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1. Introduction. Let G be a finite abelian group. The Davenport con-
stant D(G) is the smallest integer ` ∈ N such that every sequence S over G
of length |S| ≥ ` has a nontrivial zero-sum subsequence. This invariant has
been studied since the 1960s, and it naturally occurs in various branches of
combinatorics, number theory and geometry. Its precise value in terms of the
group invariants is known for p-groups and for groups of rank at most two,
among others. On the other hand, it is still unknown, for example, even for
groups of the form C3

n. The reader may want to consult one of the surveys
[10, 13] for more information.

Inverse zero-sum problems ask for the structure of sequences that are
extremal with respect to a certain property. Starting with the inverse prob-
lem for the Erdős–Ginzburg–Ziv constant in the 1980s, inverse zero-sum
problems have attracted considerable attention in the last decade, partly
motivated by applications to the theory of nonunique factorizations (see
[14] and the two surveys mentioned above).

In the present paper, we study the inverse problem with respect to the
Davenport constant. Thus we investigate the structure of minimal zero-sum
sequences having length D(G). Cyclic groups, elementary 2-groups, C2⊕C4

and C3⊕C3 are groups having (up to automorphism) precisely one minimal
zero-sum sequence of length D(G), and their structure is well-understood
([7, Section 5]). Let S be a minimal zero-sum sequence of length D(G). For
some very special types of groups, the structure of S has been determined
(see [8, 19, 20]). However, for general finite abelian groups, there is not even
a conjecture on the structure of S, though the number of elements in S
whose order equals the exponent of the group has been investigated (see
recent progress by Girard [15]). Here we concentrate on groups of the form
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G = Cn ⊕ Cn with n ≥ 2. Then D(G) = 2n − 1, and the inverse problem
with respect to G was first studied in [7]. We say that G has Property B if
every minimal zero-sum sequence S over G of length |S| = 2n−1 contains an
element with multiplicity n−1. It is easy to check that, if G has Property B,
then the structure of all minimal zero-sum sequences over G is completely
determined (see Lemma 2.3). The standing conjecture is that every group
G of the above form has Property B, and this conjecture is supported by a
variety of partial results (see [13, Section 5.2]). The main aim of the present
paper is to show that Property B is multiplicative for groups of odd order.

Theorem. Let G = Cmn ⊕ Cmn with m,n ∈ N odd. If both Cm ⊕ Cm
and Cn ⊕ Cn have Property B, then G has Property B.

There is an earlier result of Gao and Geroldinger [9] stating that, if
n ∈ N≥6 and Cn⊕Cn has Property B, then C2n⊕C2n has Property B (also,
simultaneously to this work, it was shown that C3n ⊕ C3n has Property
B by Bhowmik, Halupczok and Schlage-Puchta, who did not publish their
manuscript). Based on the above, the numerical verification of Property B
for small n ≤ 10 (for n ≤ 6, see [9, Proposition 4.2]; the cases n ∈ {8, 9, 10},
and more, are settled in [2]), and a recent result of Schmid [21] on the
structure of minimal zero-sum sequences in general groups of rank two, the
above theorem implies that if G = Cn1 ⊕ Cn2 with 1 < n1 |n2 is a group
of rank two, and for every prime divisor p of n1 the group Cp ⊕ Cp has
Property B, then the minimal zero-sum sequences of maximal length over G
are explicitly characterized. More precisely, we have the following corollary.

Corollary. Let G = Cn1 ⊕ Cn2 with 1 < n1 |n2 and suppose that,
for every prime divisor p of n1, the group Cp ⊕ Cp has Property B. Then
Cn1 ⊕ Cn1 has Property B, and a sequence S over G of length D(G) =
n1 + n2 − 1 is a minimal zero-sum sequence if and only if it has one of the
following two forms:

S = e
ord(e1)−1
1

ord(e2)∏
ν=1

(−xνe1 + e2),

where {e1, e2} is a basis of G, x1, . . . , xord(e2) ∈ [0, ord(e1) − 1], and x1 +
· · ·+ xord(e2) ≡ −1 mod ord(e1), or

S = gsn1−1
1

n2+(1−s)n1∏
ν=1

(−xνg1 + g2),

where {g1, g2} is a generating set of G with ord(g2) = n2, s ∈ [1, n2/n1],
x1, . . . , xn2+(1−s)n1

∈ [0, n1 − 1], x1 + · · ·+ xn2+(1−s)n1
= n1 − 1, and (s = 1

or n1g1 = n1g2).
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Thus the complete characterization of all minimal zero-sum sequences of
length D(G) in groups of rank two is reduced to the verification of Property
B in groups of the form Cp ⊕ Cp with p prime. Property B is verified for
small primes, and its validity, in general, is supported by other partial results
(see [13, Section 5.2]). Much recent progress has been achieved by Bhowmik,
Halupczok and Schlage-Puchta ([1, 2]).

In Section 2, we fix our notation and gather the necessary tools (apart
from former work on Property B and classical addition theorems, we use
a confirmed conjecture of Y. ould Hamidoune; see Theorem 2.7). Section 3
contains some straightforward lemmas. The proof of the Theorem consists of
two major parts. The first is given in Section 4. The second, more involved
portion is given in Section 5. The Corollary follows from the results men-
tioned above, and its proof needs only a few lines and is given in Section 6.

2. Preliminaries. Our notation and terminology are consistent with
[11] and [14]. We briefly gather some key notions and fix the notation
concerning sequences over abelian groups. Let N denote the set of posi-
tive integers and let N0 = N ∪ {0}. For real numbers a, b ∈ R, we set
[a, b] = {x ∈ Z | a ≤ x ≤ b}. Throughout, all abelian groups will be written
additively. For n ∈ N, let Cn denote a cyclic group with n elements. Let G
be an abelian group.

Let A,B ⊂ G be nonempty subsets. Then A+B = {a+b | a ∈ A, b ∈ B}
denotes their sumset and A − B = {a − b | a ∈ A, b ∈ B} their difference
set. The stabilizer of A is defined as Stab(A) = {g ∈ G | g+A = A}, and A
is called periodic if Stab(A) 6= {0}.

An s-tuple (e1, . . . , es) of elements of G is said to be independent if ei 6= 0
for all i ∈ [1, s] and, for every s-tuple (m1, . . . ,ms) ∈ Zs,

m1e1 + · · ·+mses = 0 implies m1e1 = · · · = mses = 0.

An s-tuple (e1, . . . , es) of elements of G is called a basis if it is independent
and G = 〈e1〉 ⊕ · · · ⊕ 〈es〉.

Let G = Cn ⊕ Cn with n ≥ 2, and let (e1, e2) be a basis of G. An
endomorphism ϕ : G→ G with

(ϕ(e1), ϕ(e2)) = (e1, e2) ·
(
a b

c d

)
, where a, b, c, d ∈ Z,

is an automorphism if and only if (ϕ(e1), ϕ(e2)) is a basis, which is equivalent
to gcd(ad − bc, n) = 1. If f1 ∈ G with ord(f1) = n, then clearly there is an
f2 ∈ G such that (f1, f2) is a basis of G.
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Let F(G) be the free abelian monoid with basis G. The elements of F(G)
are called sequences over G. We write sequences S ∈ F(G) in the form

S =
∏
g∈G

gvg(S) with vg(S) ∈ N0, and vg(S) = 0 for almost all g ∈ G.

We call vg(S) the multiplicity of g in S, and we say that S contains g if
vg(S) > 0. A sequence S1 is called a subsequence of S if S1 |S in F(G)
(equivalently, vg(S1) ≤ vg(S) for all g ∈ G). Note that for two sequences
S, T ∈ F(G), gcd(S, T ) is the longest subsequence dividing both S and T .
If a sequence S ∈ F(G) is written in the form S = g1 · . . . · gl, we tacitly
assume that l ∈ N0 and g1, . . . , gl ∈ G.

For a sequence

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ∈ F(G),

we call

• |S| = l =
∑
g∈G

vg(S) ∈ N0 the length of S,

• h(S) = max{vg(S) | g ∈ G} ∈ [0, |S|] the maximum of the multiplic-
ities of S,
• supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S,

• σ(S) =
l∑

i=1

gi =
∑
g∈G

vg(S)g ∈ G the sum of S,

• Σk(S) =
{∑
i∈I

gi

∣∣∣ I ⊂ [1, l] with |I| = k
}

the set of k-term subsums

of S, for all k ∈ N,
• Σ≤k(S) =

⋃
j∈[1,k]

Σj(S), Σ≥k(S) =
⋃
j≥k

Σj(S),

• Σ(S) = Σ≥1(S) the set of (all) subsums of S.

The sequence S is called

• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if 1 6= S, σ(S) = 0, and every S′ |S with

1 ≤ |S′| < |S| is zero-sum free.

We denote by A(G) ⊂ F(G) the set of all minimal zero-sum sequences
over G. Every map of abelian groups ϕ : G→ H extends to a homomorphism
ϕ : F(G)→ F(H) where ϕ(S) = ϕ(g1) · . . . ·ϕ(gl). We say that ϕ is constant
on S if ϕ(g1) = · · · = ϕ(gl). If ϕ is a homomorphism, then ϕ(S) is a zero-sum
sequence if and only if σ(S) ∈ Ker(ϕ).
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Definition 2.1. Let G be a finite abelian group with exponent n.

1. Let D(G) denote the smallest integer ` ∈ N such that every sequence
S ∈ F(G) of length |S| ≥ ` has a nontrivial zero-sum subsequence.
Equivalently, we have D(G) = max({|S| | S ∈ A(G)}), and D(G) is
called the Davenport constant of G.

2. Let η(G) denote the smallest integer ` ∈ N such that every sequence
S ∈ F(G) of length |S| ≥ ` has a zero-sum subsequence T of length
|T | ∈ [1, n].

3. We say that G has Property C if every sequence S over G of length
|S| = η(G)− 1, with no zero-sum subsequence of length in [1, n], has
the form S = Tn−1 for some sequence T over G.

Lemma 2.2. Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 |n2.

1. We have D(G) = n1 + n2 − 1 and η(G) = 2n1 + n2 − 2.
2. If n1 = n2 and G has Property B, then G has Property C.

Proof. 1. See [14, Theorem 5.8.3].
2. See [9, Theorem 6.2] and [10, Theorem 6.7.2(b)].

Results on η(G) for groups of higher rank may be found in [6, 5, 12, 4, 22].

Lemma 2.3. Let G = Cn ⊕ Cn with n ≥ 2.

1. The following statements are equivalent:

(a) If S ∈ F(G), |S| = 3n − 3 and S has no zero-sum subsequence
T of length |T | ≥ n, then there exists some a ∈ G such that
0n−1an−2 |S.

(b) If S ∈ F(G) is zero-sum free and |S| = 2n− 2, then an−2 |S for
some a ∈ G.

(c) G has Property B. Namely, if S ∈ A(G) and |S| = 2n − 1, then
an−1 |S for some a ∈ G.

(d) If S ∈ A(G) and |S| = 2n− 1, then there exists a basis (e1, e2) of
G and integers x1, . . . , xn ∈ [0, n−1], with x1+· · ·+xn ≡ 1 mod n,
such that

S = en−1
1

n∏
ν=1

(xνe1 + e2).

2. Let S ∈ A(G) be of length |S| = 2n−1 and e1 ∈ G with ve1(S) = n−1.
If (e1, e′2) is a basis of G, then there exist some b ∈ [0, n − 1] and
a′1, . . . , a

′
n ∈ [0, n − 1], with gcd(b, n) = 1 and

∑n
ν=1 a

′
ν ≡ 1 mod n,

such that

S = en−1
1

n∏
ν=1

(a′νe1 + be′2).
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3. If S ∈ A(G) has length |S| = 2n − 1, then ord(g) = n for all g ∈
supp(S).

Proof. 1. See [14, Theorem 5.8.7].
2. This follows easily from item 1; for details see [9, Proposition 4.1].
3. See [14, Theorem 5.8.4].

The characterization in Lemma 2.3.1 gives rise to the following definition.

Definition 2.4. Let G = Cn ⊕ Cn with n ≥ 2.

1. Let Υ (G) be the set of all S ∈ A(G) for which there exists a basis
(e1, e2) of G and integers x1, . . . , xn ∈ [0, n− 1], with x1 + · · ·+ xn ≡
1 mod n, such that S = en−1

1

∏n
ν=1(xνe1 + e2).

2. Let Υu(G) be the set of those S ∈ Υ (G) with a unique term of multi-
plicity n− 1, and let Υnu(G) = Υ (G) \Υu(G) be those S ∈ Υ (G) with
a nonunique term of multiplicity n− 1.

Thus, by Lemma 2.3.1, a group G = Cn⊕Cn with n ≥ 2 has Property B
if and only if {S ∈ A(G) | |S| = 2n− 1} = Υ (G).

Lemma 2.5. Let G = Cmn ⊕ Cmn with m,n ≥ 2, let S ∈ A(G) be of
length |S| = 2mn − 1, and let ϕ : G → G denote the multiplication by m
homomorphism.

1. ϕ(S) is not a product of 2m zero-sum subsequences. Every zero-sum
subsequence T of ϕ(S) of length |T | ∈ [1, n] has length n, and 0 /∈
supp(ϕ(S)).

2. S may be written in the form S = W0 · . . . ·W2m−2, where W0, . . . ,
W2m−2 ∈ F(G) with |W0| = 2n − 1, |W1| = · · · = |W2m−2| = n and
σ(W0), . . . , σ(W2m−2) ∈ Ker(ϕ).

Proof. See [9, Lemma 3.14].

The following is the Erdős–Ginzburg–Ziv Theorem and the correspond-
ing characterization of extremal sequences. There are much stronger inverse
results (see [13, Section 5]), but the one mentioned below will be sufficient
for our purposes.

Theorem 2.6. Let G be a cyclic group of order n ≥ 2 and S ∈ F(G).

1. If |S| ≥ 2n− 1, then 0 ∈ Σn(S).
2. If |S| = 2n−2 and 0 /∈ Σn(S), then S = gn−1hn−1 for some g, h ∈ G

with ord(g − h) = n.

Proof. 1. See [14, Corollary 5.7.5] or [18, Theorem 2.5].
2. See [3, Lemma 4] for one of the original proofs, and [13, Proposition

5.1.12].

The following result was a conjecture of Y. ould Hamidoune [17] con-
firmed in [16, Theorem 1].
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Theorem 2.7. Let G be a finite abelian group, S ∈ F(G) of length
|S| ≥ |G| + 1, and k ∈ N with k ≤ |supp(S)|. If h(S) ≤ |G| − k + 2 and
0 /∈ Σ|G|(S), then |Σ|G|(S)| ≥ |S| − |G|+ k − 1.

3. Preparatory results. We first prove several lemmas determining
in what ways a sequence S ∈ Υ (Cm ⊕ Cm), where m ≥ 4, can be slightly
perturbed and still remain in Υ (Cm⊕Cm). These will later be heavily used
in Section 5, always in the setting where K = Ker(ϕ) and ϕ : G → G is
multiplication by m.

Lemma 3.1. Let K = Cm ⊕ Cm with m ≥ 4, let g ∈ K, and let S =
fm−1
1

∏m
ν=1(xνf1 + f2) ∈ Υu(K) with x1, . . . , xm ∈ Z.

1. If S′ = f−2
1 S(f1 + g)(f1 − g) ∈ Υ (K), then g = 0 and hence S = S′.

2. If S′ = f−1
1 (xjf1 + f2)−1S(f1 + g)(xjf1 + f2 − g) ∈ Υ (K), then

g ∈ {0, (xj − 1)f1 + f2} and hence S = S′.
3. If S′ = (xjf1+f2)−1(xkf1+f2)−1S(xjf1+f2+g)(xkf1+f2−g) ∈ Υ (K)

with j, k ∈ [1,m] distinct, then g ∈ 〈f1〉.

Proof. 1. Assume to the contrary that g 6= 0 and thus S 6= S′. Then
vf1(S′) < m− 1 and, since m ≥ 4, S′ ∈ Υ (k) and S ∈ Υu(K), it follows that
there is some j ∈ [1,m] such that (xjf1 +f2)m−1 |S′, (xjf1 +f2)m−3 |S, and
w.l.o.g. xjf1+f2 = f1+g. If we set f ′2 = xjf1+f2, then S = fm−1

1

∏m
ν=1((xν−

xj)f1 + f ′2), and thus we may assume that f2 = f ′2. Then f2 = f1 + g and
f1 − g = f2 − 2g = 2f1 − f2. Since m ≥ 4, it follows that f1 |S′. Since
S′ ∈ Υ (K), fm−1

2 |S′ and f1, 2f1 − f2 ∈ supp(S′) \ {f2}, it follows that
(2f1 − f2)− f1 = f1 − f2 ∈ 〈f2〉, contradicting that (f1, f2) is a basis.

2. After renumbering, we may suppose that j = m. If fm−1
1 |S′, then

f1 + g = f1 or xmf1 + f2 − g = f1, and S′ = S. Otherwise, fm−1
1 - S′

and we shall derive a contradiction. Observe that we cannot have f1 + g =
xmf1+f2−g = xif1+f2, else g, f2 ∈ 〈f1〉. Thus, since S′ ∈ Υ (K), S ∈ Υu(K)
and m ≥ 4, it follows that (after renumbering again if necessary) either

S′ = fm−2
1 (xf1+f2)m−1(xmf1+f2−g)(xm−1f1+f2) with f1+g = xf1+f2,

or

S′ = fm−2
1 (xf1+f2)m−1(f1+g)(xm−1f1+f2) with xmf1+f2−g = xf1+f2.

In the first case, we have (xmf1 + f2 − g) = (xm − x + 1)f1 and hence
fm−2
1 ((xm−x+1)f1) |S′. However, since (xm−x+1)f1 = (xmf1+f2−g) 6= f1

(else g = (xn−1)f1+f2, as desired), it follows that fm−2
1 ((xm−x+1)f1) is not

zero-sum free (as f1 is the unique element from 〈f1〉 that can be appended
to fn−1

1 without yielding a zero-sum), a contradiction. In the second case,
one can derive a contradiction similarly.
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3. Since m ≥ 3, fm−1
1 |S′ and S′ ∈ Υ (K), it follows that (xjf1 + f2 + g)

− (xlf1 + f2) ∈ 〈f1〉, where l 6= j, k, and hence g ∈ 〈f1〉.

Lemma 3.2. Let K = Cm ⊕ Cm with m ≥ 4, g ∈ K and S =
fm−1
1 fm−1

2 (f1 + f2) ∈ Υnu(K).

1. If S′ = f−2
1 S(f1 + g)(f1 − g) ∈ Υ (K), then g ∈ 〈f2〉.

2. If S′ = f−2
2 S(f2 + g)(f2 − g) ∈ Υ (K), then g ∈ 〈f1〉.

3. If S′ = f−1
1 f−1

2 S(f1 + g)(f2 − g) ∈ Υ (K), then S = S′ and g ∈
{0, −f1 + f2}.

4. If S′ = f−1
1 (f1 + f2)−1S(f1 + g)(f1 + f2 − g) ∈ Υ (K), then g ∈ 〈f2〉.

5. If S′ = f−1
2 (f1 + f2)−1S(f2 + g)(f1 + f2 − g) ∈ Υ (K), then g ∈ 〈f1〉.

Proof. 1. Since fm−1
2 |S′ and S′ ∈ Υ (K), it follows that f1 +g−(f1 +f2)

∈ 〈f2〉, whence g ∈ 〈f2〉.
2. Analogous to the proof of item 1.
3. If fm−1

1 |S′ or fm−1
2 |S′, the result follows. Otherwise, m ≥ 4 and

h(S′) = m−1 imply that m = 4 and f1+g = f2−g = f1+f2, a contradiction.
4. Since m ≥ 3, it follows that f1 |S′. Now we have fm−1

2 |S′ and S′ ∈
Υ (K) so that (f1 + f2 − g)− f1 ∈ 〈f2〉, implying g ∈ 〈f2〉, as desired.

