or y. In this direction, here is a partial result which will be deduced from the explicit construction in Section 4.

Theorem 3. Let ξ be an irrational number and let $\left(p_{k} / q_{k}\right)_{k \geq 0}$ be the sequence of its convergents. Assume that the series

$$
\begin{equation*}
\sum_{k \geq 0} \frac{1}{\max \left(1, \log q_{k}\right)} \tag{5}
\end{equation*}
$$

diverges. Then for almost every real number y there exist infinitely many primitive points (p, q) satisfying

$$
|q \xi+p-y| \leq 2 /|q|
$$

Moreover the series (5) diverges for almost every real ξ.
We now turn to the second part of the paper devoted to density exponents for lattice orbits in \mathbb{R}^{2}. As already mentioned, the approximating function $\psi(\ell)=c \ell^{-1 / 2}$ occurring in Theorem 1 is directly connected to the density exponent $1 / 2$ for $\operatorname{SL}(2, \mathbb{Z})$-orbits. We intend to show that this exponent $1 / 2$ is best possible in general.

We work in the more general setting of lattices Γ in $\operatorname{SL}(2, \mathbb{R})$. Recall that a lattice Γ in $\mathrm{SL}(2, \mathbb{R})$ is a discrete subgroup for which the quotient $\Gamma \backslash \mathrm{SL}(2, \mathbb{R})$ has finite Haar measure. We view \mathbb{R}^{2} as a space of column vectors on which the group of matrices Γ acts by left multiplication. We equip \mathbb{R}^{2} with the supremum norm $\|$, and for any matrix $\gamma \in \Gamma$, we denote also by $|\gamma|$ the maximum of the absolute values of the entries of γ. Let us first give

Definition. Let \mathbf{x} and \mathbf{y} be two points in \mathbb{R}^{2}. We denote by $\mu_{\Gamma}(\mathbf{x}, \mathbf{y})$ the supremum, possibly infinite, of the exponents μ such that the inequality

$$
\begin{equation*}
|\gamma \mathbf{x}-\mathbf{y}| \leq|\gamma|^{-\mu} \tag{6}
\end{equation*}
$$

has infinitely many solutions $\gamma \in \Gamma$.
Note that for a fixed $\mathbf{x} \in \mathbb{R}^{2}$, the function $\mathbf{y} \mapsto \mu_{\Gamma}(\mathbf{x}, \mathbf{y})$ is Γ-invariant. By the ergodicity of the action of Γ on \mathbb{R}^{2} (see [13]), this function is therefore constant almost everywhere on \mathbb{R}^{2}. We denote by $\mu_{\Gamma}(\mathbf{x})$ its generic value, called the generic density exponent of the orbit $\Gamma \mathbf{x}$.

Theorem 4. The upper bound $\mu_{\Gamma}(\mathbf{x}) \leq 1 / 2$ holds true for any point $\mathrm{x} \in \mathbb{R}^{2}$ such that the orbit $\Gamma \mathrm{x}$ is dense in \mathbb{R}^{2}.

Equivalently Theorem 4 asserts that $\mu(\mathbf{x}, \mathbf{y}) \leq 1 / 2$ for almost all $\mathbf{y} \in \mathbb{R}^{2}$. This bound was already known in the case of $\Gamma=\operatorname{SL}(2, \mathbb{Z})$ as a consequence of Theorem 3 in [10.

One may optimistically conjecture that $\mu_{\Gamma}(\mathbf{x})=1 / 2$ for every \mathbf{x} such that $\Gamma \mathbf{x}$ is dense in \mathbb{R}^{2}, or at least for almost every $\mathbf{x} \in \mathbb{R}^{2}$. In this direction, it follows from [10] that

$$
\mu_{\mathrm{SL}(2, \mathbb{Z})}(\mathbf{x}) \geq 1 / 3
$$

for all points \mathbf{x} in $\mathbb{R}^{2} \backslash\{\mathbf{0}\}$ with irrational slope. Weaker lower bounds valid for any lattice $\Gamma \subset \operatorname{SL}(2, \mathbb{R})$ can also be deduced from [12]. Note that the function $\mathbf{x} \mapsto \mu_{\Gamma}(\mathbf{x})$ is Γ-invariant since $\mu_{\Gamma}(\mathbf{x})$ obviously depends only on the orbit $\Gamma \mathbf{x}$. Thus, the generic density exponent $\mu_{\Gamma}(\mathbf{x})$ takes the same value for almost all $\mathbf{x} \in \mathbb{R}^{2}$.
2. Proof of Theorem 1. We first state a result obtained in [10. In this section, we denote by Γ the lattice $\operatorname{SL}(2, \mathbb{Z})$. For any point $\mathbf{x}=\binom{x_{1}}{x_{2}}$ in \mathbb{R}^{2} with irrational slope x_{1} / x_{2}, the orbit $\Gamma \mathbf{x}$ is dense in \mathbb{R}^{2}. We have obtained in [10] effective results concerning the density of such an orbit. In particular, our estimates are essentially optimal when the target point \mathbf{y} has rational slope.

Lemma 1. Let \mathbf{x} be a point in \mathbb{R}^{2} with irrational slope and $\mathbf{y}=\binom{y}{y}$ a point on the diagonal with $y \neq 0$. Then there exist infinitely many matrices $\gamma \in \Gamma$ such that

$$
\begin{equation*}
|\gamma \mathbf{x}-\mathbf{y}| \leq c /|\gamma|^{1 / 2} \quad \text { with } \quad c=2 \sqrt{3}|\mathbf{x}|^{1 / 2}|y|^{1 / 2} . \tag{7}
\end{equation*}
$$

Proof. The point \mathbf{y} has rational slope 1. Apply Theorem 1(ii) of [10] with $a=b=1$.

