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Dedekind cotangent sums
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1. Introduction. While studying the transformation properties of

η(z) := eπiz/12
∏

n≥1

(1− e2πinz),

under SL2(Z), Dedekind, in the 1880’s [De], naturally arrived at the following
arithmetic function: Let ((x)) be the sawtooth function defined by

((x)) :=
{
{x} − 1/2 if x 6∈ Z,
0 if x ∈ Z.

(1)

Here {x} = x− [x] denotes the fractional part of x. For a, b ∈ N := {n ∈ Z :
n > 0}, we define the Dedekind sum as

s(a, b) :=
∑

kmod b

((
ka

b

))((
k

b

))
.(2)

The Dedekind sums and their generalizations have since intrigued mathe-
maticians from various areas such as analytic [De, Di1, Al] and algebraic
number theory [Me, S], topology [HZ, Za, MS], algebraic [P, BV] and com-
binatorial geometry [Mo, DR], and algorithmic complexity [Knu].

By means of the discrete Fourier series of the sawtooth function (see, for
example, [RG, p. 14]),

((
n

p

))
=

i

2p

p−1∑

k=1

cot
(
πk

p

)
e2πikn/p,(3)

it is not hard to write the Dedekind sum in terms of cotangents:

s(a, b) =
1
4b

b−1∑

k=1

cot
πka

b
cot

πk

b
.(4)
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Starting with these two representations (2) and (4) of s(a, b), various
generalizations of the Dedekind sum have been introduced. This paper con-
stitutes an attempt to unify generalizations of the Dedekind sum in its
“cotangent representation” (4). Through the discrete Fourier series (3), this
includes most generalizations of the “sawtooth representation” (2) of the
Dedekind sum.

Let cot(m) denote the mth derivative of the cotangent function. Our
generalized Dedekind sum is introduced as follows:

Definition 1. For a0, . . . , ad ∈ N, m0, . . . ,md ∈ N0 := N ∪ {0},
z0, . . . , zd ∈ C, we define the Dedekind cotangent sum as

c



a0 a1 . . . ad
m0 m1 . . . md

z0 z1 . . . zd


 :=

1

am0+1
0

∑

kmod a0

d∏

j=1

cot(mj) π

(
aj
k + z0

a0
− zj

)
,

where the sum is taken over all k mod a0 for which the summand is not
singular.

The Dedekind cotangent sums include as special cases various generalized
Dedekind sums introduced by Rademacher [R], Apostol [Ap], Carlitz [C1],
Zagier [Za], Berndt [Be], Meyer, Sczech [MS], and Dieter [Di2]. Section 2
contains the definitions of these previously defined sums and the connections
to our new definition.

The most fundamental and important theorems for any of the generalized
Dedekind sums are the reciprocity laws: an appropriate sum of generalized
Dedekind sums (usually permuting the arguments in a cyclic fashion) gives
a simple rational expression. The famous reciprocity law for the classical
Dedekind sum is as old as the sum itself:

Theorem 1 (Dedekind). If a, b ∈ N are relatively prime then

s(a, b) + s(b, a) = −1
4

+
1
12

(
a

b
+

1
ab

+
b

a

)
.

The following reciprocity law for the Dedekind cotangent sums will be
proved in Section 3:

Theorem 2. Let a0, . . . , ad ∈ N, m0, . . . ,md ∈ N0, z0, . . . , zd ∈ C. If for
all distinct i, j ∈ {0, . . . , d} and all m,n ∈ Z,

m+ zi
ai

− n+ zj
aj

6∈ Z,

then
d∑

n=0

(−1)mnmn!
∑

l0,...,l̂n,...,ld≥0
l0+...+l̂n+...+ld=mn

al00 . . . â
ln
n . . . a

ld
d

l0! . . . l̂n! . . . ld!
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× c



an a0 . . . ân . . . ad
mn m0 + l0 . . . ̂mn + ln . . . md + ld
zn z0 . . . ẑn . . . zd




=
{

(−1)d/2 if all mk = 0 and d is even,

0 otherwise.
As usual, x̂n means we omit the term xn.
In Section 4, we obtain as corollaries the reciprocity laws for Dedekind’s,

Apostol’s, Meyer–Sczech’s, Dieter’s and Zagier’s generalized Dedekind sums.
The purpose here is not so much a rederivation of old theorems but rather
to show a common thread to all of them.

Another basic identity on the classical Dedekind sum is about a hundred
years younger than Dedekind’s reciprocity law [Kno]:

Theorem 3 (Petersson–Knopp). Suppose a, b ∈ N are relatively prime.
Then ∑

d|n

∑

kmod d

s

(
n

d
b+ ka, ad

)
= σ(n)s(b, a).(5)

Here σ(n) denotes the sum of the positive divisors of n.