5. Analogous to the proof of item 4.

Lemma 3.3. Let K = Cm ⊕ Cm with m ≥ 4, g ∈ K and S =
fm−1
1 fm−1

2 (f1 + f2) ∈ Υnu(K).

1. If S′ = f−2
1 S(f1 +g)(f1−g) ∈ Υnu(K), then g = 0, and hence S = S′.

2. If S′ = f−2
2 S(f2 +g)(f2−g) ∈ Υnu(K), then g = 0, and hence S = S′.

3. If S′ = f−1
1 f−1

2 S(f1 + g)(f2 − g) ∈ Υnu(K), then g ∈ {0, −f1 + f2},
and hence S = S′.

4. If S′ = f−1
1 (f1+f2)−1S(f1+g)(f1+f2−g) ∈ Υnu(K), then g ∈ {0, f2},

and hence S = S′.
5. If S′ = f−1

2 (f1+f2)−1S(f2+g)(f1+f2−g) ∈ Υnu(K), then g ∈ {0, f1},
and hence S = S′.

Proof. 1. Assume to the contrary that g 6= 0 and S 6= S′. Since S′ ∈
Υnu(K) and m ≥ 4, we get f1+g = f1−g = f1+f2 and hence −2f2 = 2g = 0,
a contradiction.

2.–5. Similar.

Next we prove two simple structural lemmas which will be our all-
purpose tools for turning locally obtained information into global structural
conditions on S. They are also the reason for the hypothesis of m and n odd
in the Theorem.

Lemma 3.4. Let G be an abelian group, a ∈ G with ord(a) > 2, and
S, T ∈ F(G) \ {1} with |supp(S)| ≥ |supp(T )|.
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1. If supp(S) − supp(T ) = {0}, then S = g|S| and T = g|T |, for some
g ∈ G.

2. If supp(S)− supp(T ) ⊂ {0, a}, then S = gs(g + a)|S|−s and T = g|T |,
for some g ∈ G and s ∈ [0, |S|].

3. If |S|, |T | ≥ 2 and
⋃2
i=1(Σi(S) − Σi(T )) ⊂ {0, a}, then either S =

g|S|−1(g + a) and T = g|T |, or else S = g|S| and T = g|T |, for some
g ∈ G.

Proof. Note that Σ1(S) = supp(S) and that all hypotheses imply
supp(S) − supp(T ) ⊂ {0, a}. Since ord(a) > 2, it follows that {0, a} con-
tains no periodic subset, and thus Kneser’s Theorem (see e.g., [14, Theorem
5.2.6]) implies that

2 ≥ |supp(S)− supp(T )| ≥ |supp(S)|+ |supp(T )| − 1.

Therefore we get |supp(S)| ≤ 2 and |supp(T )| = 1. Items 1 and 2 now
easily follow. For the proof of part 3, we apply assertion 2, and thus we may
assume that supp(S) ⊂ {g, g + a} and T = g|T |. Now if item 3 is false, then
(g + a)2 |S, whence

2a = ((g + a) + (g + a))− (g + g) ∈
2⋃
i=1

(Σi(S)−Σi(T )) ⊂ {0, a},

contradicting ord(a) > 2.

Lemma 3.5. Let G be an abelian group and let S ∈ F(G).

1. If k ∈ [1, |S| − 1] and |Σk(S)| ≤ 2, then |supp(S)| ≤ 2.
2. If k ∈ [2, |S| − 2] and |Σk(S)| ≤ 2, and Σk(S) is not a coset of a

cardinality two subgroup, then either S = g|S| or S = g|S|−1h, for
some g, h ∈ G.

3. If k ∈ [1, |S| − 1] and |Σk(S)| ≤ 1, then S = g|S| for some g ∈ G.

Proof. 1. Assume to the contrary that |supp(S)| ≥ 3 and pick three
distinct elements x, y, z ∈ supp(S). If k = |S| − 1, then Σ|S|−1(S) = σ(S)−
Σ1(S) and hence |Σ|S|−1(S)| = |supp(S)| ≥ 3, a contradiction. Therefore
k ≤ |S| − 2. Let T be a subsequence (possibly trivial) of (xyz)−1S of length
|T | = k − 1 ≤ |S| − 3. Then {x, y, z}+ σ(T ) is a cardinality three subset of
Σk(S), a contradiction.

2. By item 1, we have S = gs1hs2 with s1, s2 ∈ N0, s1 ≥ s2 and g, h ∈ G
distinct. Assume to the contrary that s2 ≥ 2. Since Σ|S|−k(S) = σ(S) −
Σk(S), it suffices to consider the case k ≤ 1

2 |S|, and thus s1 ≥ 1
2 |S| ≥ k ≥ 2.

Hence the elements kg, (k − 1)g + h and (k − 2)g + 2h are all contained in
Σk(S). Thus, since |Σk(S)| ≤ 2 and g 6= h, it follows that ord(h − g) = 2
and Σk(S) = kg + {0, h − g}, contradicting the assumption that Σk(S) is
not a coset of a cardinality two subgroup.
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3. If the conclusion is false, there are distinct x, y ∈ G with xy |S, and
then {x, y}+ σ(S′) is a cardinality two subset of Σk(S) for any S′ | (xy)−1S
with 0 ≤ |S′| = k − 1 ≤ |S| − 2.

4. On the structure of ϕ(S)

Definition 4.1. Let G = Cmn⊕Cmn with m, n ≥ 2, let S ∈ A(G) with
|S| = 2mn− 1, and let ϕ : G→ G be multiplication by m. Let

Ω′(S) = Ω′ = {(W0, . . . ,W2m−2) ∈ F(G)2m−1 | S = W0 · . . . ·W2m−2,

σ(Wi) ∈ Ker(ϕ) and |Wi| > 0 for all i ∈ [0, 2m− 2]}
and

Ω(S) = Ω = {(W0, . . . ,W2m−2) ∈ Ω′ | |W1| = · · · = |W2m−2| = n}.
The elements (W0, . . . ,W2m−2) ∈ Ω′(S) will be called product decomposi-
tions of S. If W ∈ Ω′, we implicitly assume that W = (W0, . . . ,W2m−2).

By Lemma 2.5, Ω 6= ∅, and if W ∈ Ω, then ϕ(W0), . . . , ϕ(W2m−2) are
minimal zero-sum sequences over ϕ(G) ∼= Cn ⊕ Cn. Proposition 4.2 below
shows that ϕ(S) is highly structured. In Claims A, B and C of Section 5
we will show (with much effort) that this structure lifts to the original se-
quence S. As this lift will only be “near perfect” (there will be one excep-
tional term x |S for which the structure is not shown to lift), we will then, in
Claim D of Section 5, need Theorem 2.7 to finish the proof of the Theorem.

Proposition 4.2. Let G = Cmn ⊕ Cmn with m, n ≥ 2, and suppose
that Cn ⊕ Cn has Property B. Let S ∈ A(G) with |S| = 2mn − 1, and let
ϕ : G→ G be multiplication by m. Then there exist a product decomposition
(W0, . . . ,W2m−2) of S and a basis (e1, e2) of ϕ(G) such that

(1) ϕ(W0) = en−1
1

n∏
ν=1

(xνe1 + e2) and ϕ(Wi) ∈
{
en1 ,

n∏
ν=1

(ci,νe1 + e2)
}
,

where x1, . . . , xn ∈ [0, n − 1], x1 + · · · + xn ≡ 1 mod n, all ci,ν ∈ [0, n − 1],
and ci,1 + ci,2 + · · ·+ ci,n ≡ 0 mod n for all i ∈ [1, n]. In particular,

ϕ(S) = e`n−1
1

2mn−`n∏
ν=1

(xνe1 + e2),

where ` ∈ [1, 2m− 1] and xν ∈ [0, n− 1] for all ν ∈ [1, 2mn− `n].

Proof. If n = 2, then it is easy to see (in view of Lemma 2.5) that (1)
holds. From now on we assume that n ≥ 3. We distinguish two cases.

Case 1: For every product decomposition W ∈ Ω, there exist distinct
elements g1, g2 ∈ ϕ(G) such that vg1(ϕ(W0)) = vg2(ϕ(W0)) = n− 1. Let us
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fix a product decomposition W ∈ Ω. By Lemma 2.3, there is a basis (e1, e′2)
of ϕ(G) such that

ϕ(W0) = en−1
1

n∏
ν=1

(xνe1 + e′2)

where x1, . . . , xn ∈ [0, n−1] and x1+· · ·+xn ≡ 1 mod n. Thus, by assumption
of Case 1, it follows that

ϕ(W0) = en−1
1 (xe1 + e′2)n−1((1 + x)e1 + e′2) with x ∈ [0, n− 1].

As a result,

(e1, e2) = (e1, xe1 + e′2) = (e1, e′2) ·
(

1 x

0 1

)
is a basis of ϕ(G) and

(2) ϕ(W0) = en−1
1 en−1

2 (e1 + e2).

We continue with the following assertion.

A. For every i ∈ [1, 2m− 2], ϕ(Wi) has one of the following forms:

en1 , e
n
2 , (e1 + e2)n, (−e1 + e2)n, (e1 − e2)n,

e1(e1 + e2)n−2(e1 + 2e2), e2(e1 + e2)n−2(2e1 + e2).

Suppose that A is proved. If the forms (e1−e2)n and e1(e1+e2)n−2(e1+2e2)
do not occur, then ϕ(Wi) has the required form with basis (e1, e2). If the
forms (−e1 + e2)n and e2(e1 + e2)n−2(2e1 + e2) do not occur, then ϕ(Wi)
has the required form with basis (e2, e1). Thus by symmetry, it remains to
verify that there are no distinct i, j ∈ [1, 2m− 2] such that

(i) ϕ(Wi) = e1(e1 + e2)n−2(e1 + 2e2) and
ϕ(Wj) = e2(e1 + e2)n−2(2e1 + e2),

(ii) ϕ(Wi) = e1(e1 + e2)n−2(e1 + 2e2) and ϕ(Wj) = (−e1 + e2)n, or
(iii) ϕ(Wi) = (e1 − e2)n and ϕ(Wj) = (−e1 + e2)n.

Indeed, if (i) held, then (2e1 +e2)(e1 +2e2)(e1 +e2)n−3 would be a zero-sum
subsequence of ϕ(WiWj) of length n − 1, contradicting Lemma 2.5. If (ii)
held, then (−e1 + e2)(e1 + 2e2)en−3

2 would be a zero-sum subsequence of
ϕ(W0WiWj) of length n− 1, contradicting Lemma 2.5. Finally, if (iii) held,
then (e1 − e2)(−e1 + e2) would be a zero-sum subsequence of ϕ(WiWj) of
length 2, also contradicting Lemma 2.5. Thus it remains to establish A
to complete the case. To that end, let i ∈ [1, 2m − 2] be arbitrary. Then
h(ϕ(W0Wi)) ≥ n− 1, and we distinguish three subcases.

Case 1.1: h(ϕ(W0Wi)) > n. Then it follows from (2) that vg(ϕ(W0Wi))
> n for some g ∈ {e1, e2, e1 + e2}. If g = e1 + e2, then ϕ(Wi) = (e1 + e2)n.
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Now suppose that g ∈ {e1, e2}, say g = e1. Then

ϕ(W0Wi) = en−1
2 (e1 + e2)en+1

1

n−2∏
ν=1

(cνe1 + dνe2),

where cν , dν ∈ [0, n− 1] for all ν ∈ [1, n− 1]. By Lemma 2.5,

W ′0 = en−1
2 (e1 + e2)e1

n−2∏
ν=1

(cνe1 + dνe2)

is a minimal zero-sum subsequence of ϕ(S). Since W ′0 contains two distinct
elements with multiplicity n−1 (by assumption of Case 1), and since e1 |W ′0,
it follows that either

W ′0 = en−1
1 en−1

2 (e1 + e2) or W ′0 = e1e
n−1
2 (e1 + e2)n−1.

But in the second case, we would get σ(W ′0) = −2e2 6= 0. Thus W ′0 =
en−1
1 en−1

2 (e1 + e2) and ϕ(Wi) = en1 .

Case 1.2: h(ϕ(W0Wi)) = n. We distinguish two further subcases.

Case 1.2.1: ϕ(Wi) = gn for some g ∈ ϕ(G) \ {e1, e2, e1 + e2}. We
set g = ce1 + de2 with c, d ∈ [0, n − 1]. By Lemmas 2.2 and 2.5, it fol-
lows that ϕ(W0)gn−1 has a zero-sum subsequence T of length |T | = n and
ϕ(WiW0)T−1 is a minimal zero-sum subsequence of ϕ(S) of length 2n − 1,
say

ϕ(WiW0)T−1 = eq2e
r
1(e1 + e2)s(ce1 + de2)t,

where q ≥ 1, r ≥ 1, s ≥ 0 and t ∈ [1, n− 1].
Since g 6= e1 + e2, we infer that s ≤ 1. If s = 1, then, by the assumption

of Case 1, we get

2n− 1 = |WiW0T
−1| = q + r + s+ t ≥ 1 + (q + r + t)

≥ 1 + (n− 1 + n− 1 + 1) > 2n− 1,

a contradiction. Hence s = 0. Again, by the assumption of Case 1, we have
the following possibilities:

• q = r = n− 1 and t = 1.
• q = t = n− 1 and r = 1.
• q = 1 and r = t = n− 1.

If q = r = n−1 and t = 1, then σ(ϕ(W0Wi)T−1) = 0 implies that g = e1+e2,
a contradiction. If q = t = n − 1 and r = 1, then σ((W0Wi)T−1) = 0
implies that g = e1 − e2 and ϕ(Wi) = (e1 − e2)n. Finally, if q = 1 and
r = t = n − 1, then σ(ϕ(W0Wi)T−1) = 0 implies that g = −e1 + e2 and
ϕ(Wi) = (−e1 + e2)n.

Case 1.2.2: vg(ϕ(W0Wi)) = n for some g ∈ {e1, e2, e1 + e2}. Since |Wi|
= n, σ(ϕ(Wi)) = 0 and ve1+e2(ϕ(W0)) = 1, it follows that g 6= e1 + e2. Thus
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g ∈ {e1, e2}, say g = e1. Then

ϕ(W0Wi) = en−1
2 (e1 + e2)en1

n−1∏
ν=1

(cνe1 + dνe2),

where cν , dν ∈ [0, n − 1] for all ν ∈ [1, n − 1]. By Lemma 2.5 and the
assumption of Case 1.2,

W ′0 = en−1
2 (e1 + e2)

n−1∏
ν=1

(cνe1 + dνe2)

is a minimal zero-sum subsequence of ϕ(S) with e1 - W ′0. Since W ′0 contains
two distinct elements with multiplicity n− 1 (by the assumption of Case 1)
and σ(ϕ(Wi)) = 0, and since e1 - W ′0, it follows that

W ′0 = en−1
2 (e1 + e2)n−1(e1 + 2e2),

and thus
ϕ(Wi) = e1(e1 + e2)n−2(e1 + 2e2).

Case 1.3: h(ϕ(W0Wi)) = n−1. Since σ(ϕ(Wi)) = 0, it follows from (2)
that vg(ϕ(W0Wi)) 6= n−1 for g /∈ {e1, e2, e1+e2}. Suppose ve1+e2(ϕ(W0Wi))
= n− 1. Then

ϕ(Wi) = (e1 + e2)n−2(c1e1 + d1e1)(c2e1 + d2e2),

where c1, d1, c2, d2 ∈ [0, n − 1]. By Lemma 2.2 and the definition of Prop-
erty C,

ϕ(W0Wi)(e1 + e2)−1(c2e1 + d2e2)−1

has a zero-sum subsequence T of length |T | = n and, by Lemma 2.5,
ϕ(W0Wi)T−1 is a minimal zero-sum subsequence of ϕ(S) of length 2n − 1.
In view of the assumptions of Case 1 and Case 1.3, and in view of

ϕ(W0Wi) = en−1
1 en−1

2 (e1 + e2)n−1(c1e1 + d1e2)(c2e1 + d2e2),

it follows that h(T ) = n− 1, contradicting σ(T ) = 0. So we conclude that

(3) vg(ϕ(W0Wi)) < n− 1 for all g ∈ ϕ(G) \ {e1, e2}.

We set ϕ(Wi) =
∏n
ν=1(cνe1 + dνe2), where cν , dν ∈ [0, n − 1] for all

ν ∈ [1, n], and pick some λ ∈ [1, n]. By Lemmas 2.2 and 2.5, it follows that
ϕ(W0Wi)(cλe1 + dλe2)−1 has a zero-sum subsequence T of length |T | = n
and that ϕ(WiW0)T−1 is a minimal zero-sum subsequence of ϕ(S) of length
2n− 1. By the assumption of Case 1 and (3), it follows that

ϕ(W0Wi)T−1 = en−1
1 en−1

2 (e1 + e2),

and thus cλe1 + dλe2 = e1 + e2. As λ ∈ [1, n] was arbitrary, this implies that
ϕ(Wi) = (e1 + e2)n, contradicting the hypothesis of Case 1.3.
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Case 2: There exists a product decomposition W ∈ Ω with vg(ϕ(W0)) =
n−1 for exactly one element g ∈ ϕ(G). By Lemma 2.3.1 and the assumption
of Case 2, there exists a basis (e1, e2) of ϕ(G) such that

ϕ(W0) = en−1
1

n∏
ν=1

(xνe1 + e2),

where x1, . . . , xn ∈ [0, n− 1] and x1 + · · ·+xn ≡ 1 mod n and at most n− 2
of the elements x1, . . . , xn are equal. Let i ∈ [1, 2m− 2] be arbitrary, and let
ϕ(Wi) =

∏n
ν=1(cνe1 + dνe2), where cν , dν ∈ [0, n − 1] for all ν ∈ [1, n]. We

proceed to show that there exists mi ∈ {0, n} such that

ϕ(Wi) = emi1

n−mi∏
ν=1

(cνe1 + e2),

which will complete the proof. Let Wi =
∏n
ν=1(cνe1 + dνe2). We distinguish

six subcases.

Case 2.1: h(ϕ(Wi)
∏n
ν=1(xνe1 + e2)) > n. Then there exists some x ∈

[0, n− 1] such that (after renumbering if necessary)

ϕ(Wi)
n∏
ν=1

(xνe1 + e2) = (xe1 + e2)n
r∏

ν=1

(cνe1 + dνe2)
s∏

ν=1

(xνe1 + e2),

where r ∈ [1, n− 1], s ∈ [2, n− 1] and r + s = n. Since

en−1
1

r∏
ν=1

(cνe1 + dνe2)
s∏

ν=1

(xνe1 + e2)

is a minimal zero-sum subsequence of ϕ(S) of length 2n − 1, Lemma 2.3
implies that d1 = · · · = dr = 1, whence ϕ(Wi) =

∏n
ν=1(cνe1 + e2).

Case 2.2: h(ϕ(Wi)
∏n
ν=1(xνe1 + e2)) = n. If (c1, d1) = · · · = (cn, dn)

does not hold, then, similar to Case 2.1, we obtain d1 = · · · = dn = 1.
Therefore c1 = · · · = cn = c and d1 = · · · = dn = d for some c, d ∈ [0, n− 1].

Pick some λ ∈ [1, n] and consider the sequence

ϕ(W0Wi)(xλe1 + e2)−1(ce1 + de2)−1

= (ce1 + de2)n−1en−1
1

∏
ν∈[1,n]\{λ}

(xνe1 + e2).