Put $\mathbf{x}=\binom{\xi}{1}$. The point \mathbf{x} has irrational slope ξ so that Lemma 1 may be applied. Write $\gamma=\left(\begin{array}{l}q_{1} p_{1} \\ q_{2} \\ p_{2}\end{array}\right)$ for a matrix provided by Lemma 1 . Then (7) gives

$$
\begin{aligned}
\max \left(\left|q_{1} \xi+p_{1}-y\right|,\left|q_{2} \xi+p_{2}-y\right|\right) & \leq \frac{c}{\max \left(\left|p_{1}\right|,\left|p_{2}\right|,\left|q_{1}\right|,\left|p_{2}\right|\right)^{1 / 2}} \\
& \leq \frac{c}{\max \left(\left|q_{1}\right|,\left|q_{2}\right|\right)^{1 / 2}}
\end{aligned}
$$

Therefore, both $\left(p_{1}, q_{1}\right)$ and (p_{2}, q_{2}) satisfy (2), and since the determinant $q_{1} p_{2}-q_{2} p_{1}$ is 1 , these two integer points are primitive. As there exist infinitely many matrices γ satisfying (7), we thus find infinitely many solutions to (2).

Assume now that the irrational number ξ has bounded partial quotients. Then Theorem 4 in [10] gives us in the opposite direction a lower bound of
the form

$$
|\gamma \mathbf{x}-\mathbf{y}| \geq c^{\prime} /|\gamma|^{1 / 2}
$$

for every $\gamma \in \Gamma$, where the positive constant c^{\prime} depends only upon (ξ, y). Since we have $|\gamma| \leq c^{\prime \prime} \max \left(\left|q_{1}\right|,\left|q_{2}\right|\right)$ when (2) holds, the estimate (2) is optimal up to the value of c.

Remark. The single inequality $\left|q_{1} \xi+p_{1}-y\right| \leq \psi\left(\left|q_{1}\right|\right)$ geometrically means that the point $\gamma \mathbf{x}$ falls inside a neighborhood of the vertical line $x_{1}=y$. A better understanding of the shrinking target problem for the dense orbit $\Gamma \mathbf{x}$, not to a point \mathbf{y} as in [10] but to a line in \mathbb{R}^{2}, may possibly lead to a refinement of (1).
3. Proof of Theorem 2. It is convenient to view the pairs (ξ, y) occurring in Theorem 2 as column vectors $\binom{\xi}{y}$ in \mathbb{R}^{2}. We are concerned with the set $\mathcal{E}(\psi)$ of vectors $\binom{\xi}{y} \in \mathbb{R}^{2}$ for which there exist infinitely many primitive integer points (p, q) such that

$$
\begin{equation*}
q \geq 1 \quad \text { and } \quad|q \xi+p-y| \leq \psi(q) \tag{8}
\end{equation*}
$$

For fixed p, q, denote by $\mathcal{E}_{p, q}(\psi)$ the strip

$$
\mathcal{E}_{p, q}(\psi):=\left\{\binom{\xi}{y} \in \mathbb{R}^{2} ;|q \xi+p-y| \leq \psi(q)\right\}
$$

and for every positive integer q, let

$$
\mathcal{E}_{q}(\psi):=\bigcup_{\substack{p \in \mathbb{Z} \\ \operatorname{gcd}(p, q)=1}} \mathcal{E}_{p, q}(\psi)
$$

be the union of all relevant strips involved in (8) for fixed q. Without loss of generality, we shall assume that $\psi(q) \leq 1 / 2$, so that the above union is disjoint. Then $\mathcal{E}(\psi)$ is equal to the limsup set

$$
\mathcal{E}(\psi)=\bigcap_{Q \geq 1} \bigcup_{q \geq Q} \mathcal{E}_{q}(\psi)
$$

As usual when dealing with limsup sets in metrical theory, we first estimate the Lebesgue measure of pairwise intersections of the subsets $\mathcal{E}_{q}(\psi)$, $q \geq 1$. We next establish a new kind of zero-one law.
3.1. Measuring intersections. In this section, we restrict our attention to points in the unit square $[0,1]^{2}$. We denote by φ the Euler totient function and by λ the Lebesgue measure on \mathbb{R}^{2}.

Lemma 2. Let $\psi: \mathbb{N} \rightarrow[0,1 / 2]$ be a function.
(i) For every positive integer q, we have

$$
\lambda\left(\mathcal{E}_{q}(\psi) \cap[0,1]^{2}\right)=2 \varphi(q) \psi(q) / q
$$

(ii) Let q and s be distinct positive integers. Then

$$
\lambda\left(\mathcal{E}_{q}(\psi) \cap \mathcal{E}_{s}(\psi) \cap[0,1]^{2}\right) \leq 4 \psi(q) \psi(s)
$$

Proof. Denote by χ_{q} the characteristic function of $[-\psi(q), \psi(q)]$. Then the characteristic function $\chi_{\mathcal{E}_{q}(\psi)}$ of the subset $\mathcal{E}_{q}(\psi) \subset \mathbb{R}^{2}$ is equal to

$$
\chi_{\mathcal{E}_{q}(\psi)}(\xi, y)=\sum_{\substack{p \in \mathbb{Z} \\ \operatorname{gcd}(p, q)=1}} \chi_{q}(q \xi+p-y)=\sum_{\substack{p \in \mathbb{Z} \\ \operatorname{gcd}(p, q)=1}} \chi_{q}(q \xi-p-y)
$$