Since this sequence has length 3n − 3 = η(Cn ⊕ Cn) − 1 (by Lemma 2.2.1)
but is not of the form Un−1 with U ∈ F(Cn ⊕ Cn) (by the assumption of
Case 2), it follows from Lemma 2.2.2 and the definition of Property C that
it has a zero-sum subsequence T of length n. Moreover, by Lemma 2.5.1,
ϕ(W0W1)T−1 is a minimal zero-sum sequence of length 2n− 1. Since ϕ(G)
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has Property B, we have either

en−1
1 |ϕ(W0Wi)T−1 or (ce1 + de2)n−1 |ϕ(W0Wi)T−1.

If en−1
1 |ϕ(W0Wi)T−1, then, since (xλe1 + e2)(ce1 + de2) |ϕ(W0Wi)T−1, it

would follow that d = 1, whence ϕ(Wi) = (ce1 + e2)n, as desired. Therefore
we may assume that (ce1 + de2)n−1 |ϕ(W0Wi)T−1.

Since ϕ(Wi) is a minimal zero-sum sequence, it follows that

n = ord(ce1 + de2) = n/gcd(c, d, n),

and hence there are u, v ∈ Z such that uc+ vd ≡ 1 mod n. Thus

(e′1, e
′
2) = (ce1 + de2,−ve1 + ue2) = (e1, e2) ·

(
c −v
d u

)
is a basis of ϕ(G) and, for some sequence Q over ϕ(G),

ϕ(W0Wi)T−1 = (ce1 + de2)n−1e1(xλe1 + e2)Q

= e′1
n−1(ue′1 − de′2)((xλu+ v)e′1 + (c− xλd)e′2)Q.

Now Lemma 2.3 implies that−d ≡ c−xλd mod n, whence xλd ≡ c+d mod n.
Therefore, since λ was arbitrary, we get

d ≡
n∑
ν=1

xνd ≡ n(c+ d) ≡ 0 mod n,

and thus d = 0. If c ∈ [2, n], then (ce1)en−c1 is a zero-sum subsequence of
ϕ(S) of length n− c+ 1 < n, a contradiction. Thus c = 1 and ϕ(Wi) = en1 .

Case 2.3: h(ϕ(Wi)
∏n
ν=1(xνe1 +e2)) = n−1 and ve1(ϕ(Wi)) ≥ 2. After

renumbering if necessary, we have

(4) ϕ(W0Wi) = en+1
1 (xe1 + e2)n−1

r∏
ν=1

(xνe1 + e2)
s∏

ν=1

(cνe1 + dνe2)

where x ∈ [0, n − 1], r ∈ [1, n − 1], s ∈ [1, n − 2] and r + s = n − 1. By
Lemma 2.5,

W ′ = e1(xe1 + e2)n−1
r∏

ν=1

(xνe1 + e2)
s∏

ν=1

(cνe1 + dνe2)

is a minimal zero-sum subsequence of ϕ(S) of length 2n− 1. Since

(e1, e′2) = (e1, xe1 + e2) = (e1, e2) ·
(

1 x

0 1

)
is a basis of ϕ(G) and

W ′ = e1e
′
2
n−1

r∏
ν=1

((xν − x)e1 + e′2)
s∏

ν=1

((cν − xdν)e1 + dνe
′
2),
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Lemma 2.3.2 implies that xν − x ≡ 1 mod n for all ν ∈ [1, r]. Therefore,
since

ϕ(W0) = en−1
1 (xe1 + e2)n−r

r∏
ν=1

(xνe1 + e2)

(in view of (4)), we get (n − r)x + r(x + 1) ≡
∑n

ν=1 xν ≡ 1 mod n. Hence
r = 1 and

ϕ(W0) = en−1
1 (xe1 + e2)n−1((x+ 1)e1 + e2),

a contradiction to our assumption on x1, . . . , xn for Case 2.

Case 2.4: h(ϕ(Wi)
∏n
ν=1(xνe1 + e2)) = n − 1 and ve1(Wi) = 1. After

renumbering if necessary, we get

ϕ(W0Wi) = en1 (xe1 + e2)n−1
r∏

ν=1

(xνe1 + e2)
s∏

ν=1

(cνe1 + dνe2)

with x ∈ [0, n−1], r ∈ [1, n−1], s ∈ [1, n−1] and r+s = n. By Lemma 2.5,

W ′ = (xe1 + e2)n−1
r∏

ν=1

(xνe1 + e2)
s∏

ν=1

(cνe1 + dνe2)

is a minimal zero-sum subsequence of ϕ(S) of length 2n− 1. Since

(e1, e′2) = (e1, xe1 + e2) = (e1, e2) ·
(

1 x

0 1

)
is a basis of ϕ(G) and

W ′ = e′2
n−1

r∏
ν=1

((xν − x)e1 + e′2)
s∏

ν=1

((cν − xdν)e1 + dνe
′
2),

Lemma 2.3.2 implies that

(5) x1 − x ≡ · · · ≡ xr − x ≡ c1 − xd1 ≡ · · · ≡ cs − xds mod n.

If d1 = · · · = ds = 1, then ϕ(Wi) =
∏n
ν=1(cνe1 + e2), as desired. Therefore

we may assume there is some ν ∈ [1, s] with dν 6= 1, say ν = s. Hence, since
σ(Wi) = 0, it follows that there is also another ν ′ ∈ [1, s] with dν′ 6= 1 and
s = ν 6= ν ′. Thus, by Lemmas 2.2 and 2.5 and the definition of Property C,

ϕ(W0Wi)e−1
1 (cse1 + dse2)−1

has a zero-sum subsequence T of length |T | = n and ϕ(W0Wi)T−1 is a
minimal zero-sum subsequence of ϕ(S) of length 2n − 1. Since ϕ(G) has
Property B, it follows that either

en−1
1 |ϕ(W0Wi)T−1 or (xe1 + e2)n−1 |ϕ(W0Wi)T−1.

If en−1
1 |ϕ(W0Wi)T−1, then, as (cse1 +dse2) |ϕ(W0Wi)T−1 and (xje1 +e2) |

ϕ(W0Wi)T−1 for some j ∈ [1, n], Lemma 2.3 implies that ds = 1, a contra-
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diction. Therefore (xe1 + e2)n−1 |ϕ(W0Wi)T−1. Thus, for some sequence Q
over ϕ(G), we have

ϕ(W0Wi)T−1 = (xe1 + e2)n−1e1(cse1 + dse2)Q.

Since

(e1, e′2) = (e1, xe1 + e2) = (e1, e2) ·
(

1 x

0 1

)
is a basis of ϕ(G) and

ϕ(W0Wi)T−1 = e1e
′
2
n−1((cs − xds)e1 + dse

′
2)Q,

Lemma 2.3 implies that cs−xds = 1. Thus it follows from (5) that x1 ≡ · · · ≡
xr ≡ x+1 mod n. Therefore we get (n−r)x+r(x+1) ≡

∑n
ν=1 xν ≡ 1 mod n.

Hence r = 1 and

ϕ(W0) = en−1
1 (xe1 + e2)n−1((x+ 1)e1 + e2),

a contradiction to our assumption on x1, . . . , xn for Case 2.

Case 2.5: h(ϕ(Wi)
∏n
ν=1(xνe1 + e2)) = n − 1 and ve1(ϕ(Wi)) = 0. If

d1 = · · · = dn = 1, then the assertion follows. Therefore there is some
ν ∈ [1, n] with dν 6= 1, say ν = n. Since d1 + · · · + dn ≡ 0 mod n, we may
also assume that dn−1 6= 1. We distinguish two subcases.

Case 2.5.1: ϕ(Wi)
∏n
ν=1(xνe1 + e2) contains two distinct elements with

multiplicity n− 1, say xe1 + e2 and ye1 + e2, where x, y ∈ [0, n− 1]. Then

ϕ(Wi) = (xe1 + e2)r(ye1 + e2)s(cn−1e1 + dn−1e2)(cne1 + dne2)

and

(6)
n∏
ν=1

(xνe1 + e2) = (xe1 + e2)n−1−r(ye1 + e2)n−1−s,

where r, s ∈ [1, n − 3] and r + s = n − 2 ≥ 2. By Lemmas 2.2 and 2.5,
ϕ(W0Wi)(cne1+dne2)−1 has a zero-sum subsequence T of length |T | = n and
ϕ(W0Wi)T−1 is a minimal zero-sum subsequence of ϕ(S) of length 2n − 1.
Since ϕ(G) has Property B, it follows that

vg(ϕ(WiW0)T−1) = n− 1 for some g ∈ {e1, xe1 + e2, ye1 + e2}.

Clearly, we have

e1(xe1 + e2)(ye1 + e2)(cne1 + dne2) |ϕ(W0Wi)T−1.

Since dn 6= 1, Lemma 2.3 implies that g 6= e1. Thus w.l.o.g. g = xe1 + e2.
Consequently, for some sequence Q over ϕ(G), we have

ϕ(W0Wi)T−1 = (xe1 + e2)n−1e1(ye1 + e2)Q.
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As before,

(e1, e′2) = (e1, xe1 + e2) = (e1, e2) ·
(

1 x

0 1

)
is a basis of ϕ(G) and

ϕ(W0Wi)T−1 = e′2
n−1

e1((y − x)e1 + e′2)Q.

Now Lemma 2.3.2 implies y − x ≡ 1 mod n, whence (6) and
∑n

ν=1 xν ≡
1 mod n imply (xe1 + e2)n−1 |W0, contradicting the assumption of Case 2.

Case 2.5.2: ϕ(Wi)
∏n
ν=1(xνe1 + e2) contains exactly one element with

multiplicity n − 1, say xe1 + e2 where x ∈ [0, n − 1]. After renumbering if
necessary, we get

ϕ(W0Wi) = en−1
1 (xe1 + e2)n−1

r∏
ν=1

(cνe1 + dνe2)
s∏

ν=1

(xνe1 + e2),

where r ∈ [1, n−1], s ∈ [2, n−1] and r+s = n+1. If d1 = · · · = dr = 1, then
the assertion follows. So after renumbering again, we suppose that dr 6= 1.
Let λ ∈ [1, s].

By Lemmas 2.2 and 2.5, the definition of Property C, and the assumption
of Case 2.5.2,

ϕ(W0Wi)(cre1 + dre2)−1(xλe1 + e2)−1

has a zero-sum subsequence T of length |T | = n and ϕ(W0Wi)T−1 is a
minimal zero-sum subsequence of ϕ(S) of length 2n − 1. Since ϕ(G) has
Property B, it follows that

vg(ϕ(W0Wi)T−1) = n− 1 for some g ∈ {e1, xe1 + e2}.
Clearly, we have

e1(xe1 + e2)(cre1 + dre2)(xλe1 + e2) |ϕ(W0Wi)T−1.

Since dr 6= 1, Lemma 2.3 implies that g 6= e1, and hence g = xe1 + e2. Thus,
for some sequence Q over ϕ(G), we have

ϕ(W0Wi)T−1 = (xe1 + e2)n−1e1(xλe1 + e2)Q.

As before,

(e1, e′2) = (e1, xe1 + e2) = (e1, e2) ·
(

1 x

0 1

)
is a basis of ϕ(G) and

ϕ(W0Wi)T−1 = e′2
n−1

e1((xλ − x)e1 + e′2)Q.

Hence Lemma 2.3 implies that 1 ≡ xλ−x mod n. As λ ∈ [1, s] was arbitrary,
it follows that x1 ≡ · · · ≡ xs ≡ x+ 1 mod n, and, as in Case 2.3, we obtain
a contradiction.
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Case 2.6: h(ϕ(Wi)
∏n
ν=1(xνe1 + e2)) < n − 1. Let λ ∈ [1, n] be ar-

bitrary. By Lemmas 2.2 and 2.5, ϕ(W0Wi)(cλe1 + dλe2)−1 has a zero-sum
subsequence T of length |T | = n, and ϕ(W0Wi)T−1 is a minimal zero-sum
subsequence of ϕ(S) of length 2n− 1. Since ϕ(G) has Property B, it follows
that en−1

1 divides ϕ(W0Wi)T−1. Furthermore, there is some ν ∈ [1, n] such
that

(xνe1 + e2)(cλe1 + dλe2) |ϕ(W0Wi)T−1.

Thus Lemma 2.5 implies that either dλ = 1 or (cλ, dλ) = (1, 0). Thus, since
λ ∈ [1, n] was arbitrary and σ(ϕ(Wi)) = 0, we must have either dλ = 1 for
all λ ∈ [1, n], or (cλ, dλ) = (1, 0) for all λ ∈ [1, n], and so either ϕ(Wi) = en1
or ϕ(Wi) =

∏n
ν=1(cνe1 + e2), as desired.

5. Proof of the Theorem. Let G = Cmn ⊕ Cmn, with m,n ≥ 3 odd,
be such that Property B holds for both Cm⊕Cm and Cn⊕Cn (if m = 1 or
n = 1, then the Theorem is trivial). Since Property B holds when mn = 9
(as shown in [2] and mentioned in the introduction), we may assume mn > 9,
and w.l.o.g. m ≥ 5. Let S ∈ A(G) be a minimal zero-sum sequence of length
|S| = 2mn− 1. The sequence S will remain fixed throughout the rest of this
section. Our goal is to show that S contains an element with multiplicity
mn− 1 (in other words, h(S) = mn− 1). We proceed in the following way :

• First, using Proposition 4.2, we establish the setting and some detailed
notation necessary to formulate the key ideas of the proof.
• Next, we proceed with four lemmas, 5.1–5.4, that collect several argu-

ments used repeatedly in the proof.
• Then, we divide the main part of the proof into four claims, A, B, C

and D, where in Claim D we finally show that h(S) = mn− 1.

The setting and key definitions. Since S is fixed, we write Ω′ and
Ω instead of Ω′(S) and Ω(S) (see Definition 4.1). Recall that Lemma 2.3.3
implies that ord(x) = mn for all x ∈ supp(S). Let ϕ : G → G denote
multiplication by m. Then Ker(ϕ) = nG ∼= Cm ⊕ Cm and ϕ(G) = mG ∼=
Cn ⊕ Cn.

Let Ω0 ⊂ Ω be all those W ∈ Ω for which there exists a basis (me1,me2)
of ϕ(G), where e1, e2 ∈ G, such that ϕ(W0) = (me1)n−1

∏n
ν=1(xνme1+me2),

where x1, . . . , xn ∈ Z with x1 + · · ·+ xn ≡ 1 mod n, and such that for every
i ∈ [1, 2m − 2], ϕ(Wi) is of the form either ϕ(Wi) = (me1)n, or ϕ(Wi) =∏n
ν=1(yi,νme1+me2) where yi,1, . . . , yi,n ∈ Z with yi,1+ · · ·+yi,n ≡ 0 mod n.

By Proposition 4.2, Ω0 is nonempty.
Let W ∈ Ω′, and define σ̃(W ) =

∏2m−2
ν=0 σ(Wν) ∈ F(Ker(ϕ)). Since

S ∈ A(G), it follows that σ̃(W ) ∈ A(Ker(ϕ)). As Property B holds for
Ker(ϕ), it follows that σ̃(W ) ∈ Υ (Ker(ϕ)). Partition Ω0 = Ωu

0 ∪ Ωnu
0 by
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letting Ωu
0 be those W ∈ Ω0 with σ̃(W ) ∈ Υu(Ker(ϕ)), and letting Ωnu

0 be
those W ∈ Ω0 with σ̃(W ) ∈ Υnu(Ker(ϕ)).

Let W ∈ Ω0, let (me1,me2) be a basis of ϕ(G) as in the definition of Ω0

with e1, e2 ∈ G, and let (f1, f2) be a basis for Ker(ϕ) such that σ̃(W ) can be
written as in the definition of Υ (Ker(ϕ)). While we will at times change these
bases, the value me1 will remain constant throughout the proof, and we only
ever deal with W ′ ∈ Ω0 having an associated basis (me′1,me

′
2) if me′1 = me1

(one may redefine Ω0 to be the subcollection of product decompositions W ′

for which this is true).
Let S1 be the subsequence of S consisting of all terms x with ϕ(x) =

me1, and define S2 by S = S1S2. In view of the comments in the previous
paragraph, both S1 and S2 (which depend upon me1) will remain constant
throughout the proof. Let I ⊂ Z be an interval of length n. Each term x of
S1 has a unique representation of the form x = e1 + ng with ng ∈ Ker(ϕ)
(where g ∈ G), and each term x of S2 has a unique representation of the
form x = ae1 + e2 + ng with a ∈ I and ng ∈ Ker(ϕ) (where g ∈ G). Define
ψ(x) = ng ∈ Ker(ϕ) and, for x ∈ supp(S2), define ι(x) = a ∈ I ⊂ Z. Thus

x = e1 + ψ(x) for x |S1,

x = ι(x)e1 + e2 + ψ(x) for x |S2,

where ψ(x) ∈ Ker(ϕ) = 〈f1, f2〉 and ι(x) ∈ I. We set

ψ(x) = ψ1(x) + ψ2(x), where ψ1(x) ∈ 〈f1〉 and ψ2(x) ∈ 〈f2〉.
If y ∈ Ker(ϕ) with y = y1f1 + y2f2, then we also use ψi(y) to denote yifi.

Note that, for x ∈ supp(S1), the value of ψ(x) depends upon the choice of
(e1, e2), and that, for x ∈ supp(S2), the values of ψ(x) and ι(x) depend upon
the choice of (e1, e2) and I. We will frequently need to vary the underlying
choices for (e1, e2) and I, and each time we do so the corresponding values of
ψ and ι will be affected. All maps will be extended to sequences as explained
before Definition 2.1.

Let A1(W ) be those Wi with either i = 0 or ϕ(Wi) = (me1)n, let A2(W )
be all remaining Wi as well as W0, and let A∗i (W ) = Ai(W ) \ {W0} for
i ∈ {1, 2}. If W ∈ Ωu

0 , let C0(W ) be all those Wi with vσ(Wi)(σ̃(W )) < m−1,
let C1(W ) be all remaining Wi, and let C∗i (W ) = Ci(W )\{W0} for i ∈ {0, 1}.
If W ∈ Ωnu

0 , let C0(W ) be the unique Wi with vσ(Wi)(σ̃(W )) < m − 1, and
divide the remaining 2m−2 blocks Wi into either C1(W ) or C2(W ) depending
on the value of σ(Wi); analogously define C∗i (W ) for i ∈ {0, 1, 2}. When the
context is clear, the W will be omitted from the notation. We regard the
elements Wi, Wj ∈ A1 as distinct when i 6= j, follow the same convention
for all other similar collections of Wi, and will refer to them as blocks.

Note that a starred collection of blocks simply refers to the fact that the
block W0 has been removed from the collection. We suggest that the reader
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Table 1. Notation

A1 Blocks Wi with (me1)n−1 |ϕ(Wi), so ϕ(Wi) = (me1)n

or ϕ(Wi) = ϕ(W0) = (me1)n−1 Qn
ν=1(xνme1 +me2)

A2 Blocks Wi with ϕ(Wi) =
Qn
ν=1(xνme1 +me2) or Wi = W0

C1, C2 “Majority” blocks, i.e., blocks having as sum the same multiplicity m−1
element; we usually choose the basis (f1, f2) so that the following descrip-
tions of the Ci hold

C1 Blocks Wi with σ(Wi) = f1

C2 Blocks Wi with σ(Wi) = f2 (only applicable if W ∈ Ωnu0 )

C0 “Minority” blocks Wi, having σ(Wi) = Cf1 + f2 for some C ∈ Z; if
W ∈ Ωnu0 , then our usual basis choice implies C0 = {Wk} with σ(Wk) =
f1 + f2

keep a sketch, at any given moment of the proof, of the current assumptions
and information known for each |Ai ∩ Cj |, i ∈ [1, 2] and j ∈ [0, 2], as well
as which Cj contains W0, as this will prevent much confusion. Table 1 may
also be useful to quickly recall the definitions of the Ai and Cj .

We further subdivide W0 = W
(1)
0 W

(2)
0 with W

(1)
0 = gcd(W0, S1) and

W
(2)
0 = gcd(W0, S2), and for a pair of subsequences X and Y with XY |S2,

we define ε′(X,Y ) to be the integer in [1, n] congruent to σ(ι(X))−σ(ι(Y ))
modulo n, and define ε(X,Y ) to be the integer such that

n− ε′(X,Y ) + σ(ι(X))− σ(ι(Y )) = ε(X,Y )n.

The main idea of the proof is to swap individual terms contained in the
blocks of W ∈ Ω0 so as to keep the resulting product decomposition in Ω′.
Using the lemmas from Section 3, we will then derive information about the
possible values of ψ and ι on the terms that have been swapped. The next
three paragraphs detail the three major types of swaps that we will use.

If U, V ∈ A1 are distinct (thus U = Wi and V = Wj for some i and j
distinct), then we may exchange any subsequence X |U for a subsequence
Y |V with |Y | = |X| (if U = W0, then X must additionally lie within W (1)

0 ,
and likewise for V ) and the resulting product decomposition W ′ will still lie
in Ω0, equal to W except that the blocks U and V of W have been replaced
by the blocks U ′ := X−1UY and V ′ := Y −1V X. Moreover,

(7) σ(V ′) = σ(V ) + σ(ψ(X))− σ(ψ(Y )).

We refer to this as a type I swap.
If V ∈ A∗2, and Y |V and X |W (2)

0 are subsequences with |X| = |Y |,
then by exchanging the sequence Y |V for the sequence RX |W0, where
R |W (1)

0 is any subsequence with |R| = n − ε′(X,Y ), we obtain a product
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decomposition W ′ that still lies in Ω′, equal to W except that the blocks
V and W0 of W have been replaced by the blocks V ′ := Y −1V XR and
W ′0 := R−1X−1W0Y . Moreover,
(8) σ(V ′) = σ(V ) + ε(X,Y )ne1 + σ(ψ(X))− σ(ψ(Y )) + σ(ψ(R)).
We refer to this as a type II swap.

If U, V ∈ A2 are distinct, then we may exchange any subsequence X |U
for a subsequence Y |V with |Y | = |X| and σ(ι(X)) = σ(ι(Y )) (and if
U = W0, then X must additionally lie within W

(2)
0 , and likewise for V )

and the resulting product decomposition W ′ will still lie in Ω0, equal to
W except that the blocks U and V of W have been replaced by the blocks
U ′ := X−1UY and V ′ := Y −1V X. Moreover,
(9) σ(V ′) = σ(V ) + σ(ψ(X))− σ(ψ(Y )).
We refer to this as a type III swap.

We will also often have to change from W ∈ Ω0 to another W ′ ∈ Ω0. One
common way to do this will be to find U ∈ A∗2 and X |UW (2)

0 (X will often
be a single element dividing U). Then |X−1UW

(2)
0 | = 2n−|X|. If there is an

n-term subsequence U ′ |X−1UW
(2)
0 with σ(U ′) ∈ Ker(ϕ) (as is guaranteed,

in the case |X| = 1, by Theorem 2.6.1 applied to ϕ(x−1UW
(2)
0 ) modulo me2;

note the me2 coordinate of every term dividing ϕ(x−1UW
(2)
0 ) is constant,

so any n-term subsequence of ϕ(x−1UW
(2)
0 ) with sum zero modulo me2 will

be itself zero-sum), then, defining W ′0 by W ′0U
′ = W0U , we obtain a new

product decomposition W ′ ∈ Ω0 by replacing the blocks W0 and U by W ′0
and U ′. Moreover, X |W ′0

(2). We refer to such a procedure as pulling X up
into the new product decomposition W ′.

All of the above procedures result in a new product decomposition
W ′ ∈ Ω′ and, when W ′ ∈ Ω0, leave the basis (me1,me2) unchanged. We
will always assume W ′ = (W ′0, . . . ,W

′
2m−2), with W ′k = Wk for all blocks

Wk not involved in the procedure, and with W ′i and W ′j defined as above for
the two blocks Wi and Wj involved in the procedure.

Four lemmas. We will often only consider W ∈ Ωnu
0 when Ωu

0 = ∅
(with one exception in Case 3 of Claim C). The reason for this is to en-
sure that if a swapping procedure applied to W results in a new product
decomposition W ′ ∈ Ω0, then W ′ ∈ Ωnu

0 is guaranteed, and hence the more
powerful Lemma 3.3 is available (instead of the weaker Lemma 3.2).

The following lemma will be used in Case 3 of Claim C to avoid having
to consider a W ′′ ∈ Ωnu

0 when Ωu
0 6= ∅.

Lemma 5.1. Let W ∈ Ωu
0 , U ∈ C1 and V1, V2 ∈ C0 be distinct. Suppose

there exist X |U and Y1 |V1 such that swapping X for Y1 yields a new product
decomposition W ′ ∈ Ω′ with the new block U ′ = X−1UY1 in W ′ having
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σ(U ′) 6= σ(U). If Y2 |Y −1
1 V1 and Z |V2 are nontrivial subsequences such

that swapping Y2 for Z in W yields a new product decomposition W ′′ ∈ Ω0,
then W ′′ ∈ Ωu

0 .

Proof. Assume by contradiction that W ′′ ∈ Ωnu
0 , so that w.l.o.g. σ̃(W ′′)

= fm−1
1 fm−1

2 (f1 + f2) with σ(U) = f1 (since σ(U) is a maximal multiplicity
term in σ̃(W ) and all blocks involved in the swap resulting in W ′′ are of
nonmaximal multiplicity, it follows that σ(U ′′) = σ(U) must be a maximal
multiplicity term in σ̃(W ′′) as well). Sincem ≥ 4 (so that f2f

m−1
1 | σ̃(W )), let

σ(V1) = Cf1 +f2 with C ∈ [0,m−1]. By hypothesis, we may swap Y1 |V ′′1 =
Y −1

2 V1Z for X |U ′′ = U to obtain a new product decomposition W ′′′ ∈ Ω′,
with new respective terms V ′′′1 and U ′′′. Since (by hypothesis) swapping X
for Y1 in W yields a new product decomposition W ′ ∈ Ω′ such that the new
block U ′ = X−1UY1 in W ′ has σ(U ′) 6= σ(U), it follows from Lemma 3.1.2
that σ(U ′′′) = σ(U ′) = Cf1 + f2 and σ(V ′′′1 ) = σ(V ′′1 ) + (1− C)f1 − f2.

Suppose σ(V ′′1 ) = f2. Then, from the above paragraph, we conclude that

σ̃(W ′′′) = fm−2
2 (f1 + f2)((1− C)f1)fm−2

1 (Cf1 + f2).

Thus, since σ̃(W ′′′) ∈ Υ (Ker(ϕ)) and m ≥ 4, it follows that C = 0,
whence σ(V ′′1 ) = f2 = Cf1 + f2 = σ(V1). However, this implies that
σ̃(W ) = σ̃(W ′′) ∈ Υnu0 , contrary to W ∈ Ωu

0 . So we may assume instead
that σ(V ′′1 ) = f1 + f2 (note σ(V ′′1 ) 6= f1, since σ(U) = f1, U ∈ C1(W ) and
no terms from C1(W ) were involved in the swap resulting in W ′′).

In this case, we instead conclude that

σ̃(W ′′′) = fm−1
2 ((2− C)f1)fm−2

1 (Cf1 + f2).

Thus, since σ̃(W ′′′) ∈ Υ (Ker(ϕ)) and m ≥ 3, we conclude that C = 1 =
2−C, and once more σ(V ′′1 ) = σ(V1), yielding the same contradiction as in
the previous paragraph, completing the proof.

The next two lemmas will often be used in conjunction, and will form
one of our main swapping strategy arguments used for Claims A and B. Note
that Lemma 5.2(i) gives a strong structural description as well as a term of
multiplicity at least (|D1| + 1)n − 1 in S, while Lemma 5.2(ii) allows us to
invoke Lemma 5.3.

Lemma 5.2. Let W ∈ Ω0 and, if Ωu
0 6= ∅, assume that W ∈ Ωu

0 . Let
D1,D2 ⊂ A∗2 be such that, for each (relevant) i ∈ [0, 2], there do not exist
U ∈ D1 and V ∈ D2 with U, V ∈ Ci. If either

(a) |D1| ≥ 1 and every type III swap between x |W (2)
0 and y |Wj, with

Wj ∈ D1 and ι(x) = ι(y), results in a new product decomposition
W ′ with σ(W ′0) = σ(W0), or

(b) |D1| ≥ 2 and |D2| ≥ 1,

then one of the following two statements holds:
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(i) There exist x0 |W (2)
0 , g ∈ I and α ∈ Ker(ϕ) such that ι(x0) ≡

g + 1 mod n, ι(x) = g and ψ(x) = α, for all x |x−1
0 W

(2)
0

∏
V ∈D1

V .
In particular, vge1+e2+α(S) ≥ (|D1|+ 1)n− 1.

(ii) There exist Wj ∈ D1, X |W (2)
0 and Y |Wj such that |X| = |Y | and

ε′(X,Y ) /∈ {1, n}.

Proof. We assume that (ii) fails and show that (i) holds. During the
proof we make implicit use of the fact that n ≥ 3. If W0 ∈ C0, then choose
f2 such that σ(W0) = f1 + f2; if W ∈ Ωnu

0 , then choose f2 such that
σ̃(W ) = fm−1

1 fm−1
2 (f1 + f2) (note, in the case W0 ∈ C0 and W ∈ Ωnu

0 , that
this choice of f2 agrees with the previous choice), and assume C1 consists of
those Wi with σ(Wi) = f1; and if W0 /∈ C0, then w.l.o.g. assume W0 ∈ C1.

Applying Lemma 3.4.3 to ι(W (2)
0 ) and each ι(V ) with V ∈ D1, with both

sequences considered modulo n (since (ii) fails, the hypothesis of Lemma
3.4.3 holds with {0, a} equal to {n, 1} modulo n), we conclude, in view of
σ(ι(W (2)

0 )) ≡ 1 mod n (and hence |supp(ι(W (2)
0 ))| > 1), that there exist

x0 |W (2)
0 and g ∈ I such that ι(x0) ≡ g + 1 mod n and ι(x) = g for all

x |x−1
0 W

(2)
0

∏
V ∈D1

V . If (a) holds, then performing type III swaps between
W0 and the V ∈ D1 completes the proof. Therefore assume (a) fails and (b)
holds instead.

Case 1: W0 ∈ C0. Thus, since |D1|, |D2| ≥ 1 (and in view of the hy-
potheses), let U ∈ A∗2∩(D1∪D2) with σ(U) = f1 and let V ∈ A∗2∩(D1∪D2)
with σ(V ) = Cf1 + f2 for some C ∈ Z. Performing a type II swap between
some fixed u |U and each x |x−1

0 W
(2)
0 (using the same fixed subsequence

R |W (1)
0 in every swap, which is possible since ι(x) = g for all x |x−1

0 W
(2)
0 ),

we conclude from either Lemma 3.1.2 (since σ(W0) = f1+f2) or Lemma 3.2.4
that ψ1 is constant on x−1

0 W
(2)
0 . Likewise performing a type II swap between

some fixed v |V and each x |x−1
0 W

(2)
0 , we conclude from either Lemma 3.1.3

or Lemma 3.2.5 that ψ2 is constant on x−1
0 W

(2)
0 . Consequently, ψ(x) = α

(say) for all x |x−1
0 W

(2)
0 .

Suppose W ∈ Ωnu
0 . Then D1 ⊂ A∗2 ∩ Ci for some i ∈ {1, 2} (in view of

the hypotheses of Case 1 and the lemma), and performing type III swaps
between the Z ∈ D1, we conclude, in view of |D1| ≥ 2, that ι(x) = g for all
x |x−1

0 W
(2)
0

∏
V ∈D1

V , and by Lemma 3.3.1 or 3.3.2, that ψ(x) = α′ (say)
for all x |

∏
V ∈D1

V . Further, applying type III swaps between W0 and any
Z ∈ D1, we conclude from Lemma 3.4.3 and either Lemma 3.3.4 or 3.3.5
that α = α′, completing the proof. So we may assume W ∈ Ωu

0 .
If D1 ⊂ C1, then repeating the argument of the previous paragraph using

Lemma 3.1 in place of Lemma 3.3 completes the proof. Therefore we may
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assume D1 ⊂ C0. Let Z ∈ D1 and z |Z. We proceed to show ψ(z) = α,
which, since z |Z ∈ D1 is arbitrary, will complete the proof.

If performing a type III swap between z |Z and some x |x−1
0 W

(2)
0 results

in a new product decomposition W ′ ∈ Ωu
0 , then W ′0, Z

′ ∈ C0 (as W0, Z ∈ C0)
and, repeating the arguments of the first paragraph of Case 1 for W ′, we
conclude that ψ(z) = α. If W ′ ∈ Ωnu

0 , then we can choose a new f2 such
that σ̃(W ′) = fm−1

1 fm−1
2 (f1 + f2). If also W ′0 ∈ C0, then σ(W ′0) = f1 + f2,

and repeating the arguments of the first paragraph of Case 1 for W ′ shows
ψ(z) = α. Therefore suppose W ′ ∈ Ωnu

0 and σ(W ′0) = f2. In view of Lem-
ma 3.1.3, we have α − ψ(z) ∈ 〈f1〉. However, if α 6= ψ(z), then performing
a type II swap between some y |U ′ = U and both z |W ′0 and z′ |W ′0, where
ι(z′) = g and ψ(z′) = α, we conclude from Lemma 3.2.3 that

εne1 + σ(ψ(R))− ψ(y) + {ψ(z), α} = {0, f2 − f1},

where ε = ε(z, y) = ε(z′, y) (in view of ι(z) = ι(z′) = g) and R is the same
fixed subsequence of W ′0

(1) used in both swaps (also possible since ι(z) =
ι(z′) = g). Hence ψ(z)−α = ±(f2− f1), contradicting that α−ψ(z) ∈ 〈f1〉,
and completing Case 1.

Case 2: W0 /∈ C0 and W ∈ Ωnu
0 . Then W0 ∈ C1 (by our normalizing

assumptions). If there is Z ∈ D1∩C0 and D1∩C2 = ∅, then, in view of Lem-
ma 3.3.4, we may assume that performing any type III swap between z |Z
and x |x−1

0 W
(2)
0 results in a product decompositionW ′ with σ(W ′0) = σ(W0),

else Case 1 applied to W ′ completes the proof. Note that Lemma 3.3.1
guarantees the same for any Z ∈ D1∩C1. Thus if D1∩C2 = ∅, then (a) holds,
contrary to assumption, and so we may assume instead that D1 ∩ C2 6= ∅.

Suppose there is Z ∈ D2 with σ(Z) = f1 + f2. Then performing type
II swaps between some z |Z and each x |x−1

0 W
(2)
0 (using the same R |W (1)

0

for every swap, which is possible since ι(x) = g for all x |x−1
0 W

(2)
0 ), we

conclude from Lemma 3.2.4 that ψ1 is constant on x−1
0 W

(2)
0 . If we perform

type III swaps between U and W0 with U ∈ D1 ∩C2, then we conclude from
Lemmas 3.2.3 and 3.4.3 that there is u0 |x−1

0 W
(2)
0 U such that ψ(x) = α

(say) for all x |u−1
0 x−1

0 W
(2)
0 U and ψ(u0) = α or α ± (f2 − f1); moreover,

ψ(u0) = α + f2 − f1 is possible only if u0 |U , and ψ(u0) = α − (f2 − f1)
is possible only if u0 |W (2)

0 . Thus, as ψ1 is constant on x−1
0 W

(2)
0 and ψ1(α) 6=

ψ1(α+f2−f1), we conclude that ψ(x) = α for all x |x−1
0 W

(2)
0 . If u0 |U with

ψ(u0) = α + f2 − f1, then swapping u0 |U for x |x−1
0 W

(2)
0 results in a new

product decomposition W ′ such that σ̃(W ′) = σ̃(W ), σ(W ′0) = f2, and ψ2 is
not constant on x−1

0 W ′0
(2). However repeating the argument from the begin-

ning of the paragraph for W ′, using Lemma 3.2.5 in place of Lemma 3.2.4,
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we see that ψ2 must be constant on x−1
0 W ′0

(2), a contradiction. Thus we
see that any type III swap between u |U ∈ D1 ∩ C2 and x |x−1

0 W
(2)
0 re-

sults in a product decomposition W ′ with σ(W ′0) = σ(W0). As a result,
since Z ∈ D2 with σ(Z) = f1 + f2, it follows from Lemma 3.3.1 that
(a) holds, contrary to assumption. So we may assume D2 ∩ C0 is empty.
Thus, in view of D1 ∩ C2 6= ∅ and the hypotheses, it follows that there is
U ∈ D2 ∩ C1.

Performing type II swaps between some y |U and each x |x−1
0 W

(2)
0 (using

the same R |W (1)
0 for every swap), we conclude from Lemma 3.2.1 that ψ1 is

constant on x−1
0 W

(2)
0 . Consequently, performing type III swaps between W0

and each Vi ∈ D1 ∩C2, we conclude from Lemmas 3.2.3 and 3.4.3 that there
exists vi |Vi such that ψ(x) = α (say) for all x | v−1

i x−1
0 W

(2)
0 Vi; moreover,

ψ(vi) = α or α+ f2 − f1. If there is Z ∈ D1 ∩ C0, then, performing type III
swaps between the x |x−1

0 W
(2)
0 and z |Z, and between the x |Vi ∈ D1 ∩ C2

and z |Z, we conclude from Lemmas 3.3.4 and 3.3.5 that ψ(x) = α for
all x |Z.

If Z ∈ D1 ∩ C0 does not exist, then |D1| ≥ 2 and |D2 ∩ C1| ≥ 1 ensure
|D1 ∩ C2| ≥ 2, and, performing type III swaps between the V ∈ D1 ∩ C2, we
conclude from Lemma 3.3.2 that ψ(x) = α for all x |V with V ∈ D1 ∩ C2,
completing the proof. On the other hand, if there is Z ∈ D1 ∩ C0, then
applying type III swaps between Z and each Vi ∈ D1∩C2, we conclude from
Lemma 3.2.5 that ψ2 is constant on Vi and Z; consequently, since ψ(vi) = α
or α+f2−f1, and since ψ(v) = α for all v | v−1

i Vi, we conclude that ψ(vi) = α
as well, completing the proof.

Case 3: W0 /∈ C0 and W ∈ Ωu
0 . Then W0 ∈ C1 and D1 ⊂ C0 (else (a)

holds in view of Lemma 3.1.1). Hence, since |D2| ≥ 1, there is U ∈ A∗2 ∩ C1.
Performing type II swaps between each x |x−1

0 W0 and some fixed u |U (using
the same fixed sequence R |W (1)

0 in each swap), it follows from Lemma 3.1.1
that ψ(x) = α (say) for all x |x−1

0 W
(2)
0 . Let Vi ∈ D1. Performing type III

swaps between W0 and Vi, we conclude from Lemmas 3.1.2 and 3.4.3 that
ψ(z) = α for all z | v−1

i Vi, for some vi |Vi; moreover, either ψ(vi) = α or
ψ(vi) = α − σ(W0) + σ(Vi). However, in the latter case, since Vi ∈ C0 and
W0 ∈ C1 (so that σ(W0) = f1 and σ(Vi) = Cf1 + f2, for some C ∈ Z), we
see that ψ2(vi) 6= ψ2(α). Since |D1| ≥ 2, performing type III swaps between
the Vi ∈ D1, we conclude from Lemma 3.1.3 that ψ2 is constant on each
Vi, whence ψ2(vi) 6= ψ2(α) is impossible. Thus ψ(z) = α for all z |Vi with
Vi ∈ D1, completing the proof.