Observe that if $\binom{\xi}{y} \in[0,1]^{2}$, the indices p of non-vanishing terms occurring in the last sum satisfy $-1 \leq p \leq q$. Integrating first with respect to x, we find

$$
\begin{aligned}
\lambda\left(\mathcal{E}_{q}(\psi) \cap[0,1]^{2}\right)= & \int_{0}^{1} \int_{0}^{1} \chi_{\mathcal{E}_{q}(\psi)}(x, y) d x d y \\
= & \sum_{\substack{ \\
-1 \leq p \leq q, \operatorname{gcd}(p, q)=1}} \int_{0}^{11} \int_{0}^{1} \chi_{q}(q x-p-y) d x d y \\
= & \int_{1-\psi(q)}^{1} \frac{-1+y+\psi(q)}{q} d y+\sum_{1 \leq p \leq q-2} \int_{0}^{1} \frac{2 \psi(q)}{q} d y \\
& +\int_{0}^{1-\psi(q)} \frac{2 \psi(q)}{q} d y+\int_{1-\psi(q)}^{1} \frac{1-y+\psi(q)}{q} d y \\
= & \frac{2 \varphi(q) \psi(q)}{q} .
\end{aligned}
$$

The first term appearing in the third equality of the above formula corresponds to the summation index $p=-1$ and the last two to $p=q-1$. We have thus proved (i).

For the second assertion, we majorize

$$
\begin{aligned}
\lambda\left(\mathcal{E}_{q}(\psi) \cap \mathcal{E}_{s}(\psi)\right. & \left.\cap[0,1]^{2}\right)=\int_{0}^{1} \int_{0}^{1} \chi_{\mathcal{E}_{q}(\psi)}(x, y) \chi_{\mathcal{E}_{s}(\psi)}(x, y) d x d y \\
& \leq \int_{0}^{1} \int_{0}^{1}\left(\sum_{p \in \mathbb{Z}} \chi_{q}(q x+p-y)\right)\left(\sum_{r \in \mathbb{Z}} \chi_{s}(s x+r-y)\right) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} \chi_{q}(\|q x-y\|) \chi_{s}(\|s x-y\|) d x d y
\end{aligned}
$$

where $\|\cdot\|$ stands as usual for the distance to the nearest integer. Now, (ii)
follows from the probabilistic independence formula

$$
\int_{0}^{1} \int_{0}^{1} \chi_{q}(\|q x-y\|) \chi_{s}(\|s x-y\|) d x d y=4 \psi(q) \psi(s),
$$

obtained by Cassels [4, p. 124, Proof (ii)].
3.2. A zero-one law. We say that a subset of \mathbb{R}^{2} is a null set if it has Lebesgue measure 0 . A set whose complement is a null set is called a full set. The goal of this section is to prove

Proposition. Let ψ be an approximating function as in Theorem 2. Then $\mathcal{E}(\psi)$ is either a null set or a full set.

To prove the proposition, it is convenient to introduce the larger set

$$
\mathcal{E}^{\prime}(\psi)=\bigcup_{k \geq 1} \mathcal{E}(k \psi)
$$

In other words, $\mathcal{E}^{\prime}(\psi)$ is the set of all points $\binom{\xi}{y}$ in \mathbb{R}^{2} for which there exist a positive real κ, depending possibly on $\binom{\xi}{y}$, and infinitely many primitive points (p, q) satisfying

$$
\begin{equation*}
q \geq 1 \quad \text { and } \quad|q \xi+p-y| \leq \kappa \psi(q) \tag{9}
\end{equation*}
$$

Observe that $\mathcal{E}(k \psi) \subseteq \mathcal{E}\left(k^{\prime} \psi\right)$ if $1 \leq k \leq k^{\prime}$. In particular, $\mathcal{E}(\psi) \subset \mathcal{E}^{\prime}(\psi)$.
Lemma 3. Assume that the approximating function $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$tends to zero at infinity. Then $\mathcal{E}^{\prime}(\psi) \backslash \mathcal{E}(\psi)$ is a null set.

Proof. We show that all sets $\mathcal{E}(k \psi), k \geq 1$, have the same Lebesgue measure. For every real y, denote by $\mathcal{E}(\psi, y) \subseteq \mathbb{R}$ the section of $\mathcal{E}(\psi)$ on the horizontal line $\mathbb{R} \times\{y\}$, i.e.

$$
\mathcal{E}(\psi, y)=\left\{\xi \in \mathbb{R} ;\binom{\xi}{y} \in \mathcal{E}(\psi)\right\} .
$$

Then, using (8), we can express

$$
\mathcal{E}(\psi, y)=\bigcap_{Q \geq 1} \bigcup_{q \geq Q} \bigcup_{\substack{p \in \mathbb{Z} \\ \operatorname{gcd}(p, q)=1}}\left[\frac{-p+y-\psi(q)}{q}, \frac{-p+y+\psi(q)}{q}\right]
$$

as a limsup set of intervals. If we restrict ourselves to a bounded part of $\mathcal{E}(\psi, y)$, the above union over p reduces to a finite one. Observe that the centers $(-p+y) / q$ of these intervals do not depend on ψ, and that their length is multiplied by the constant factor k when replacing ψ by $k \psi$. Appealing now to a result due to Cassels [5], we infer that all limsup sets $\mathcal{E}(k \psi, y), k \geq 1$, have the same Lebesgue measure. See also [8, Corollary of Lemma 2.1, p. 30]. Notice that for fixed k, the length $2 k \psi(q) / q$ of the
relevant intervals tends to 0 as q tends to infinity, as required by Lemma 2.1. By Fubini, the fibered sets

$$
\mathcal{E}(k \psi)=\coprod_{y \in \mathbb{R}}(\mathcal{E}(k \psi, y) \times\{y\}), \quad k \geq 1
$$

all have the same Lebesgue measure in \mathbb{R}^{2} as well.
Lemma 4. Let $\psi: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a non-increasing function satisfying (3). Then $\mathcal{E}^{\prime}(\psi)$ is either a null set or a full set.