Lemma 5.3 allows us to deduce detailed information concerning the val-
ues of ψ on W

(1)
0 . Depending on σ(Wj) and σ(W0), the appropriate part of
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Lemma 3.1 or 3.2 will ensure that one of the hypotheses in item 1, 2, or 3
below holds.

Lemma 5.3. Let W ∈ Ω0 and Wj ∈ A∗2 be such that there are Y |Wj

and X |W (2)
0 with |X| = |Y | and ε′(X,Y ) /∈ {1, n}, and set

D = {W ′ ∈ Ω′ |W ′ is the result of performing a type II swap
between X |W0 and Y |Wj}.

1. If σ(W ′j)− σ(Wj) = 0 for all W ′ ∈ D, then |supp(ψ(W (1)
0 ))| = 1.

2. If σ(W ′j) − σ(Wj) ∈ 〈fi〉, where i ∈ {1, 2}, for all W ′ ∈ D, then
|supp(ψ3−i(W

(1)
0 ))| = 1.

3. If σ(W ′j) − σ(Wj) ∈ {0, F} for all W ′ ∈ D, where F ∈ Ker(ϕ), then
supp(ψ(W (1)

0 )) = {γ, β} for some γ, β ∈ Ker(ϕ) with γ−β ∈ {0,±F}.
Proof. 1. By hypothesis, there is only one possibility for σ(ψ(R)), where

R |W (1)
0 is any subsequence with |R| = n− ε′(X,Y ). Furthermore, we have

1 ≤ |R| ≤ n − 2 < |ψ(W (1)
0 )|, and thus item 1 follows from Lemma 3.5.3

applied to ψ(W (1)
0 ).

2. The argument is analogous to that for item 1, using the group
Ker(ϕ)/〈fi〉 ∼= 〈f3−i〉 in place of Ker(ϕ).

3. By the arguments for item 1, replacing Lemma 3.5.3 by Lemma 3.5.1,
we conclude that ψ(W (1)

0 ) = γlβn−1−l (say), where l ≥ n − 1 − l ≥ 1 and
γ 6= β (else the assertion holds); moreover,

ε(X,Y )ne1 + σ(ψ(X))− σ(ψ(Y )) + min{t, l} · γ
+ (t−min{t, l}) · β + {0, β − γ} = {0, F},

where t = n− ε′(X,Y ). Thus β − γ = ±F , as desired.

The following lemma encapsulates an alignment argument for the ι values
that forces them to live in near disjoint intervals. It will be a key part of the
more difficult portions of Claim C.

Lemma 5.4. Let W ∈ Ω0, let D ⊂ A∗2 be nonempty, and let Z |W (2)
0 be

nontrivial. For x |S, let ψ0(x) = ψ(x), and for x ∈ Ker(ϕ), let ψ0 be the
identity map. Let i ∈ {0, 1, 2}. If ψi(ne1) 6= 0 and

(10) ψi(x)− ψi(y) + ψi(ε(x, y)ne1) = 0

for every x |Z and y |U ∈ D, then there exist intervals J1, J2 and J3 of Z
with either

(11) supp
(
ι
(∏
U∈D

U
))
⊂ J3, supp(ι(Z)) ⊂ J1 ∪ J2, and

max J1 ≤ min J3 ≤ max J3 < min J2, or
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(12) supp(ι(Z)) ⊂ J3, supp
(
ι
(∏
U∈D

U
))
⊂ J1 ∪ J2, and

max J1 < min J3 ≤ max J3 ≤ min J2.

Moreover, I can be chosen such that:

1. min I is congruent to an element in ι(Z) modulo n,
2. ι(x) ≤ ι(y) and ε(x, y) = 0 for all x |Z and y |U ∈ D,
3. ψi(x) = ψi(y) for all xy |Z

∏
U∈D U .

Proof. Observe, for xy |S2, that

(13) ε(x, y) =
{

0, ι(x) ≤ ι(y),
1, ι(x) > ι(y).

Consequently, we conclude from (10) that

(14) ψi(x) = ψi(y)

for all x |Z and y |U ∈ D with ι(x) ≤ ι(y), and that

(15) ψi(x) = ψi(y)− ψi(ne1)

for all x |Z and y |U ∈ D with ι(x) > ι(y).
If there do not exist x |Z and yy′ |

∏
U∈D U with ι(x) ≤ ι(y) and ι(x) >

ι(y′), then, for every x |Z, we have either ι(x) ≤ ι(y) for all y |
∏
U∈D U ,

or ι(x) > ι(y) for all y |
∏
U∈D U . Thus we see that (11) holds (with J3 =

[min(supp(ι(
∏
U∈D U))),max(supp(ι(

∏
U∈D U)))], J1 being any nonempty

interval containing those ι(x) with ι(x) ≤ ι(y) for all y |
∏
U∈D U and

max J1 ≤ min J3, and J2 being any nonempty interval containing those
ι(x) with ι(x) > ι(y) for all y |

∏
U∈D U and min J2 > max J3).

Now instead let x |Z and yy′ |
∏
U∈D U with ι(x) ≤ ι(y) and ι(x) > ι(y′),

and factor
∏
U∈D U = J ′1J

′
2, where J ′1 are those terms a |

∏
U∈D U with

ι(a) < ι(x) and J ′2 are those terms b |
∏
U∈D U with ι(b) ≥ ι(x). By assump-

tion, both J ′i are nontrivial. Moreover, from (14) and (15) and ψi(ne1) 6= 0,
we see that

(16) ψi(b) = ψi(x)

and

(17) ψi(a) = ψi(x) + ψi(ne1) 6= ψi(x),

for all a | J ′1 and b | J ′2. Thus ψi is constant on J ′1 and also on J ′2 but the
two values assumed are distinct. If there were x′ |Z such that ι(x′) ≤
max(supp(ι(J ′1))), then by (14) and (16) we would conclude that ψi(x′) =
ψi(b) = ψi(x), where b is any term of J ′2, while from (17) and also (14),
applied between x′ and max(supp(ι(J ′1))) := a0, we would conclude that
ψi(x′) = ψi(a0) = ψi(x) +ψi(ne1) 6= ψi(x), a contradiction to what we have
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just seen. We likewise obtain a contradiction if there were x′ |Z such that
ι(x′) > min(supp(ι(J ′2))). Therefore we see that (12) holds with

J1 = [min(supp(ι(J ′1))),max(supp(ι(J ′1)))],
J2 = [min(supp(ι(J ′2))),max(supp(ι(J ′2)))],
J3 = [min(supp(ι(Z))),max(supp(ι(Z)))].

Choosing I such that min I is congruent to min(supp(ι(Z))) modulo n, if
either (12) holds or else (11) holds with supp(ι(Z))∩ J2 = ∅, and congruent
to min(supp(ι(Z)) ∩ J2) otherwise, the remaining properties follow in view
of (13) and (14).

Now we choose a product decomposition W ∈ Ω0, and if Ωu
0 6= ∅, we

assume that W ∈ Ωu
0 .

Claim A. h(S1) ≥ |S1| − 1.

Proof. We need to show that there exists x0 |S1 such that ψ(x) = ψ(y)
for all xy |x−1

0 S1. We divide the proof into four main cases. In many of the
cases, we do partial work towards showing h(S1) = |S1|, which will later be
utilized in Claim B.

Case 1: |A1| = 1. In this case, we will show that h(S1) = |S1|.
Suppose W0 ∈ C0. Then we may choose f2 such that σ(W0) = f1 + f2,

and if Ωu
0 = ∅, such that σ̃(W ) = fm−1

1 fm−1
2 (f1 + f2) also. Let D1 be those

blocks Wi with σ(Wi) = f1 and let D2 be all other blocks from A∗2. Note
|D1| = |D2| = m− 1 in view of |A1| = 1. Applying Lemma 5.2, we see that
Lemma 5.2(ii) must hold, else ge1 + e2 + α will have multiplicity at least
mn−1 in S, as desired. Performing type II swaps between the X |W (2)

0 and
Y |Wj given by Lemma 5.2(ii), we conclude, from Lemmas 5.3.2 and either
3.1.2 (since σ(W0) = f1 +f2) or 3.2.4, that ψ1 is constant on W (1)

0 . However,
reversing the roles of D1 and D2 and repeating the above argument using
Lemmas 3.1.3 and 3.2.5 in place of Lemmas 3.1.2 and 3.2.4, we conclude
that ψ2 is also constant on W (1)

0 , whence ψ is constant on W (1)
0 , completing

the proof of Case 1. So we may assume W0 /∈ C0.
Suppose Ωu

0 = ∅. Then we may assume that σ̃(W ) = fm−1
1 fm−1

2 (f1+f2),
C1 consists of those blocksWi with σ(Wi) = f1, and σ(W0) = f1. LetD1 = C2
and D2 = C∗1 ∪ C0. Applying Lemma 5.2, we see that Lemma 5.2(ii) must
hold, else there will be a term with multiplicity at least mn − 1 in S, as
desired. Thus Lemmas 5.3.3 and 3.2.3 imply that supp(ψ(W (1)

0 )) = {γ, β}
(say) with β − γ = ±(f2 − f1) (else Case 1 is complete).

Reversing the roles of D1 and D2 and again applying Lemma 5.2, we once
more see that Lemma 5.2(ii) must hold, else there is a term with multiplicity
mn− 1 in S, as desired. Thus Lemma 5.3.2 and either Lemma 3.2.1 or 3.2.4
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imply that ψ1 is constant on W
(1)
0 , contradicting that β − γ = ±(f2 − f1).

So we may assume Ωu
0 6= ∅.

Let w.l.o.g. W1, . . . ,Wm−2 be the blocks of C∗1 ∩ A2, and let D1 = C∗1
and D2 = C0. Apply Lemma 5.2. If Lemma 5.2(ii) holds, then Lemmas 5.3.1
and 3.1.1 imply that ψ is constant on W

(1)
0 , whence Case 1 is complete.

Therefore we may instead assume ι(x) = g and ψ(x) = α (say) for all terms
x |x−1

0 W
(2)
0 W1 . . .Wm−2, for some x0 |W (2)

0 with ι(x0) ≡ g + 1 mod n.

Consider Wj with j ≥ m − 1. If ι(Wj) 6= gn, then there exist x |W (2)
0

and y |Wj with ε′(x, y) /∈ {1, n}, whence Lemmas 5.3.3 and 3.1.2 imply that
supp(ψ(W (1)

0 )) = {γ, β} (say) with β − γ = ±Fj (else Case 1 is complete),
where Fj = (1− Cj)f1 − f2 and σ(Wj) = Cjf1 + f2.

If Wk is another block with k ≥ m− 1 and ι(Wk) 6= gn, then the above
paragraph implies that β − γ = ±Fk, where Fk = (1 − Ck)f1 − f2 and
σ(Wk) = Ckf1 + f2. Thus, since m ≥ 3 and β − γ = ±Fj , we conclude that
Fj = Fk and Cj ≡ Ck mod m. As a result, we see that any two blocks Wj and
Wk, with j, k ≥ m− 1 and ι(Wk), ι(Wj) 6= gn, must have σ(Wj) = σ(Wk).
Hence, since W ∈ Ωu

0 , we conclude that there are at least two distinct blocks
Ws and Wr with s, r ≥ m− 1 and ι(Ws) = ι(Wr) = gn. Performing type III
swaps between W0 and both Ws and Wr, we conclude from Lemmas 3.1.2
and 3.4.3 that ψ(x) = α for all but at most two terms of WsWr, whence
ge1 + e2 + α has multiplicity at least (m − 1)n − 1 + 2n − 2 ≥ mn in S,
contradicting that S ∈ A(G) and completing Case 1.

Case 2: |A1| ≥ 2 and Ωu
0 = ∅. We may w.l.o.g. assume that σ̃(W ) =

fm−1
1 fm−1

2 (f1 + f2), by an appropriate choice of f2, whence Claim A fol-
lows easily by performing type I swaps between the blocks of A1 and using
Lemmas 3.3 and 3.4. This completes Case 2.

Case 3: |A1| ≥ 2, Ωu
0 6= ∅, and |C1 ∩ A1| ≥ 1. In this case, we will

moreover show that h(S1) = |S1| unless |A1 ∩ C0| = 1 or |A1 ∩ C1| = 1, and
that |supp(ψ(U))| > 1 for U ∈ A1 ∩ Ci, where i ∈ {1, 2}, is only possible
when |A1 ∩ Ci| = 1.

If U, V ∈ A1 are distinct, then we can perform a type I swap between U
and V , and by (7) and Lemma 3.1, we conclude that

(18)

σ(ψ(X))− σ(ψ(Y )) = 0 if U, V ∈ C1,
σ(ψ(X))− σ(ψ(Y )) ∈ {0, (1− C)f1 − f2} if U ∈ C1, V ∈ C0 and

σ(V ) = Cf1 + f2,

σ(ψ(X))− σ(ψ(Y )) ∈ 〈f1〉 if U, V ∈ C0,

for X |U and Y |V with |X| = |Y |.
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A1: If |A1∩ C0| ≥ 2, then using (18) (for all X and Y with |X|= |Y |=1),
we conclude that ψ(x) − ψ(y) ∈ 〈f1〉 for all x and y dividing a block from
A1 ∩ C0.

A2: If |A1∩ C1| ≥ 2, then using (18) (for all X and Y with |X|= |Y |=1)
and Lemma 3.4.1, we conclude that ψ(x) = ψ(y) for all x and y dividing a
block from A1 ∩ C1.

In view of A2, we may assume |A1 ∩ C0| ≥ 1, else the proof of Case 3 is
complete.

Let U ∈ A1 ∩ C1 and V ∈ A1 ∩ C0 with U and V distinct. Then, using
(18) (for all X and Y with |X| = |Y | ≤ 2 ≤ n − 1) and Lemma 3.4.3, we
conclude that ψ(x) = α (say) for all x |x−1

0 UV , for some x0 |UV ; moreover,
ψ(x0) = α or α± ((1− C)f1 − f2).

Suppose x0 |U and ψ(x0) 6= α. Then, in view of A2, we see that
|A1 ∩ C1| = 1. Thus performing type I swaps between U and all possible
V ∈ A1 ∩ C0 completes Case 3, for n ≥ 5 or U 6= W0, and, when n = 3 and
U = W0, we instead conclude that either ψ(V ) = αn or ψ(V ) = βn, where
ψ(W (1)

0 ) = αβ, for all V ∈ A1 ∩ C0. However, if there are V, V ′ ∈ A1 ∩ C0
with ψ(V ) = αn and ψ(V ′) = βn and α 6= β, then (18) implies that
β−α = (1−C)f1− f2 and α−β = (1−C ′)f1− f2, where σ(V ) = Cf1 + f2

and σ(V ′) = C ′f1+f2, from which we conclude that (2−C ′−C)f1−2f2 = 0,
contradicting m ≥ 3. So we may instead assume x0 |V .

In this case, in combination with the results of the previous paragraphs,
we find that there is at most one vi |Vi, for each Vi ∈ A1 ∩ C0, such that
ψ(x) = α for all x |S1 apart from these vi. In this scenario, Case 3 is done
unless we have two distinct V1, V2 ∈ A1 ∩ C0 such that ψ(v1) 6= α and
ψ(x) = α for all x | v−1

1 v−1
2 UV1V2. However, applying a type I swap between

y |U and v1 |V1, we conclude from (18) that α−ψ(v1) = (1−C)f1−f2 /∈ 〈f1〉
for some C ∈ Z, which, in view of αψ(v1) |ψ(V1), contradicts A1. This
completes Case 3.

Case 4: |A1| ≥ 2, Ωu
0 6= ∅, and |C1 ∩ A1| = 0. In this case, we will

moreover show that h(S1) = |S1|.
We may w.l.o.g. assumeW1, . . . ,Wm−1 are the blocks in C1∩A2. LetD1 =

C1 and D2 = C∗0 ∩A2. If |D2| ≥ 1, then we can apply Lemma 5.2. Otherwise,
in view of Lemma 3.1.2, we may assume hypothesis (a) holds in Lemma 5.2,
else applying Case 3 to the resulting product decomposition W ′ (attained
by performing a type III swap that shows (a) fails) would imply, in view of
|D2| = 0, that ψ(x) = α (say) for all x |W ′i = Wi with i ∈ [m, 2m − 2], in
which case σ(W ′i ) = ne1 +nα has multiplicity m−1 in σ̃(W ′), contradicting
σ̃(W ′) = σ̃(W ) (in view of Lemma 3.1.2) with W ∈ Ωu

0 . Thus, in either
case, Lemma 5.2 is available. If Lemma 5.2(i) holds, then ge1 + e2 + α is a
term with multiplicity at least mn − 1 in S (recall |D1| = |C1| = m − 1),
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as desired. Therefore there are X |W (2)
0 and Y |Wj , for some j ∈ [1,m− 1],

such that |X| = |Y | and ε′(X,Y ) /∈ {1, n}. Hence Lemmas 5.3.3 and 3.1.2
imply that supp(ψ(W (1)

0 )) = {γ, β} (say) with γ − β ∈ {0,±F}, where
F = (C − 1)f1 + f2 and σ(W0) = Cf1 + f2. Since |A1| ≥ 2, let V ∈ C∗0 ∩A1.
Performing type I swaps between W0 and V , we conclude from Lemma 3.1.3
that ψ2 is constant on VW

(1)
0 , whence γ − β ∈ {0,±F} implies γ = β.

Performing type I swaps among the V ∈ C0 ∩ A1, we conclude from
Lemma 3.1.3 that ψ2(x) = ψ2(γ) for all x |V ∈ C0 ∩ A1. Let W ′ be the
product decomposition resulting from performing a type II swap between
X |W0 and Y |Wj (with X and Y as given by Lemma 5.2(ii) in the previous
paragraph). Since ε′(X,Y ) /∈ {1, n}, we conclude that both blocks W ′0 and
W ′j contain e1 + γ, and thus there is a block W ′k ∈ C1 with k ∈ {0, j} and
(e1+γ) |W ′k. Since σ̃(W ′) = σ̃(W ) (in view of Lemma 3.1.2), performing type
I swaps between W ′k and each distinct block V ′ = V ∈ C∗0 ∩A1, we conclude
from Lemma 3.1.2 that either ψ(x) = γ or ψ(x) = γ + σ(V ′) − σ(W ′k),
for each x |V ′. However, since W ′k ∈ C1 and V ′ ∈ C0, it follows that the
latter contradicts ψ2 being constant on V ′ = V ∈ C0 ∩A1 with value ψ2(γ).
Therefore we conclude that ψ(x) = γ for all x |V ′, with V ′ = V ∈ C∗0 ∩ A1,
whence ψ(x) = γ for all x |S1, as desired, completing Case 4.

In view of Claim A, we may assume S1 = e
|S1|−1
1 (e1 + a), for some

a ∈ Ker(ϕ). Let y0 = e1 + a.

Claim B. h(S1) = |S1|.
Proof. We assume by contradiction a 6= 0. In view of the partial conclu-

sions of Claim A, we may assume |A1| ≥ 2 (in view of Case 1 of Claim A),
and, if Ωu

0 6= ∅, that |A1 ∩ C1| ≥ 1 (in view of Case 4 of Claim A). We
proceed in four cases.

Case 1: Ωu
0 6= ∅ and y0 |U for some U ∈ A1 ∩ C1. In view of Case 3

of Claim A, we have |A1 ∩ C1| = 1. Hence, if U 6= W0, then W0 ∈ C0, and
performing a type I swap between y0 |U and some y |W0 results (in view
of Lemma 3.1.2) in a new product decomposition W ′ with σ̃(W ′) = σ̃(W ),
U ′ ∈ C0, W ′0 ∈ C1, y0 |W ′0 and W ′ also satisfying the hypothesis of Case 1.
On the other hand, if U = W0, then |A1| ≥ 2 and |A1 ∩ C1| = 1 imply that
there is V ∈ A∗1 ∩ C0, and performing a type I swap between y0 |W0 and
some y |V results (in view of Lemma 3.1.2) in a new product decomposition
W ′ with σ̃(W ′) = σ̃(W ), W ′0 ∈ C0, V ′ ∈ C1, y0 |V ′ and W ′ also satisfying
the hypothesis of Case 1. Consequently, there are W and W ′ satisfying the
hypotheses of Case 1 with σ̃(W ) = σ̃(W ′) and w.l.o.g. y0 |U 6= W0 and
y0 |U ′ = W ′0 (thus W ′ is defined as in the second sentence of Case 1). Since
U ∈ C1 and σ̃(W ′) = σ̃(W ) with W ′0 ∈ C1 (with W ′ as in the second sentence
of Case 1), letting σ(W0) = Cf1 + f2 we see that a = (1− C)f1 − f2.
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LetD1 = A∗2(W ′)∩C1(W ′) andD2 = A∗2(W ′)∩C0(W ′). Since |A1∩C1| = 1
and W ′0 ∈ C1, we have |D1| = m− 2, and by Claim A we have |D2| ≥ 1 (else
e1 is a term with multiplicity at least (m + 1)n − 2 ≥ mn, contradicting
S ∈ A(G)). If Lemma 5.2(ii) holds for W ′, then Lemmas 5.3.1 and 3.1.1
imply that a = 0, a contradiction. Therefore Lemma 5.2(i) holds for W ′.
Let g and α be as given by Lemma 5.2(i).

Since |D2| ≥ 1, let V ∈ A∗2(W )∩ C0(W ) (recall that no terms from C∗0(W )
were involved in the swap between W and W ′, so V ′ = V ). If ι(V ) = gn,
then, performing type III swaps between V and some Z ∈ A∗2 ∩ C1, and
between V and W0, we conclude from Lemmas 3.1.2, 3.1.3 and 3.4.3 that
ψ(x) = α for all x |V , whence ge1 + e2 + α has multiplicity at least mn− 1
in S, as desired. Therefore, in view of ι(W (2)

0 ) ≡ gn−1(g + 1) mod n, we see
that there exist x |W (2)

0 = W ′0
(2) and y |V = V ′ such that ε′(x, y) /∈ {1, n}.

Hence, Lemmas 5.3.3 (applied to W ′) and 3.1.2 yield a = ±((1−C ′)f1−f2),
where σ(V ) = C ′f1 + f2. Thus, since a = (1 − C)f1 − f2 and m ≥ 3, we
conclude that C ′f1 = Cf1 and σ(V ) = σ(W0). As V ∈ A∗2(W ) ∩ C0(W )
was arbitrary, we see that σ(V ) = Cf1 + f2 for all V ∈ A2(W ) ∩ C0(W ).
On the other hand, if Z ∈ A1(W ) ∩ C0(W ), then, performing type I swaps
between U and Z, we conclude from Lemma 3.1.2 that a = (1−C ′′)f1− f2,
where σ(Z) = C ′′f1 + f2. Thus a = (1−C)f1− f2 implies that C ′′f1 = Cf1,
and now σ(Z) = Cf1 + f2 for all Z ∈ A1(W ) ∩ C0(W ). Consequently,
σ(Z) = Cf1 + f2 for all Z ∈ C0(W ), contradicting h(σ̃(W )) < m. This
completes Case 1.

Case 2: Ωu
0 6= ∅ and y0 |U for some U ∈ A1 ∩ C0. Recall that |A1 ∩ C1|

≥ 1 and |A1| ≥ 2. Hence Case 3 of Claim A and the hypothesis of Case 2
further imply that |A1 ∩ C0| = 1. Thus, if U 6= W0, then W0 ∈ C1, and
performing a type I swap between y0 |U and some y |W0 results (in view
of Lemma 3.1.2) in a product decomposition W ′ with y0 |W ′0, W ′0 ∈ C0,
σ̃(W ′) = σ̃(W ) and W ′ satisfying the hypotheses of Case 2. Thus w.l.o.g.
we may assume U = W0.

Since |A1 ∩ C1| ≥ 1, let V ∈ A1 ∩ C∗1 (recall W0 = U ∈ C0, so C1 = C∗1).
Performing a type I swap between y0 |W0 and some y |V , letting W ′ be
the resulting product decomposition, we conclude from Lemma 3.1.2 that
a = (C − 1)f1 + f2, where σ(W0) = Cf1 + f2. Since |A1 ∩ C0| = 1 and
W0 ∈ C0, let w.l.o.g. W1, . . . ,Wm−1 be the blocks of A∗2 ∩ C0. If x |W (2)

0

and y |Wj , with j ∈ [1,m− 1] and ι(x) = ι(y), then, performing a type III
swap between x |W0 and y |Wj and between x |W ′0 and y |W ′j , we conclude
in view of Lemmas 3.1.3 and 3.1.2 that ψ(x) = ψ(y); thus, letting D1 =
A∗2 ∩ C0 = {W1, . . . ,Wm−1} and D2 = A∗2 ∩ C1, we see that hypothesis (a)
holds in Lemma 5.2. If Lemma 5.2(i) holds, then ge1 + e2 + α is a term
of S with multiplicity at least mn− 1, as desired. Therefore Lemma 5.2(ii)
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holds, whence Lemmas 5.3.2 and 3.1.3 imply that a ∈ 〈f1〉, contradicting
a = (C − 1)f1 + f2. This completes Case 2.

Note that if Ωu
0 = ∅, then (in view of |A1| ≥ 2) we may w.l.o.g. assume

y0 |U with U 6= W0, by an appropriate type I swap. Moreover, when Ωu
0 = ∅,

we will w.l.o.g. assume σ̃(W ) = fm−1
1 fm−1

2 (f1 + f2) with C1 consisting of
those blocks Wi with σ(Wi) = f1.

Case 3: Ωu
0 = ∅ and y0 |U ∈ A∗1 with U ∈ C0. We may w.l.o.g. assume

W0 ∈ C1. Performing a type I swap between y0 |U and some y |W0, letting
W ′ be the resulting product decomposition, we conclude from Lemma 3.3.4
that a = f2. Let D1 = A∗2(W ′) ∩ C2(W ′) and let D2 = A∗2(W ′) ∩ C1(W ′).
Observe that |D1| = m − 1, else performing a type I swap between y0 |U
and some V ∈ A1 ∩ C2 would imply in view of Lemma 3.3.5 that a = f1,
contradicting a = f2. If a type III swap between W ′0 and some W ′j ∈ D1

results in a new product decomposition W ′′ with σ(W ′′0 ) 6= σ(W ′0), then
Lemma 3.3.5 implies σ(W ′′0 ) = f2, whence, performing a type I swap be-
tween y0 |W ′′0

(1) = W ′0
(1) and U ′′ = U ′, we conclude from Lemma 3.2.3 that

−a = f1 − f2, contradicting a = f2. Thus hypothesis (a) of Lemma 5.2
holds for W ′. If Lemma 5.2(i) holds, then ge1 + e2 + α has multiplicity at
least mn− 1 in S, as desired. Therefore, Lemma 5.2(ii) holds, whence Lem-
mas 5.3.2 and 3.2.5 imply that a ∈ 〈f1〉, contradicting that a = f2 and
completing Case 3.

Case 4: Ωu
0 = ∅ and y0 |U ∈ A∗1 with U /∈ C0. We may w.l.o.g. assume

U ∈ C1. If W0 ∈ C1, then performing type I swaps between W0 and U would
imply, in view of Lemma 3.3.1, that a = 0, a contradiction. Moreover, this
also shows that A1 ∩ C1 = {U}.

Suppose W0 ∈ C2. Performing a type I swap between y0 |U and some
y |W0, letting W ′ be the resulting product decomposition, we conclude
from Lemma 3.2.3 that σ̃(W ′) = σ̃(W ), W ′0 ∈ C1, a = f1 − f2 and ne1 =
σ(U ′) = f2. Let D1 = A∗2(W ′) ∩ C1(W ′) and let D2 = A∗2(W ′) ∩ C0(W ′).
Since A1 ∩ C1 = {U}, we have |D1| = m − 2. Since ne1 = f2 6= f1 + f2, we
have Z ∈ C0 with Z ∈ A∗2, and thus |D2| ≥ 1. Apply Lemma 5.2 to W ′.
If Lemma 5.2(ii) holds, then Lemmas 5.3.1 and 3.2.1 imply ψ1(a) = 0,
contradicting a = f1 − f2. Therefore Lemma 5.2(i) holds, whence gne1 +
ne2 + nα = σ(V ) = f1, where V ∈ D1. If there is a type III swap be-
tween Z ′ = Z and W ′0 resulting in a product decomposition W ′′ with
σ(W ′′0 ) 6= σ(W ′0), then Lemma 3.3.4 implies that σ(W ′′0 ) = f1 + f2, whence,
performing a type I swap between y0 |W ′′0 and y |U ′′ = U ′, we conclude
from Lemma 3.3.5 that −a = −f1, contradicting a = f1 − f2. Therefore
hypothesis (a) holds in Lemma 5.2 for W ′ with the roles of D1 and D2

reversed. Apply Lemma 5.2 in this case. If Lemma 5.2(ii) holds, then Lem-
mas 5.3.2 and 3.2.4 imply that a ∈ 〈f2〉, contradicting a = f1 − f2. There-
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fore Lemma 5.2(i) holds, whence gne1 + ne2 + nα = σ(Z) = f1 + f2,
contradicting gne1 + ne2 + nα = f1. So we may assume instead that
W0 ∈ C0.

Performing a type I swap between y0 |U and some y |W0, letting W ′ be
the resulting product decomposition, we conclude from Lemma 3.3.4 that
σ̃(W ′) = σ̃(W ), W ′0 ∈ C1, a = −f2, and ne1 = σ(U ′) = f1 + f2. Let
D1 = A∗2(W ′) ∩ C2(W ′). If there is V ∈ A1 ∩ C2, then, performing a type
I swap between y0 |U and some y |V , we conclude from Lemma 3.2.3 that
a = f1 − f2, contradicting a = −f2. Therefore |D1| = m − 1. Let D2 =
A∗2(W ′)∩C1(W ′). Since A1∩C1 = {U}, we have |D2| ≥ m−2. Thus we may
apply Lemma 5.2 toW ′. If Lemma 5.2(i) holds, then ge1+e2+α is a term of S
with multiplicity at least mn−1, as desired. Therefore Lemma 5.2(ii) holds,
whence Lemmas 5.3.3 and 3.2.3 imply that a = ±(f1 − f2), contradicting
a = −f2. This completes Case 4.

By Claim B, we now have S1 = e
|S1|
1 . From Lemma 2.3.3 and e1 |S1, we

have ord(e1) = mn. Hence there exists e′′2 ∈ e2 + nG such that (e1, e′′2) is
a basis for G; we provide a short sketch of how to choose such an e′′2 below.

Take a basis (e1, e′2). Write e2 = ae1 + be′2, where a, b ∈ Z. Let m′ |m be
maximal such that gcd(m′, n) = 1 (and thus every prime dividing m′−1mn
also divides n). Note that (me1,me2) being a basis in ϕ(G) implies gcd(b, n)
= 1. Since gcd(m′, n) = 1, use the Chinese Remainder Theorem, for each
prime p |m′, to find x ∈ Z such that p | b+nx for all primes p |m′, and thus
gcd(b+ n(x+ 1),m′) = 1. Now let e′′2 = e2 + n(x+ 1)e′2.

Thus, after changing notation if necessary (exchanging e2 for e′′2), we
may suppose that (e1, e2) is a basis of G. If g ∈ G and x, y ∈ Z with
g = xe1 + ye2, then we set π1(g) = xe1 and π2(g) = ye2. Note that we now
have σ(ψ(R)) = 0 in any type II swap and that (f1, f2) and (ne1, ne2) are
now two (possibly) distinct bases of Ker(ϕ) ∼= Cm ⊕ Cm.

Claim C. There exists x0 |S2 such that x− y ∈ 〈e1〉 for all xy |x−1
0 S2.

Proof. We need to show that there exists x0 |S2 such that π2(ψ(x)) =
π2(ψ(y)) for all xy |x−1

0 S2. We divide the proof into four cases.

Case 1: Ωu
0 6= ∅ and there is U ∈ A∗1 ∩ C1. In this case, we have

(19) ne1 = σ(U) = f1.

Let V ∈ A∗2. Perform type (II) swaps between W0 and V . If V,W0 ∈ C1,
then we conclude from Lemmas 3.1.1 and 3.4.1 that π2(ψ(x)) = α2 (say)
for all x |VW (2)

0 . If V, W0 ∈ C0, then we conclude from Lemmas 3.1.3 and
3.4.1 and (19) that ψ2 is constant on VW

(2)
0 , whence (19) further implies

that π2(ψ(x)) = α2 for all x |VW (2)
0 . If |{V,W0}∩C1| = 1, then we conclude

from Lemmas 3.1.2 and 3.4.3 that π2(ψ(x)) = α2 for all x |x−1
0 VW

(2)
0 , for
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some x0 |VW (2)
0 . If π2(ψ(x0)) 6= α2 and x0 |V , then pull x0 up into a new

product decomposition W ′ and assume we began with W ′ instead of W
(note that (19) holds independent of W ′ and that σ̃(W ) = σ̃(W ′) follows
by Lemma 3.1.2, so all previous arguments can be applied to W ′ regardless
of whether A∗1(W ′)∩ C1(W ′) is nonempty or not). Doing these swaps for all
V ∈ A∗2, we conclude that there is an x0 |S2 such that π2(ψ(x)) = α2 for all
x |x−1

0 S2, completing Case 1.

Case 2: Ωu
0 6= ∅ and A1 ∩ C1 = {W0}. Performing type II swaps be-

tween W0 and each U ∈ A∗2 ∩ C1, we conclude from Lemmas 3.4.1 and
3.1.1 that π2(ψ(x)) = α2 (say) for all x |W (2)

0 U , with U ∈ A∗2 ∩ C1. Let
w.l.o.g. W1, . . . ,Wl be the blocks in A2 ∩ C0, and let Wm+1, . . . ,W2m−2 be
the blocks in A∗2 ∩ C1. Note l ≥ 1, else Claim C follows by the previous con-
clusion. Performing type II swaps between W0 and Wj , with j ∈ [1, l], we
conclude from Lemmas 3.4.3 and 3.1.2 that π2(ψ(x)) = α2 for all x | z−1

j Wj ,
for some zj |Wj . We may w.l.o.g. assume π2(ψ(zj)) 6= α2 for j ∈ [1, l′] and
π2(ψ(zj)) = α2 for j ∈ [l′ + 1, l]. We have l′ ≥ 2, else Claim C follows.

Perform a type II swap between z1 |W1 and any term y |W (2)
0 , and let

W ′ denote the resulting product decomposition. Since π2(ψ(z1)) 6= α2 =
π2(ψ(y)), we know that π2(σ(W0)) 6= π2(σ(W ′0)), and hence σ(W0) 6= σ(W ′0).
Thus Lemma 3.1.2 implies that σ̃(W ′) = σ̃(W ), W ′0 ∈ C0 and W ′1 ∈ C1.

Now pull the term z2 |W2 up into a new product decompositionW ′′. Note
by Lemma 3.1.2 that σ̃(W ′′) = σ̃(W ). If W ′′0 ∈ C1, then the arguments of the
first paragraph show that π2(ψ(z2)) = α2, contradicting l′ ≥ 2. Therefore
W ′′2 ∈ C1 instead. However, noting that yW (1)

0 |W ′′0 for some y |W (2)
0 (since

σ(ι(W (2)
0 )) ≡ 1 mod n and σ(ι(W ′2)) ≡ 0 mod n), we can still perform the

swap between y |W ′′0 and z1 |W ′′1 = W1 described in the previous paragraph,
which results in a new product decomposition W ′′′ in which the m blocks

W ′′′1 = W ′1, W
′′′
2 = W ′′2 , W

′′′
m+1 = Wm+1, . . . , W

′′′
2m−2 = W2m−2

all have equal sum f1, contradicting S ∈ A(G) and completing Case 2.

Case 3: Either (Ωu
0 6= ∅ and A1 ∩ C1 = ∅) or (Ωu

0 = ∅ and W0 /∈ C0). If
Ωu

0 = ∅, we may w.l.o.g. assume σ̃(W ) = fm−1
1 fm−1

2 (f1 + f2) with C1 those
blocks with sum f1 and C2 those blocks with sum f2, and that W0 ∈ C2. Let
w.l.o.g. W1, . . . ,Ws be the s ≤ m−1 blocks of C1∩A∗2. Let σ(W0) = Cf1+f2

and F = (C − 1)f1 + f2. If Ωu
0 6= ∅, then we have s = m− 1 by hypothesis.

If s = 0, then |A∗1∩C1| = m− 1 (recall W0 ∈ C2), implying e1 is a term with
multiplicity at least mn− 1 in S (in view of Claim B), as desired. Therefore
we may assume s > 0.

We claim, for any W satisfying the hypothesis of Case 3 and notated as
above, in particular, with W1, . . . ,Ws being the blocks of C1 ∩ A∗2 (and in
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fact, if W ∈ Ωnu
0 , we will not need that Ωu

0 = ∅), that

(20) π2

(
ψ
(
x−1

0 W
(2)
0

s∏
ν=1

Wν

))
= q

(s+1)n−1
2

for some x0 |W (2)
0

∏s
ν=1Wν and q2 ∈ Ker(ϕ). To show this, perform type

II swaps between W0 and Wi, i ∈ [1, s]. If π2(F ) = 0, then Lemmas 3.4.1
and either 3.1.2 or 3.2.3 imply that (20) holds with π2(x0) = q2 as well. If
π2(F ) 6= 0 and (20) fails, then Lemmas 3.4.3 and either 3.1.2 or 3.2.3 imply
that π2(ψ(z)) = q2 (say) for all z |x−1

i W
(2)
0 Wi, for some xi |Wi, i ∈ [1, s];

moreover, s ≥ 2 and w.l.o.g. π2(ψ(x1)) and π2(ψ(x2)) are not equal to q2.
Pull x1 |W1 up into a new product decomposition W ′. If σ(W ′0) = σ(W0),
then the arguments of the previous sentence imply either π2(ψ(x1)) = q2
or π2(ψ(x2)) = q2, a contradiction. If σ(W ′0) 6= σ(W0) and W ∈ Ωu

0 , then
Lemma 3.1.2 implies that W ′ ∈ Ωu

0 with W ′0 ∈ C1, whence Claim C follows
in view of Case 2 applied to W ′. Therefore we may assume σ(W ′0) 6= σ(W0),
W ∈ Ωnu

0 and W ′0 ∈ C1 (in view of Lemma 3.2.3). Let y be a term that
divides both W

(2)
0 and W ′0

(2) (possible since σ(ι(W0)) ≡ 1 mod n). Choose
I such that min I ≡ ι(y) mod n, and consequently ε(y, z) = 0 for any
z (in view of (13)). Note that while the new choice of I may change the
overall value of ψ(x), where x |S2, in a nontrivial manner, nonetheless, the
value of π2(ψ(x)) remains unchanged. Perform type II swaps between y |W0

and any z |W2. In view of our choice of I, Lemma 3.2.3 and π2(ψ(x2)) 6=
q2 = π2(ψ(y)), we first conclude that −ψ(x2) + ψ(y) = F = −f1 + f2

(since −π2(ψ(x2)) + π2(ψ(y)) 6= 0, implying −ψ(x2) + ψ(y) 6= 0, and since
ε(y, z) = 0), implying π2(F ) 6= 0, and then that −ψ(z) + ψ(y) = 0 if z 6= x2

(since −π2(ψ(z)) + π2(ψ(y)) = 0 6= π2(F )); in particular, ψ1(x2) 6= ψ1(z)
for z |x−1

2 W2. However, performing type II swaps between y |W ′0 and any
z |W ′2 = W2, we conclude from Lemma 3.2.1 and the choice of I that ψ1

is constant on W ′2 = W2, contradicting the previous sentence. Thus (20) is
established in all cases.