Proof. The proof is based on the following observation. Let $\binom{\xi}{y} \in \mathcal{E}^{\prime}(\psi)$ and let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$ be such that $c \xi+d>0$. Then the point $\binom{\xi^{\prime}}{y^{\prime}}$ with coordinates

$$
\xi^{\prime}=\frac{a \xi+b}{c \xi+d} \quad \text { and } \quad y^{\prime}=\frac{y}{c \xi+d}
$$

belongs to $\mathcal{E}^{\prime}(\psi)$. Indeed, substituting

$$
\begin{equation*}
q=a q^{\prime}+c p^{\prime}, \quad p=b q^{\prime}+d p^{\prime} \tag{10}
\end{equation*}
$$

in (9) and dividing by $c \xi+d$, we obtain

$$
\begin{equation*}
q^{\prime} \geq 1 \quad \text { and } \quad\left|q^{\prime} \xi^{\prime}+p^{\prime}-y^{\prime}\right| \leq \frac{\kappa}{c \xi+d} \psi(q) \leq \kappa^{\prime} \psi\left(q^{\prime}\right) \tag{11}
\end{equation*}
$$

for some $\kappa^{\prime}>0$ independent of q^{\prime}. The positivity of q^{\prime} is proved as follows. Note that (9) implies the estimate

$$
p=-q \xi+\mathcal{O}_{\xi, y}(1)
$$

Then, inverting the linear substitution (10), we find

$$
q^{\prime}=d q-c p=q(c \xi+d)+\mathcal{O}_{\gamma, \xi, y}(1)
$$

Since we have assumed that $c \xi+d>0$, the term $q(c \xi+d)$ is arbitrarily large when q is large enough. The condition (3) now shows that $\psi(q) \asymp \psi\left(q^{\prime}\right)$. Thus (11) is satisfied for infinitely many primitive points $\left(p^{\prime}, q^{\prime}\right)$, since the linear substitution (10) is unimodular. We have shown that $\binom{\xi^{\prime}}{y^{\prime}} \in \mathcal{E}^{\prime}(\psi)$.

We now prove that $\mathcal{E}^{\prime}(\psi) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)$is either a full subset or a null subset of the half-plane $\mathbb{R} \times \mathbb{R}^{+}$. To that end, we consider the map

$$
\Phi: \mathbb{R} \times \mathbb{R}^{+} \rightarrow \mathbb{R} \times \mathbb{R}^{+} \quad \text { defined by } \quad \Phi\left(\binom{x}{y}\right)=\binom{x / y}{1 / y}
$$

Clearly Φ is a continuous involution of $\mathbb{R} \times \mathbb{R}^{+}$. The image

$$
\Omega:=\Phi\left(\mathcal{E}^{\prime}(\psi) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)\right)
$$

is formed by all points of the type

$$
\binom{u}{v}=\binom{\xi / y}{1 / y}
$$

where $\binom{\xi}{y}$ ranges over $\mathcal{E}^{\prime}(\psi) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)$. Now, the above condition $c \xi+d>0$ is obviously equivalent to $c u+d v>0$ since y is positive. Then the point

$$
\Phi\binom{a u+b v}{c u+d v}=\binom{\frac{a u+b v}{c u+d v}}{\frac{1}{c u+d v}}=\binom{\frac{a \xi+b}{c \xi+d}}{\frac{y}{c \xi+d}}
$$

belongs to $\mathcal{E}^{\prime}(\psi) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)$, by the preceding observation. Applying the involution Φ, we find that

$$
\Phi\left(\binom{\frac{a \xi+b}{c \xi+d}}{\frac{y}{c \xi+d}}\right)=\binom{a u+b v}{c u+d v}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{u}{v}
$$

belongs to Ω. In other words, setting $\Gamma=\mathrm{SL}(2, \mathbb{Z})$, we have established the inclusion

$$
(\Gamma \Omega) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right) \subseteq \Omega
$$

Since the reverse inclusion is obvious, we have $\Omega=(\Gamma \Omega) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)$. Assuming that Ω is not a null set, the ergodicity of the linear action of Γ on $\mathbb{R}^{2}\left[13\right.$ shows that $\Gamma \Omega$ is a full set in \mathbb{R}^{2}. Hence Ω is a full set in the half-plane $\mathbb{R} \times \mathbb{R}^{+}$. Transforming now Ω by Φ, we find that

$$
\Phi(\Omega)=\mathcal{E}^{\prime}(\psi) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)
$$

is also a full set in $\mathbb{R} \times \mathbb{R}^{+}$, thus proving the claim.
We finally use another transformation to carry the zero-one law from the positive half-plane $\mathbb{R} \times \mathbb{R}^{+}$to the negative one $\mathbb{R} \times \mathbb{R}^{-}$. Writing (9) in the equivalent form

$$
q \geq 1 \quad \text { and } \quad|q(-\xi)+(-p)-(-y)| \leq \kappa \psi(q)
$$

shows that $\mathcal{E}^{\prime}(\psi)$ is invariant under the symmetry $\binom{\xi}{y} \mapsto\binom{-\xi}{-y}$ which maps $\mathbb{R} \times \mathbb{R}^{+}$onto $\mathbb{R} \times \mathbb{R}^{-}$. Therefore $\mathcal{E}^{\prime}(\psi) \cap\left(\mathbb{R} \times \mathbb{R}^{-}\right)$is a null set or a full set in $\mathbb{R} \times \mathbb{R}^{-}$whenever $\mathcal{E}^{\prime}(\psi) \cap\left(\mathbb{R} \times \mathbb{R}^{+}\right)$is, respectively, a null set or a full set in $\mathbb{R} \times \mathbb{R}^{+}$.

Now, the combination of Lemmas 3 and 4 obviously yields our proposition.
3.3. Concluding the proof of Theorem 2. Assume first that $\sum \psi(\ell)$ converges. We have to show that the set

$$
\mathcal{E}(\psi)=\limsup _{q \rightarrow \infty} \mathcal{E}_{q}(\psi)
$$

has zero Lebesgue measure. Lemma 2 shows that the partial sums

$$
\sum_{q=1}^{Q} \lambda\left(\mathcal{E}_{q}(\psi) \cap[0,1]^{2}\right)=2 \sum_{q=1}^{Q} \frac{\varphi(q) \psi(q)}{q} \leq 2 \sum_{q=1}^{Q} \psi(q)
$$

converge ${ }^{1}$). Then the Borel-Cantelli Lemma ensures that the limsup set $\mathcal{E}(\psi) \cap[0,1]^{2}$ is a null set. Thus $\mathcal{E}(\psi)$ cannot be a full set. Now, the above proposition tells us that $\mathcal{E}(\psi)$ is a null set.

We now consider the case of a divergent series $\sum \psi(\ell)$. Observe that

$$
\begin{equation*}
\frac{1}{2} \sum_{q=1}^{Q} \psi(q) \leq \sum_{q=1}^{Q} \frac{\varphi(q) \psi(q)}{q} \leq \sum_{q=1}^{Q} \psi(q) \tag{12}
\end{equation*}
$$

for any large integer Q, since the sequence $(\psi(\ell))_{\ell \geq 1}$ is non-increasing. The right inequality is obvious, while the left one easily follows by Abel summation. See for instance Chapter 2 of [8], where full details are provided. By Lemma 2 and (12), the sums

$$
\sum_{q=1}^{Q} \lambda\left(\mathcal{E}_{q}(\psi) \cap[0,1]^{2}\right)=2 \sum_{q=1}^{Q} \frac{\varphi(q) \psi(q)}{q} \geq \sum_{q=1}^{Q} \psi(q)
$$

are then unbounded. Then, using a classical converse to the Borel-Cantelli Lemma, we have the lower bound

$$
\begin{align*}
\lambda\left(\mathcal{E}(\psi) \cap[0,1]^{2}\right) & =\lambda\left(\limsup _{q \rightarrow \infty}\left(\mathcal{E}_{q}(\psi) \cap[0,1]^{2}\right)\right) \tag{13}\\
& \geq \limsup _{Q \rightarrow \infty} \frac{\left(\sum_{q=1}^{Q} \lambda\left(\mathcal{E}_{q}(\psi) \cap[0,1]^{2}\right)\right)^{2}}{\sum_{q=1}^{Q} \sum_{s=1}^{Q} \lambda\left(\mathcal{E}_{q}(\psi) \cap \mathcal{E}_{s}(\psi) \cap[0,1]^{2}\right)} .
\end{align*}
$$

See for instance Lemma 2.3 in [8]. Lemma 2 and (12) now show that the numerator on the right hand side of (13) equals

$$
4\left(\sum_{q=1}^{Q} \frac{\varphi(q) \psi(q)}{q}\right)^{2} \geq\left(\sum_{q=1}^{Q} \psi(q)\right)^{2}
$$

when Q is large, while the denominator is bounded from above by

$$
4 \sum_{\substack{q=1, s=1 \\ q \neq s}}^{Q} \psi(q) \psi(s)+2 \sum_{q=1}^{Q} \psi(q) \leq 4\left(\sum_{q=1}^{Q} \psi(q)\right)^{2}+2 \sum_{q=1}^{Q} \psi(q) .
$$

Thus (13) yields the lower bound

$$
\lambda\left(\mathcal{E}(\psi) \cap[0,1]^{2}\right) \geq 1 / 4
$$

Hence $\mathcal{E}(\psi)$ is not a null set; it is thus a full set according to our proposition.
4. An approach to our problem. In this section, we apply a transference principle between homogeneous and inhomogeneous approximation,

[^1]as displayed in Chapter V of [4] and in [3], for constructing explicit integer solutions of the inequality
\[

$$
\begin{equation*}
|q \xi+p-y| \leq 2 /|q| \tag{14}
\end{equation*}
$$

\]

Let $\left(p_{k} / q_{k}\right)_{k \geq 0}$ be the sequence of convergents to the irrational number ξ. The theory of continued fractions (see for instance the monograph [9]) tells us that

$$
\begin{equation*}
\left|q_{k} \xi-p_{k}\right| \leq 1 / q_{k+1} \quad \text { and } \quad p_{k} q_{k+1}-p_{k+1} q_{k}=(-1)^{k+1} \tag{15}
\end{equation*}
$$

for any $k \geq 0$. Setting $\nu_{k}=(-1)^{k+1} q_{k} y$, we thus have the relations

$$
\begin{equation*}
\nu_{k} q_{k+1}+\nu_{k+1} q_{k}=0 \quad \text { and } \quad \nu_{k}\left(q_{k+1} \xi-p_{k+1}\right)+\nu_{k+1}\left(q_{k} \xi-p_{k}\right)=y \tag{16}
\end{equation*}
$$