Next we proceed to show that s = m−1. To this end, suppose s < m−1.
As noted before, we may then assume Ωu

0 = ∅. Let U ∈ A∗1 ∩ C1 (which is
nonempty by the assumption s < m − 1). Then f1 = σ(U) = ne1. Let x0

and q2 be as defined by (20). Thus, performing type II swaps between a
fixed x1 |x−1

0 W
(2)
0 and any y |V ∈ A∗2 ∩ (C2 ∪ C0), we conclude from f1 =

σ(U) = ne1 and Lemmas 3.2.2 and 3.2.5 that ψ2(V ) = ψ2(x1)n for all such
blocks V ∈ A∗1 ∩ (C2 ∪ C0). Hence, in view of ne1 = f1, we conclude that
π2(ψ(V )) = π2(ψ(x1))n = qn2 for all such V , which combined with (20)
implies Claim C. So we may assume s = m− 1.

In the case W ∈ Ωnu
0 , we have assumed Ωu

0 = ∅. However, we will
temporarily drop this assumption, allowing consideration of W ∈ Ωnu

0 even
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when Ωu
0 6= ∅, provided it still satisfies the hypothesis of Case 3 and follows

the notation given in the first paragraph with s = m − 1. This will extend
until the end of assertion A1 below, which shows that the exceptional term
x0 in (20) is not necessary.

A1. For every W ∈ Ω0 satisfying the hypotheses of Case 3 (allowing
W ∈ Ωnu

0 even if Ωu
0 6= ∅), we have π2(ψ(x0)) = q2, where q2 and

x0 are as given by (20) (and W is notated using the conventions
from the start of Case 3).

Proof of A1. Assume instead there exists W ∈ Ω0 satisfying the hy-
potheses of Case 3 with π2(ψ(x0)) 6= q2.

Suppose x0 |Wj with j > 0. Pull up an arbitrary y |Wk ∈ A2, with
k ≥ m, into a resulting product decomposition W ′′ (such a block exists,
else (20) completes Claim C). If W ′′ satisfies the hypotheses of Case 3, then
applying (20) to W ′′ we conclude that π2(ψ(y)) = q2 (since x0 |Wj with
j > 0), whence Claim C follows in view of (20) and the arbitrariness of y.
Therefore we may instead assume W ′′ does not satisfy the hypotheses of
Case 3, whence, in view of Cases 1 and 2, we may assume W ′′ ∈ Ωnu

0 with
W ′′0 ∈ C0(W ′′).

Let z be a term dividing both W
(2)
0 and W ′′0

(2) (which exists in view
of σ(ι(W (2)

0 )) ≡ 1 mod n). Note that we cannot have 0 = ψ(z) − ψ(x0) +
ε(z, x0)ne1, as then 0 = π2(ψ(x0)) − π2(ψ(z)) = π2(ψ(x0)) − q2, a con-
tradiction to π2(ψ(x0)) 6= q2. Thus, in view of (20) and Lemma 3.2.3 or
3.1.2, it follows that performing a type II swap between x0 |Wj and z |W (2)

0

results in a new product decomposition W ′ in which σ(W ′j) = Cf1 + f2

and σ(W ′0) = f1. Thus, if W ∈ Ωu
0 , then we can apply Lemma 5.1 to

conclude W ′′ ∈ Ωu
0 , contrary to the conclusion of the previous paragraph.

Therefore we may assume W ∈ Ωnu
0 . Hence, from W ′′ ∈ Ωnu

0 and Lemma
3.3, it follows that σ̃(W ′′) = σ̃(W ), whence σ(W ′′0 ) = f1 + f2 (in view of
W ′′0 ∈ C0(W ′′)). However, since z |W ′′0

(2), we may still apply the previously
described swap between x0 |W ′′j = Wj and z |W ′′0 now in W ′′ ∈ Ωnu

0 , which
results in a product decomposition W ′′′ ∈ Ω′ with vf2(σ̃(W ′′′)) = m (as
σ(W ′′′j ) = σ(W ′j) = Cf1 + f2 = f2 and σ(W ′′j ) = σ(Wj) = f1 and W ′′0 ∈ C0),
contradicting S ∈ A(G). So we may assume x0 |W0.

Perform a type II swap between an arbitrary x |W (2)
0 and y |Wj with

j ∈ [1,m− 1]. In view of Lemma 3.1.2 or 3.2.3, it follows that

(21) ε(x, y)ne1 + ψ(x)− ψ(y) ∈ {0, F}.
If x = x0, then it follows, in view of π2(ψ(x0))− π2(ψ(y)) = π2(ψ(x0))− q2
6= 0 and (21), that ε(x0, y)ne1 + ψ(x0)− ψ(y) = F , and thus

(22) 0 6= π2(ψ(x0))− q2 = π2(ψ(x0))− π2(ψ(y)) = π2(F ).
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Consequently, if x 6= x0, then, from π2(ψ(x)) − π2(ψ(y)) = q2 − q2 = 0 (in
view of (20)) and (21) and (22), it follows that

ε(x, y)ne1 + ψ(x)− ψ(y) = 0.

As y |Wj with j ∈ [1,m − 1] and x |x−1
0 W

(2)
0 were arbitrary above, we

see that we can apply Lemma 5.4 with i = 0, Z = x−1
0 W

(2)
0 and D =

{W1, . . . ,Wm−1}.
Thus we can choose I appropriately so that, for some q ∈ Ker(ϕ),

(23) ψ(x) = q

for all x |x−1
0 W

(2)
0

∏m−1
ν=1 Wν , and

(24) ι(x) ≤ ι(y)

for all x |x−1
0 W

(2)
0 and y |Wi, i ∈ [1,m − 1]. By performing a type II swap

between x0 |W0 and each y |Wi with i ∈ [1,m − 1], we conclude, from
π2(ψ(x0)) 6= q2 = π2(q) and either Lemma 3.1.2 or 3.2.3, that

(25) ψ(x0)− q + ε(x0, y)ne1 = (C − 1)f1 + f2.

Thus ε(x0, y) must be the same for every y |Wj with j ∈ [1,m − 1]. As a
result, it follows in view of (13) that either ι(x0) ≤ min(supp(ι(

∏m−1
ν=1 Wν)))

or ι(x0) > max(supp(ι(
∏m−1
ν=1 Wν))). In the latter case, we may choose I

such that min I ≡ ι(x0) mod n, and thus, in both cases (in view of (24)),

(26) ι(x) ≤ ι(y)

for all x |W (2)
0 and y |Wi, i ∈ [1,m − 1], with (23) still holding for some

q ∈ Ker(ϕ) (since (26) was all that was required in the proof of Lemma 5.4
to ensure (23) held). Consequently, (25) and (13) imply that

(27) ψ(x0) = q + F = q + (C − 1)f1 + f2.

Let y |Wk ∈ A2 with k ≥ m and π2(ψ(y)) 6= q2; such a term and block
exists, else Claim C follows in view of (20). If y |Wk could be pulled up into
a new product decomposition W ′ with x0 |W ′0, then W ′ must still satisfy
the hypothesis of Case 3 (by the same arguments used when x0 |Wj with
j > 0), whence applying (20) to W ′ implies π2(ψ(x0)) = q2 or π2(ψ(y)) = q2,
contrary to our assumption. Therefore we may assume this is not the case,
whence Theorem 2.6.2 implies that

(28) ι(W (2)
0 ) = gl1g

n−1−l
2 ι(x0) and ι(Wk) = gn−1−l

1 gl2ι(y)

for some g1, g2 ∈ Z with gcd(g1 − g2, n) = 1. If there existed x′0 |x
−1
0 W

(2)
0

such that ε(x′0, z) = ε(x0, z) for some z |Wk, then we could apply a type II
swap between z |Wk and each of x0 |W0 and x′0 |W0, which in view of
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Lemma 3.1.3 or Lemma 3.2 would imply that ψ2(x0) = ψ2(x′0) = ψ2(q),
contradicting (27). Therefore we may assume otherwise, whence (13) im-
plies either

ι(x0) ≤ min(supp(ι(Wk))) ≤ max(supp(ι(Wk)))(29)

< min(supp(ι(x−1
0 W

(2)
0 )))

or

ι(x0) > max(supp(ι(Wk))) ≥ min(supp(ι(Wk)))(30)

≥ max(supp(ι(x−1
0 W

(2)
0 ))).

In either case, we see that |supp(ι(Wk)) ∩ supp(ι(W (2)
0 ))| ≤ 1. As a result,

(28) implies that w.l.o.g. l = n − 1, ι(W (2)
0 ) = gn−1

1 ι(x0) and ι(Wk) =
gn−1
2 ι(y). Thus σ(ι(Wk)) ≡ 0 mod n and σ(ι(W (2)

0 )) ≡ 1 mod n imply that
ι(Wk) = gn2 and ι(x0) ≡ g1 + 1 mod n.

If (29) holds, then from ι(x0) ≡ g1 + 1 mod n and (29) it follows that
max I = g1. However, in view of (26), this is only possible if ι(x) = g1 for all
x |x−1

0 W
(2)
0

∏m−1
ν=1 Wν , in which case, since ψ(x) = q also holds for all such

terms (in view of (23)), it follows that S contains a term with multiplicity
mn−1, as desired. Therefore we can instead assume (30) holds. In this case,
it follows, in view of (30), ι(x−1

0 W
(2)
0 ) = gn−1

1 and ι(x0) ≡ g1 + 1 mod n,
that

{g2} = supp(ι(Wk)) = supp(ι(x−1
0 W

(2)
0 )) = {g1},

contradicting gcd(g1 − g2, n) = 1.

We now return to arguments where we assume Ωu
0 = ∅ when W ∈ Ωnu

0 .
In view of A1, we may assume π2(ψ(x)) = q2 for all x |W (2)

0

∏m−1
ν=1 Wν . Let

y |Wk be arbitrary with Wk ∈ A2 and k ≥ m. If we can pull up y into a
new product decomposition W ′ such that either W ′ ∈ Ωu

0 , or else W ′ ∈ Ωnu
0

and W ′0 /∈ C0(W ′), then it follows, in view of Cases 1 and 2, A1 and (20),
that we may assume π2(ψ(y)) = q2 also (note this is where we need that
W ∈ Ωnu

0 is allowed in A1 even when Ωu
0 6= ∅). However, this can only fail

if (by an appropriate choice for f2 in the case when W ∈ Ωu
0 ) w.l.o.g.

(31) σ̃(W ) = fm−1
1 fm−2

2 (Cf1 + f2)((1− C)f1 + f2),

with σ(Wk) = (1−C)f1+f2 and (recall) σ(W0) = Cf1+f2. Consequently, we
see that there is at most one block Wk for which this can fail (as W0 /∈ C0
when Ωu

0 = ∅). As Claim C follows otherwise, we may assume Wk ∈ A2

exists and that σ̃(W ) is of such form, and w.l.o.g. assume k = 2m− 2. Now

Cf1 + f2 = σ(W0) = Y1ne1 + ne2 + nq2,(32)
f1 = σ(W1) = Y2ne1 + ne2 + nq2,(33)
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for some Yi ∈ Z. From (32) and (33), we conclude that

(34) (C − 1)f1 + f2 ∈ 〈ne1〉.

If there exists U ∈ A∗1, then ne1 = σ(U) = f2 (in view of (31), s = m−1
and Wk = W2m−2 ∈ A2); thus from (34) it follows that (C − 1)f1 ∈ 〈f2〉,
which is only possible if C ≡ 1 mod m, contradicting W /∈ C0 when W ∈ Ωnu

0

(in view of (31)). So we may instead assume |A1| = 1. This same argument
also shows that ψ1(ne1) 6= 0. Let D = {Wm, . . . ,W2m−2}.

If ψ2(ne1) = 0, then ne1 ∈ 〈f1〉, which combined with (34) yields a
contradiction to (f1, f2) being a basis. Therefore ψ2(ne1) 6= 0. Thus, in view
of Lemma 3.1.3 or Lemmas 3.2.5 and 3.2.2, it follows that we may apply
Lemma 5.4 with Z = W

(2)
0 , i = 2 and D as given above. Choose I as in

Lemma 5.4 (as mentioned before, changing I does not affect the value of
π2(ψ(x)), and thus (20) remains unaffected). Then

(35) ψ2(x) = α2

for all x |W (2)
0

∏2m−2
ν=m Wν and some α2 ∈ 〈f2〉, and

(36) ι(x) ≤ ι(y)

for all x |W (2)
0 and y |

∏2m−2
ν=m Wν .

Let y0 |W2m−2 with π2(ψ(y0)) 6= q2 (such a y0 exists, as discussed
above, else Claim C follows). Let W ′ be an arbitrary product decompo-
sition resulting from pulling up y0 into a new product decomposition. Since
π2(ψ(y0)) 6= q2, we have (as discussed earlier) σ̃(W ′) = fm−1

1 fm−1
2 (f1 + f2)

with σ(W ′0) = f1 + f2. Let X = gcd(W (2)
0 ,W ′0

(2)) and let X ′, Y ′ and
Y be defined by W

(2)
0 = XX ′, W ′0

(2) = XY ′ and W2m−2 = Y Y ′. Thus
W ′2m−2 = X ′Y . Note that all four of these newly defined subsequences are
nontrivial in view of σ(ι(W (2)

0 )) ≡ 1 mod n and σ(ι(W2m−2)) ≡ 0 mod n.
Let D′ = {W ′1, . . . ,W ′m−1}. In view of Lemma 3.2.4 and ψ1(ne1) 6= 0,

it follows that we can apply Lemma 5.4 with i = 1, Z = W ′0
(2), and D

taken to be D′ (however, do NOT change I). If (12) holds, then (in view of
(13)) we can find z |W ′j , for some j ∈ [1,m− 1], such that ε(y0, z) = ε(x, z),
where x |X. Applying a type II swap between z |W ′j and each of x |W ′0
and y0 |W ′0, we conclude from Lemma 3.2.4 that ψ1(x) = ψ1(y0). How-
ever, since x |X and X |W (2)

0 and y0 |W2m−2, it follows from (35) that
ψ2(x) = ψ2(y0) also, whence ψ(x) = ψ(y0), implying q2 = π2(ψ(x)) =
π2(ψ(y0)), contrary to assumption. Therefore we may instead assume (11)
holds. Moreover, if both y0 and some x |X are contained in the same
interval Ji (from (11)), then we can repeat the above argument to obtain
the same contradiction. Therefore it follows, in view of (36), that y0 ∈ J2

and X ⊂ J1.
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Let z |W ′0
(2) and z′ |W ′j with j ≥ m be arbitrary. Performing a type II

swap between z |W ′0
(2) and z′ |W ′j , we conclude from Lemma 3.2.5 that

ψ2(z)− ψ2(z′) + ψ2(ε(z, z′)ne1) = 0.

Thus (35) implies that ψ2(ε(z, z′)ne1) = 0, which, in view of ψ2(ne1) 6= 0
and (13), implies that ε(z, z′) = 0 and

(37) ι(z) ≤ ι(z′)

for any z |W ′0
(2) and z′ |W ′j with j ≥ m.

Applying (37) with z |Y ′ and z′ |X ′ and j = 2m−2, we conclude in view
of (36) that

(38) ι(z) = max(supp(ι(W ′0
(2)))) = min

(
supp

(
ι
( 2m−2∏
ν=m

W ′ν

)))
= ι(z′)

for any z′ |X ′ and z |Y ′.
From (38) applied with z = y0, we see that there is y′0 |W

(2)
0 with ι(y′0)

= ι(y0). Thus y can be pulled up into a new decomposition W ′′ by exchang-
ing y0 |W2m−2 and y′0 |W0, and all of the above arguments (valid for an arbi-
trary W ′ obtained by pulling up y0 |W2m−2) are applicable for W ′′. In par-
ticular, y′0

−1W
(2)
0 = X ⊂ J1 and y0 ∈ J2 imply, in view of Y = y−1

0 W2m−2,
(11) and (38), that

(39) max(supp(ι(y′0
−1
W

(2)
0 ))) < min(supp(ι(W2m−2))).

If we could pull up y′0y0 |W0W2m−2 into a new product decomposi-
tion W ′′′, then (39) would imply that X ′ contains a z′ with ι(z′) < ι(y0),
which would contradict (37) applied with z = y0 and z′ = z′. There-
fore we can assume otherwise, whence Theorem 2.6.2 and (39) imply that
|supp(ι(y′0

−1W
(2)
0 ))| = |supp(ι(y−1

0 W2m−2))| = 1. Thus σ(ι(W (2)
0 )) ≡ 1

mod n and σ(ι(W2m−2)) ≡ 0 mod n force that ι(W2m−2) = gn and ι(W (2)
0 ) =

(g − 1)n−1g, where ι(y0) = ι(y′0) = g. Consequently, (11), X ⊂ J1 and
y0 ∈ J2 (in the case when W ′ = W ′′) force that ι(z) = g − 1 for all
z | y′0

−1W
(2)
0

∏m−1
ν=1 Wi.

Applying type III swaps among the Wi, i ∈ [1,m− 1], we conclude from
Lemma 3.3.1 or 3.1.1 that ψ(x) = q (say) for all x |Wi, i ∈ [1,m − 1].
Applying type III swaps between W0 and W1, we conclude from Lem-
ma 3.2.3 or 3.1.2 and Lemma 3.4.3 that ψ(x) = q for all x | y′′0

−1y′0
−1W

(2)
0 ,

for some y′′0 | y′0
−1W

(2)
0 , and that ψ(y′′0) = q or q + (C − 1)f1 + f2. Ap-

plying a type III swap between y′′0 |W ′′0 and some z |W ′′1 in W ′′, we con-
clude from Lemma 3.2.4 that ψ1(y′′0) = ψ1(z) = ψ1(q), whence we see that
ψ(y′′0) = q + (C − 1)f1 + f2 is impossible (since C ≡ 1 mod m would con-
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tradict W0 /∈ C0 when W ∈ Ωnu
0 ; see (31)). Thus ψ(y′′0) = q as well, and

(g−1)e1 +e2 +q has multiplicity at least mn−1 in S, as desired, completing
Case 3.

Case 4: Ωu
0 = ∅ and W0 ∈ C0. We start with the following assertion.

A2. If Ωu
0 = ∅, W ∈ Ωnu

0 with σ̃(W ) = fm−1
1 fm−1

2 (f1 + f2), W0 ∈ C0,
and |A2 ∩ Ci| ≥ 1 for all i ∈ {1, 2}, then I can be chosen such that
one of the following properties holds:

(i) |supp(ψ(W (2)
0 ))| = 1, or

(ii) (a) ψi(ne1) 6= 0 for all i ∈ {1, 2},
(b) there exist g1, g2 ∈ Z such that gcd(g1 − g2, n) = 1 and

ι(U) = gn1 and ι(V ) = gn2 for every U ∈ A∗2 ∩ C1 and
V ∈ A∗2 ∩ C2,

(c) g1 > g2 and ι(x) ≤ g1 for all x |W (2)
0 ,

(d) if also |A2 ∩ Ci| ≥ 2 for all i ∈ {1, 2}, then there exist
c, d ∈ Ker(ϕ) such that ψ(U) = cn and ψ(V ) = dn for
every U ∈ A∗2 ∩ C1 and V ∈ A∗2 ∩ C2.