Now, let n_{k} be either $\left\lfloor\nu_{k}\right\rfloor$ or $\left\lceil\nu_{k}\right\rceil\left({ }^{2}\right)$. Then

$$
\begin{equation*}
\left|\nu_{k}-n_{k}\right|<1 \tag{17}
\end{equation*}
$$

and n_{k} is either equal to $(-1)^{k+1}\left\lfloor y q_{k}\right\rfloor$ or to $(-1)^{k+1}\left\lceil y q_{k}\right\rceil$. Setting

$$
\begin{equation*}
p=-n_{k} p_{k+1}-n_{k+1} p_{k} \quad \text { and } \quad q=n_{k} q_{k+1}+n_{k+1} q_{k} \tag{18}
\end{equation*}
$$

we deduce from (16) the expressions

$$
\begin{align*}
q \xi+p-y & =n_{k}\left(q_{k+1} \xi-p_{k+1}\right)+n_{k+1}\left(q_{k} \xi-p_{k}\right)-y \tag{19}\\
& =\left(n_{k}-\nu_{k}\right)\left(q_{k+1} \xi-p_{k+1}\right)+\left(n_{k+1}-\nu_{k+1}\right)\left(q_{k} \xi-p_{k}\right)
\end{align*}
$$

and

$$
\begin{equation*}
q=\left(n_{k}-\nu_{k}\right) q_{k+1}+\left(n_{k+1}-\nu_{k+1}\right) q_{k} \tag{20}
\end{equation*}
$$

Recall that $q_{k} \xi-p_{k}$ and $q_{k+1} \xi-p_{k+1}$ have opposite signs. Assuming that $n_{k}-\nu_{k}$ and $n_{k+1}-\nu_{k+1}$ have the same sign, we infer from (19), (20) and (15), (17) that

$$
\begin{equation*}
|q \xi+p-y|<1 / q_{k+1} \quad \text { and } \quad|q|<2 q_{k+1} \tag{21}
\end{equation*}
$$

Otherwise, we have

$$
\begin{equation*}
|q \xi+p-y|<2 / q_{k+1} \quad \text { and } \quad|q|<q_{k+1} \tag{22}
\end{equation*}
$$

The inequalities (21) and (22) obviously imply (14).
Since the linear substitution (18) is unimodular, the integers p and q are coprime if and only if n_{k} and n_{k+1} are coprime. Recall that the two choices $n_{k}=\left\lfloor\nu_{k}\right\rfloor$ and $n_{k}=\left\lceil\nu_{k}\right\rceil$ are admissible, both for n_{k} and n_{k+1}. It thus remains to find indices k for which at least one of the coprimality conditions

$$
\begin{array}{ll}
\operatorname{gcd}\left(\left\lfloor y q_{k}\right\rfloor,\left\lfloor y q_{k+1}\right\rfloor\right)=1, & \operatorname{gcd}\left(\left\lceil y q_{k}\right\rceil,\left\lceil y q_{k+1}\right\rceil\right)=1 \\
\operatorname{gcd}\left(\left\lfloor y q_{k}\right\rfloor,\left\lceil y q_{k+1}\right\rceil\right)=1, & \operatorname{gcd}\left(\left\lceil y q_{k}\right\rceil,\left\lfloor y q_{k+1}\right\rfloor\right)=1 \tag{23}
\end{array}
$$

[^2]is satisfied. Note that obviously there is no such $k \geq 0$ when y is an integer not equal to 1 or to -1 . Otherwise, the existence of infinitely many indices k satisfying (23) is a non-trivial problem that we leave hanging.

Let us mention that the proof of (1) in [6] follows the same idea, finding a primitive integer point inside the square centered at the point $\left(\nu_{k}, \nu_{k+1}\right)$ $\in \mathbb{R}^{2}$ with side $C \log \left|\nu_{k}\right| / \log \log \left|\nu_{k}\right|$ for some suitable large absolute constant C.
4.1. Proof of Theorem 3. We quote the following metrical result due to Harman (Theorem 8.3 in [8]). Assume that the series (5) diverges. Then for almost all positive real numbers y, there exist infinitely many indices k such that the integer part $\left\lfloor y q_{k}\right\rfloor$ is a prime number. These indices k satisfy (23) since, assuming for simplicity that y is irrational, either $\left\lfloor y q_{k+1}\right\rfloor$ or $\left\lceil y q_{k+1}\right\rceil=\left\lfloor y q_{k+1}\right\rfloor+1$ is not divisible by $\left\lfloor y q_{k}\right\rfloor$ and is thus relatively prime to $\left\lfloor y q_{k}\right\rfloor$. Hence (14) has infinitely many coprime solutions (p, q) for almost every positive real number y. Writing now (14) in the equivalent form

$$
|(-q) \xi+(-p)-(-y)| \leq 2 /|q|
$$

shows that, given ξ, the set of all real numbers y for which (14) has infinitely many coprime solutions is invariant under the symmetry $y \mapsto-y$. The first assertion is thus established. To complete the proof, note that

$$
\lim _{k \rightarrow \infty} \frac{\log q_{k}}{k}=\frac{\pi^{2}}{12 \log 2}
$$

for almost every ξ by the Khintchine-Lévy Theorem (see equation (4.18) in [2]). Thus the series (5) diverges for almost every ξ.
5. Generic density exponents. In this section we prove Theorem 4, as a consequence of the Borel-Cantelli Lemma combined with the following counting result.

Lemma 5. Let \mathbf{x} be a point in \mathbb{R}^{2} whose orbit $\Gamma \mathbf{x}$ is dense in \mathbb{R}^{2}. For every symmetric compact set Ω in $\mathbb{R}^{2} \backslash\{\mathbf{0}\}$ there exists $c>0$ such that

$$
\operatorname{Card}\{\gamma \in \Gamma ; \gamma \mathbf{x} \in \Omega,|\gamma| \leq T\} \leq c T
$$

for any real $T \geq 1$.
Proof. Ledrappier [11] has shown that the limit formula

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{\gamma \in \Gamma,|\gamma| \leq T} f(\gamma \mathbf{x})=\frac{4}{|\mathbf{x}| \operatorname{vol}(\Gamma \backslash \operatorname{SL}(2, \mathbb{R}))} \int \frac{f(\mathbf{y})}{|\mathbf{y}|} d \mathbf{y}
$$

holds for any even continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ having compact support on $\mathbb{R}^{2} \backslash\{\mathbf{0}\}$, with a suitable normalisation of Haar measure on SL $(2, \mathbb{R})$. Approximating uniformly from above and from below the characteristic func-
tion of Ω by even continuous functions, we deduce that

$$
\lim _{T \rightarrow \infty} \frac{\operatorname{Card}\{\gamma \in \Gamma ; \gamma \mathbf{x} \in \Omega,|\gamma| \leq T\}}{T}=\frac{4}{|\mathbf{x}| \operatorname{vol}(\Gamma \backslash \operatorname{SL}(2, \mathbb{R}))} \int_{\Omega} \frac{d \mathbf{y}}{|\mathbf{y}|}
$$

Lemma 5 immediately follows.
For any $\mathbf{y} \in \mathbb{R}^{2}$ and any positive real number r, we denote by

$$
B(\mathbf{y}, r)=\left\{\mathbf{z} \in \mathbb{R}^{2} ;|\mathbf{z}-\mathbf{y}| \leq r\right\}
$$

the closed disc centered at \mathbf{y} with radius r.
LEMMA 6. Let \mathbf{x} be a point in \mathbb{R}^{2} whose orbit $\Gamma \mathbf{x}$ is dense in $\mathbb{R}^{2}, \Omega a$ symmetric compact set in $\mathbb{R}^{2} \backslash\{\mathbf{0}\}$ and μ a real number $>1 / 2$. For every integer $n \geq 1$, put

$$
\mathcal{B}_{n}=\bigcup_{\substack{\gamma \in \Gamma \\|\gamma|=n, \gamma \mathbf{x} \in \Omega}} B\left(\gamma \mathbf{x}, n^{-\mu}\right)
$$

Then

$$
\mathcal{B}:=\limsup _{n \rightarrow \infty} \mathcal{B}_{n}=\bigcap_{N \geq 1} \bigcup_{n \geq N} \mathcal{B}_{n}=\bigcap_{N \geq 1} \bigcup_{\substack{\gamma \in \Gamma \\|\gamma| \geq N, \gamma \mathbf{x} \in \Omega}} B\left(\gamma \mathbf{x},|\gamma|^{-\mu}\right)
$$

is a null set.
Proof. We apply the Borel-Cantelli Lemma to prove that the series $\sum_{n \geq 1} \lambda\left(\mathcal{B}_{n}\right)$ converges if $\mu>1 / 2$.
$\overline{\text { For every positive integer } n \text {, set }}$

$$
M_{n}=\operatorname{Card}\{\gamma \in \Gamma ; \gamma \mathbf{x} \in \Omega,|\gamma|=n\}
$$

Lemma 5 gives us the upper bound

$$
\begin{equation*}
M_{1}+\cdots+M_{n}=\operatorname{Card}\{\gamma \in \Gamma ; \gamma \mathbf{x} \in \Omega,|\gamma| \leq n\} \leq c n \tag{24}
\end{equation*}
$$

for some $c>0$ independent of $n \geq 1$. Since a ball of radius r has Lebesgue measure $4 r^{2}$, we trivially bound from above

$$
\lambda\left(\mathcal{B}_{n}\right) \leq \sum_{\substack{\gamma \in \Gamma \\|\gamma|=n, \gamma \mathbf{x} \in \Omega}} 4 n^{-2 \mu}=4 M_{n} n^{-2 \mu}
$$

Summing by parts, we deduce from (24) that

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{M_{n}}{n^{2 \mu}} & =\sum_{n=1}^{N-1}\left(M_{1}+\cdots+M_{n}\right)\left(\frac{1}{n^{2 \mu}}-\frac{1}{(n+1)^{2 \mu}}\right)+\frac{M_{1}+\cdots+M_{N}}{N^{2 \mu}} \\
& \leq c \sum_{n=1}^{N-1} n\left(\frac{1}{n^{2 \mu}}-\frac{1}{(n+1)^{2 \mu}}\right)+\frac{c N}{N^{2 \mu}}=c \sum_{n=1}^{N} \frac{1}{n^{2 \mu}}
\end{aligned}
$$