Proof of A2. We may w.l.o.g. assume C1 are those blocks with sum f1.
Performing type II swaps between each x |W (2)

0 and each y |U ∈ A∗2∩C1, and
between each x |W (2)

0 and each z |V ∈ A∗2∩C2, we conclude from Lemma 3.2
that

ψ1(x) = ψ1(y)− ψ1(ε(x, y)ne1),(40)

ψ2(x) = ψ2(z)− ψ2(ε(x, z)ne1).(41)

Since ord(e1) = mn, one of ψ1(ne1) or ψ2(ne1) is nonzero, say the former
(the other case is identical). Then, in view of (40), we may apply Lemma 5.4
with i = 1, Z = W

(2)
0 and D = A∗2 ∩C1. Consequently, we can choose I such

that

(42) ι(x) ≤ ι(y)

for all x |W (2)
0 and y |U ∈ A∗2 ∩ C1, and ψ1 is constant on W

(2)
0 . If ψ2(ne1)

is zero, then (41) implies that ψ2 is also constant on W (2)
0 , whence (i) holds.

Therefore we may assume otherwise, and (a) is established. Likewise, if
there is some z |V ∈ A∗2 ∩ C2 with ι(z) ≥ max(supp(ι(W (2)

0 ))) or ι(z) <
min(supp(ι(W (2)

0 ))), then (i) again holds (in view of (13) and (41)). So we
may assume otherwise:

(43) min(supp(ι(W (2)
0 ))) ≤ ι(z) < max(supp(ι(W (2)

0 )))
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for all z |V ∈ A∗2 ∩ C2. Consequently, it follows in view of (42) that both
supp(ι(

∏
U∈A∗2∩C1

U)) and supp(ι(
∏
V ∈A∗2∩C2

V )) are disjoint.

Suppose |supp(ι(U))| > 1 or |supp(ι(V ))| > 1 for some U ∈ A∗2 ∩ C1 or
V ∈ A∗2 ∩ C2. Then we may find u0 |U and v0 |V such that |supp(ι(u−1

0 U))|
> 1 or |supp(ι(v−1

0 V ))| > 1, whence it follows, in view of Theorem 2.6.2
(applied to ι(u−1

0 v−1
0 UV ) modulo n) and the fact that supp(ι(

∏
U∈A∗2∩C1

U))
and supp(ι(

∏
V ∈A∗2∩C2

V )) are disjoint, that we can refactor UV = U ′V ′ so
that U ′ and V ′ both contain terms from both U and V . Replacing the
blocks U and V by U ′ and V ′ yields a new product decomposition W ′ ∈ Ω0;
in view of Lemma 3.2.3, we still have σ̃(W ′) = σ̃(W ), whence W ′ satis-
fies the hypotheses of A2. However, since both U ′ and V ′ contain terms
from both U and V , it follows that both U ′ and V ′ contain a term z′ |U
with ι(z′) ≥ max(supp(ι(W (2)

0 ))) (in view of (42)), as well as a term z |V
with min(supp(ι(W (2)

0 ))) ≤ ι(z′) < max(supp(ι(W (2)
0 ))) (in view of (43)),

which makes it impossible for (11) or (12) to hold for W ′, contradicting
Lemma 5.4 for W ′, which must hold by the above arguments. So we may
assume |supp(ι(U))| = 1 and |supp(ι(V ))| = 1 for all U ∈ A∗2 ∩ C1 and
V ∈ A∗2 ∩ C2. Moreover, this argument also shows that if ι(U) = gn1 and
ι(V ) = gn2 , then gcd(g1 − g2, n) = 1.

Suppose |supp(ι(
∏
U∈A∗2∩C1

U))| > 1 or |supp(ι(
∏
V ∈A∗2∩C2

V ))| > 1, say
the former (the other case will be identical). Then there are U1, U2 ∈ A∗2∩C1
and V ∈ A∗2 ∩ C2 with ι(U1) = g1, ι(U2) = g′1 and ι(V ) = g2, where
g1 6= g′1. We have gcd(g1 − g′1, n) = 1, else repeating the arguments of
the previous paragraph, using U1 and U2 in place of U and V , we ob-
tain a W ′ ∈ Ω0 satisfying the hypotheses of A2 but such that the con-
clusion of the previous paragraph fails, whence 1 = |supp(ψ(W ′(2)

0 ))| =
|supp(ψ(W (2)

0 ))| must hold by prior arguments, yielding (i). Hence, since
gcd(g1 − g2, n) = 1 and gcd(g′1 − g2, n) = 1, it follows that all n-term
zero-sum modulo n subsequences of gn−1

1 g′1
n−1gn−1

2 have support of cardi-
nality three. Thus, by two applications of Theorem 2.6.1, we can refactor
U1U2V = XY Z such that X, Y and Z all contain terms from each of U1,
U2 and V (note, since |supp(ι(X))| = 3, that ι(Y Z) ⊂ gn−1

1 g′1
n−1gn−1

2 ).
Replacing U1, U2 and V by X, Y and Z yields a new product decompo-
sition W ′ ∈ Ω0; in view of Ωu

0 = ∅ and m ≥ 5, we still have σ̃(W ′) =
σ̃(W ), whence W ′ satisfies the hypotheses of A2. However, since X, Y
and Z each contain terms from U1, U2 and V , we see that the condition
|supp(ι(U))| = 1 for U ∈ A∗2 ∩ C1 fails for W ′, whence previous argu-
ments show |supp(ψ(W (2)

0 ))| = |supp(ψ(W ′0
(2)))| = 1, yielding (i). So we

may assume |supp(ι(
∏
U∈A∗2∩C1

U))| = 1 and |supp(ι(
∏
V ∈A∗2∩C2

V ))| = 1,
and also supp(ι(

∏
U∈A∗2∩C1

U)) = g1 and supp(ι(
∏
V ∈A∗2∩C2

V )) = g2. This
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establishes (b). Moreover, by the arguments from the second paragraph, we
can choose I such that (c) holds.

We now assume |A2∩Ci| ≥ 2 for all i ∈ {1, 2}. Performing type III swaps
between distinct U1, U2 ∈ A∗2 ∩ C1 and between distinct V1, V2 ∈ A∗2 ∩ C2,
we conclude from Lemma 3.3 that ψ(U) = cn (say) for all U ∈ A∗2 ∩ C1 and
that ψ(V ) = dn (say) for all V ∈ A∗2 ∩ C2, establishing (d), and completing
the proof of A2.

SinceΩu
0 = ∅, it follows, in view of Lemma 3.3, that if we pull up any term

y |U , where U ∈ A∗2, then we may assume the resulting product decomposi-
tion still satisfies the hypothesis of Case 4 with σ̃(W ′) = σ̃(W ), else applying
Case 3 using this product decomposition completes Claim C. Thus, if for
every product decomposition satisfying the hypothesis of Case 4 we can find
I such that |supp(ψ(W (2)

0 ))| = 1, then, since modifying I does not alter the
values π2(ψ(x)), we would be able to conclude |supp(π2(ψ(S2)))| = 1—by
successively pulling up terms y |S2, yielding a sequence of product decom-
positions satisfying the hypotheses of Case 4, until every such y occurred in
the W (2)

0 part of one of these product decompositions, and then noting that
there must always be a common term in W (2)

0 between any two consecutive
product decompositions in the sequence (in view of σ(ι(W (2)

0 )) ≡ 1 mod n)—
completing Claim C. Therefore we may assume this is not the case for W .
Let w.l.o.g. σ̃(W ) = fm−1

1 fm−1
2 (f1 + f2) and C1 consist of those blocks with

sum f1.
Note that we must have A∗2∩C1 and A∗2∩C2 both nonempty, else in view

of Claim B it would follow that e1 is a term of S with multiplicity mn− 1,
completing the proof. Thus A2(ii)(a) implies that ψi(ne1) 6= 0 for i ∈ {1, 2}.
As a result, we cannot have a block U ∈ A∗1 (else ne1 = σ(U) = f1 or f2).
Hence |A1| = 1, implying |A∗2∩C1| ≥ 2 and |A∗2∩C2| ≥ 2. Thus, by choosing
I appropriately, A2(ii)(a–d) holds for W .

Suppose supp(ι(W (2)
0 )) 6= {g1, g2}. Then there must be some x0 |W (2)

0

with ι(x0) /∈ {g1, g2} (in view of σ(ι(W (2)
0 )) ≡ 1 mod n). Since gcd(g1 −

g2, n) = 1, there is no n-term zero-sum mod n subsequence of gn−1
1 gn−1

2 .
Thus applying Theorem 2.6.1 to gn−1

1 gn−1
2 ι(x0) implies that we may find a

subsequence U1 |x0UV , where U ∈ A∗2∩C1 and V ∈ A∗2∩C2, such that x0 |U1

and supp(ι(x0
−1U1)) = {g1, g2}. Consequently, vgi(U1) ≤ n − 2, and thus

vgi(ι(U
−1
1 W

(2)
0 UV )) ≥ 2, for i = {1, 2}. Thus, if there were no n-term zero-

sum mod n subsequence of ι(U−1
1 u−1

1 v−1
1 W

(2)
0 UV ), where u1 |U1, v1 |V and

u1v1 |U−1
1 V −1

1 UV , then Theorem 2.6.2 would imply that ι(U−1
1 W

(2)
0 UV ) =

gn1 g
n
2 , whence

1 ≡ σ(ι(W (2)
0 UV )) ≡ σ(ι(U1)) + ng1 + ng2 ≡ 0 mod n,
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which is a contradiction. Therefore we may assume there exists such a
subsequence ι(U2), where U2 |U−1

1 u−1
1 v−1

1 W
(2)
0 UV . Let W ′0 be defined by

W0UV = U1U2W
′
0. Then replacing W0, U and V with W ′0, U1 and U2 yields

a new product decomposition W ′ ∈ Ω0. Since Ωu
0 = ∅ and m ≥ 4, we must

have σ̃(W ) = σ̃(W ′), and we may further assume W ′0 ∈ C0, else apply-
ing Case 3 using W ′ completes Claim C. Thus W ′ satisfies the hypotheses
of Case 4, but since |supp(ι(U1))| > 1, we see that W ′ does not satisfy
A2(ii). Thus A2(i) implies that we must have |supp(π2(ψ(W ′0

(2))))| = 1
(note we do not have |supp(ψ(W ′0

(2)))| = 1 as we would need to change
I for this to hold); since u1v1 |W ′0 and u1 |U and v1 |V , this implies that
π2(c) = π2(ψ(u1)) = π2(ψ(v1)) = π2(d).

Let x |x−1
0 W

(2)
0 be arbitrary. By Theorem 2.6.1, it follows that there is

an n-term zero-sum mod n subsequence of ι(x−1U−1
1 W

(2)
0 UV ), say ι(U3)

with U3 |x−1U−1
1 W

(2)
0 UV (recall that U1 |x0UV ). Let W ′′0 be defined by

W0UV = U1U3W
′′
0 . Then replacing the blocks W0, U and V with the blocks

W ′′0 , U1, and U3 yields a new product decomposition W ′′ ∈ Ω0, and as before
we may assume W ′′ satisfies the hypotheses of Case 4 with σ̃(W ′′) = σ̃(W ).
Thus, since |supp(ι(U1))| > 1, we see that W ′′ does not satisfy A2(ii), and
so we must have

(44) |supp(π2(ψ(W ′′0
(2))))| = 1.

Since x0 |U1 and x0 |W (2)
0 , it follows from the pigeonhole principle that

we must have a term x′ |W ′′0
(2) with x′ |UV , and thus with π2(ψ(x′)) =

π2(c) = π2(d) (in view of the previous paragraph). Since x |W ′′0 , this implies
π2(ψ(x)) = π2(c) (in view of (44)). As x |x−1

0 W
(2)
0 was arbitrary, we conclude

that every x |x−1
0 S2 has π2(ψ(x)) = π2(c) = π2(d), completing the proof of

Claim C (in view of A2(ii)(d) holding for W ). So we may instead assume
supp(ι(W (2)

0 )) = {g1, g2}.
Since |A1| = 1, let W1, . . . ,Wm−1 be the blocks of A∗2 ∩ C1, and let

Wm, . . . ,W2m−2 be the blocks of A∗2 ∩ C2. Let W (2)
0 = b1 · . . . · btb′1 · . . . · b′n−t

with ι(bi) = g1 and ι(b′j) = g2. Applying type III swaps between bi |W0 and
y |W1, it follows from Lemma 3.3.4 that we may assume ψ(bi) = ψ(y) = c
for all i (else Case 3 completes Claim C). Likewise applying type III swaps
between b′i |W0 and z |Wm, it follows that ψ(b′i) = ψ(z) = d for all i. Conse-
quently, we may assume t ∈ [2, n−2], else S contains a term with multiplicity
at least mn− 1, as desired (either g1e1 + e2 + c or g2e1 + e2 + d).

Applying type II swaps between b1 |W0 and z |Wm and between b′1 |W0

and y |W1, it follows, in view of Lemma 3.2, (13) and g1 > g2 (A2(ii)(c)),
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that

d− c ∈ 〈f2〉,(45)
c− d+ ne1 ∈ 〈f1〉.(46)

Since t ∈ [2, n − 2], we have b1b2 |W (2)
0 and b′1b

′
2 |W

(2)
0 . Let Y be a subse-

quence of W1 and Z be a subsequence of Wm with |Y | = |Z| = 2. Apply-
ing type II swaps between b′1b

′
2 |W0 and Y |W1 and between b1b2 |W0 and

Z |Wm, we conclude from Lemma 3.2 that

2(d− c) + ε(b′1b
′
2, Y )ne1 ∈ 〈f2〉,(47)

2(c− d) + ε(b1b2, Z)ne1 ∈ 〈f1〉.(48)

Observe (in view of g1 > g2) that

ε(b′1b
′
2, Y )ne1 =

{
0 if g1 − g2 ≤ (n− 1)/2,
−ne1 if g1 − g2 ≥ (n+ 1)/2.

Likewise

ε(b1b2, Z)ne1 =
{
ne1 if g1 − g2 ≤ (n− 1)/2,
2ne1 if g1 − g2 ≥ (n+ 1)/2.

Thus, if g1 − g2 ≤ (n− 1)/2, then (48) and (46) imply that c − d ∈ 〈f1〉,
which combined with (45) implies that c = d, in which case Claim C follows.
On the other hand, if g1 − g2 ≥ (n+ 1)/2, then (47) and (45) imply that
ne1 ∈ 〈f2〉, which contradicts A2(ii)(a) for W , completing Case 4.

Claim D. h(S) = mn− 1.

Proof. Let S′2 = x−1
0 S2, with x0 as in Claim C, and let S′ = S1S

′
2. By

Proposition 4.2 and Claim B, we have S1 = e
|S1|
1 , |S1| = `n − 1 and |S′2| =

2mn−`n−1, for some ` ≥ 1. If ` ≥ m, then e1 is a term with multiplicity at
least mn− 1, as desired. Therefore we may assume ` < m. Moreover, since
S ∈ A(G), it follows that 0 /∈ Σ(S′). In view of Claim C and Proposition 4.2,
we may assume every xi |S′2 is of the form yie1+(1+nq)e2, with q ∈ [0,m−1].
Let T = π1(S′2) ∈ F(〈e1〉), and let H ′ = 〈e1, (1 + qn)e2〉 ∼= Cmn ⊕ Crn,
where rn = ord((1 + qn)e2). If r < m, then noting that S′ ∈ F(H ′) with
|S′| = 2mn−2 ≥ mn+rn−1 = D(H ′), we see that 0 ∈ Σ(S′), contradicting
S ∈ A(G). Thus we may choose e2 to be (1 + qn)e2 while (e1, e2) is still
a basis, and so w.l.o.g. we assume q = 0.

Since ` < m, it follows that |S′2| = 2mn− `n− 1 ≥ mn+n− 1 ≥ mn+ 2
and

(49) Σ(S1) = {e1, 2e1, . . . , (`n− 1)e1}.
Consequently, 0 /∈ Σ(S′) implies

(50) Σmn(S′2) = Σmn(T ) ⊂ A := {e1, 2e1, . . . , (mn− `n)e1},
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and thus

(51) |Σmn(T )| ≤ mn− `n = |T | −mn+ 1.

Note that h(T ) = h(S′2) ≤ mn− 2, else the proof is complete. Thus we can
apply Theorem 2.7, taking k = 3, whence it follows, in view of (51) and
0 /∈ Σmn(T ), that |supp(T )| ≤ 2.

We may assume |supp(T )| = 2, else S will contain a term with mul-
tiplicity |T | = 2mn − `n − 1 ≥ mn + n − 1, contradicting S ∈ A(G).
Thus T = (g0e1)n1((g0 + d)e1)n2 for some g0, d ∈ Z with de1 6= 0. Since
(e1, g0e1 + e2) is also a basis for G, by redefining e2 to be g0e1 + e2 we may
w.l.o.g. assume g0 = 0. Thus

(52) Σmn(T ) = B := (mn− n1)de1 + {0, de1, . . . , (mn− `n− 1)de1},

which is an arithmetic progression of difference de1 and length mn− `n (in
view of 0 /∈ Σnm(T )). In view of (50), we have B = A with

2 ≤ n ≤ |A| = mn− `n ≤ mn− n ≤ mn− 2.

Thus de1 = ±e1 (as the difference of an arithmetic progression under the
above assumptions is unique up to sign). Consequently, (50) and (52) imply
that n1 = nm− 1 if de1 = e1 (since |S′| ≤ 2nm− 2), and that n1 = mn− `n
if de1 = −e1 (since |S′2| < 2mn−`n). However, in the former case, e2 has the
desired multiplicity in S, while in the latter case, n2 = 2mn− `n− 1−n1 =
mn−1, and thus de1+e2 = −e1+e2 has the desired multiplicity, completing
the proof.

6. Proof of the Corollary. Let G = Cn1 ⊕ Cn2 , with 1 < n1 |n2,
and suppose that, for every prime divisor p of n1, the group Cp ⊕ Cp has
Property B. The assertion that Cn1 ⊕Cn1 has Property B follows from the
Theorem and from the following two statements:

(a) For every n ∈ [2, 10], the group Cn ⊕ Cn has Property B: for n ≤ 6
this may be found in [9, Proposition 4.2]; the cases n ∈ {8, 9, 10}
(and more) are settled in [2].

(b) If n ≥ 6 and Cn⊕Cn has Property B, then C2n⊕C2n has Property B
(see [9, Theorem 8.1]).

Since Cn1 ⊕ Cn1 has Property B, the characterization of the minimal zero-
sum sequences over G of length D(G) now follows from the main result in
[21] (which differs from the Corollary only in that its hypothesis is that
Cn1 ⊕ Cn1 has Property B, rather than that Cp ⊕ Cp has Property B for
every prime divisor p of n1).

Acknowledgments. This work was partially supported by NSFC with
grant no. 10671101 and by the 973 Project with grant no 9732006CB805904.



Inverse zero-sum problems III 151

It was further supported by the Austrian Science Fund FWF (Project Num-
ber M1014-N13). We also wish to thank the referees for their suggestions
for improving the manuscript.

Note added in proof. When this article went to press in December 2009, Christian
Reiher announced a proof that Cp⊕Cp has Property B for all primes p ∈ P. This implies
that the assumption in the Corollary is satisfied, and thus the structure of all minimal
zero-sum sequences of maximal length over groups of rank two is completely determined.
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