The partial sums

$$
\sum_{n=1}^{N} \lambda\left(\mathcal{B}_{n}\right) \leq 4 \sum_{n=1}^{N} \frac{M_{n}}{n^{2 \mu}} \leq 4 c \sum_{n=1}^{N} \frac{1}{n^{2 \mu}}
$$

thus converge if $\mu>1 / 2$.
5.1. Proof of Theorem 4. Suppose on the contrary that $\mu_{\Gamma}(\mathbf{x})>1 / 2$. Fix a real μ with $1 / 2<\mu<\mu_{\Gamma}(\mathbf{x})$. Then for almost all $\mathbf{y} \in \mathbb{R}^{2}$, we have $\mu(\mathbf{x}, \mathbf{y})>\mu$. This means that there exist infinitely many $\gamma \in \Gamma$ satisfying (6), or equivalently that \mathbf{y} belongs to infinitely many balls of the form $B\left(\gamma \mathbf{x},|\gamma|^{-\mu}\right)$. We now restrict our attention to points \mathbf{y} with $\mu(\mathbf{x}, \mathbf{y})>\mu$ lying in an annulus

$$
\Omega^{\prime}=\left\{\mathbf{z} \in \mathbb{R}^{2} ; a^{\prime} \leq|\mathbf{z}| \leq b^{\prime}\right\}
$$

where $b^{\prime}>a^{\prime}>0$ are arbitrarily fixed. Since $\mathbf{y} \in \Omega^{\prime} \cap B\left(\gamma \mathbf{x},|\gamma|^{-\mu}\right)$, the triangle inequality yields

$$
a^{\prime}-|\gamma|^{-\mu} \leq|\gamma \mathbf{x}| \leq b^{\prime}+|\gamma|^{-\mu}
$$

If $a<a^{\prime}$ and $b>b^{\prime}$, then the center $\gamma \mathbf{x}$ lies in the larger annulus

$$
\Omega=\left\{\mathbf{z} \in \mathbb{R}^{2} ; a \leq|\mathbf{z}| \leq b\right\}
$$

provided that $|\gamma|$ is large enough. It follows that \mathbf{y} falls inside the union of balls

$$
\bigcup_{\substack{\gamma \in \Gamma \\|\gamma| \geq N, \gamma \mathbf{x} \in \Omega}} B\left(\gamma \mathbf{x},|\gamma|^{-\mu}\right)
$$

considered in Lemma 6 for every integer N large enough, and thus $\mathbf{y} \in \mathcal{B}$. However, Lemma 6 asserts that \mathcal{B} is a null set, which is a contradiction.

Acknowledgements. We are grateful to Martin Widmer for calling our attention to the Chalk-Erdős Theorem of [6].

This research was partly supported by Agence Nationale de la Recherche (HAMOT and Perturbations).

References

[1] V. Beresnevich, V. Bernik, M. Dodson and S. Velani, Classical metric diophantine approximation revisited, in: Analytic Number Theory, essays in honour of Klaus Roth, Cambridge Univ. Press, 2009, 38-61.
[2] P. Billingsley, Ergodic Theory and Information, Wiley, 1965.
[3] Y. Bugeaud and M. Laurent, Exponents of inhomogeneous Diophantine approximation, Moscow Math. J. 5 (2005), 747-766.
[4] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Math. Math. Phys. 99, Cambridge Univ. Press, 1957.
[5] J. W. S. Cassels, Some metrical theorems in Diophantine approximation I, Proc. Cambridge Philos. Soc. 46 (1950), 209-218.
[6] J. H. H. Chalk and P. Erdős, On the distribution of primitive lattice points in the plane, Canad. Math. Bull. 2 (1959), 91-96.
[7] S. G. Dani and A. Nogueira, On $\mathrm{SL}(n, \mathbb{Z})_{+}$-orbits on \mathbb{R}^{n} and positive integral solutions of linear inequalities, J. Number Theory 129 (2009), 2526-2529.
[8] G. Harman, Metric Number Theory, London Math. Soc. Monogr. 18, Oxford Univ. Press, 1998.
[9] A. Khintchine, Continued Fractions, Dover Publ., 1997.
[10] M. Laurent and A. Nogueira, Approximation to points in the plane by $\operatorname{SL}(2, \mathbb{Z})$ orbits, J. London Math. Soc. 85 (2012), 409-429.
[11] F. Ledrappier, Distribution des orbites des réseaux sur le plan réel, C. R. Acad. Sci. Paris Sér. I 329 (1999), 61-64.
[12] F. Maucourant and B. Weiss, Lattice actions on the plane revisited, Geom. Dedicata 157 (2012), 1-21.
[13] C. Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966), 154-178.
[14] W. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, 1980.
[15] V. G. Sprindžuk, Metric Theory of Diophantine Approximations, V. H. Winston, 1979.

Michel Laurent, Arnaldo Nogueira
Institut de Mathématiques de Luminy
Case 907
163 avenue de Luminy
13288 Marseille Cédex 9, France
E-mail: michel-julien.laurent@univ-amu.fr
arnaldo.nogueira@univ-amu.fr

[^0]: 2010 Mathematics Subject Classification: 11J20, 37A17.
 Key words and phrases: diophantine approximation, primitive points, density exponents.

[^1]: $\left({ }^{1}\right)$ Here again we assume without loss of generality that $\psi(q) \leq 1 / 2$ for every $q \geq 1$, so that Lemma 2 may be applied.

[^2]: $\left({ }^{2}\right)$ As usual $\lfloor x\rfloor$ and $\lceil x\rceil$ stand respectively for the floor and the ceiling of the real number x. Then $\lceil x\rceil=\lfloor x\rfloor+1$, unless x is an integer in which case $\lfloor x\rfloor=\lceil x\rceil=x$.