This result has also been extended to certain generalized Dedekind sums
[AV, PR, Zh]. The respective identity for the cotangent sum follows from a
much more general theorem, stated and proved in Section 5:

Theorem 4. For n, a0, . . . , ad ∈ N,m0, . . . ,md ∈ N0,
∑

b|n
bm0+1−m1−...−md−d

×
∑

r1,...,rd mod b

c



a0b

n
b a1 + r1a0 . . . n

b ad + rda0
m0 m1 . . . md

0 0 . . . 0




= nσ−m1−...−md−1(n)c



a0 a1 . . . ad
m0 m1 . . . md

0 0 . . . 0


 .

Here σm(n) :=
∑

d|n d
m.

Finally, we show in Section 6 a computability result:

Theorem 5. The Dedekind cotangent sum

c



a0 a1 . . . ad
m0 m1 . . . md

z0 z1 . . . zd




is polynomial-time computable in the input size of a0, . . . , ad.
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Computability for any of the generalized Dedekind sums involving two
integer arguments follows easily from the two-term reciprocity laws. How-
ever, the reciprocity laws for “higher-dimensional” analogues do not imply
nice computability properties.

2. Various Dedekind sums. In this section we will give an overview of
previously defined generalizations of the Dedekind sum. We do not claim any
completeness but hope to give a good picture of what has been introduced
in the past.

The sawtooth function ((x)) defined in (1) is the first Bernoulli function
B1(x), defined to be zero at the integers. We used the slightly antiquated
function ((x)) partly for historical reasons, partly because it has a simpler
discrete Fourier series. The Bernoulli polynomials Bk(x) are defined through

zexz

ez − 1
=
∑

k≥0

Bk(x)
k!

zk.(6)

The first few of them are

B1(x) = x− 1
2
, B5(x) = x5 − 5

2
x4 +

5
3
x3 − 1

6
x,

B2(x) = x2 − x+
1
6
, B6(x) = x6 − 3x5 +

5
2
x4 +

1
2
x2 +

1
42
,

B3(x) = x3 − 3
2
x2 +

1
2
x, B7(x) = x7 − 7

2
x6 +

7
2
x5 +

7
6
x3 +

1
6
x.

B4(x) = x4 − 2x3 + x2 − 1
30
,

The Bernoulli numbers are Bk := Bk(0). The Bernoulli functions Bk(x) are
the periodized Bernoulli polynomials:

Bk(x) := Bk({x}).
Apostol [Ap] replaced one of the sawtooth functions in (2) by an arbitrary
Bernoulli function: ∑

kmod b

k

b
Bn

(
ka

b

)
.(7)

Apostol’s idea was generalized by Carlitz [C1] and Mikolás [Mi] to what we
would like to call the Dedekind–Bernoulli sum, defined for a, b, c,m, n ∈ N
as

sm,n(a; b, c) :=
∑

kmod b

Bm

(
kb

a

)
Bn

(
kc

a

)
.

Another way of generalizing (2) is to shift the argument of the sawtooth
functions. This was introduced by Meyer [Me] and Dieter [Di1], and brought
to a solid ground by Rademacher [R]: For a, b ∈ N, x, y ∈ R, the Dedekind–
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Rademacher sum is defined by

s(a, b;x, y) :=
∑

kmod b

((
a
k + y

b
− x
))((

k + y

b

))
.

Note that there is no loss in restricting x and y to 0 ≤ x, y < 1.
The ideas of Apostol and Rademacher can also be combined: Takács [T]

introduced a shift in Apostol’s sum (7):
∑

kmod b

B1

(
k + y

b

)
Bn

(
a
k + y

b
− x
)
.

This was further generalized by Halbritter [H] and later by Hall, Wilson,
and Zagier [HWZ] to the generalized Dedekind–Rademacher sum, defined
for a, b, c,m, n ∈ N, x, y, z ∈ R by

sm,n

(
a b c
x y z

)
:=

∑

kmod a

Bm

(
b
k + x

a
− y
)
Bn

(
c
k + x

a
− z
)
.

On the other hand, we can start with the cotangent representation (4) of the
Dedekind sum to arrive at generalizations. The equivalent of the Dedekind–
Rademacher sum in terms of cotangents was first defined by Meyer and
Sczech [MS], motivated by the appearance of the classical Dedekind sum in
topology [HZ]. The version we state here was introduced by Dieter [Di2]:
For a, b, c ∈ N, x, y, z ∈ R, the cotangent sum is defined by

c(a, b, c;x, y, z) :=
1
c

∑

kmod c

cotπ
(
a
k + z

c
− x
)

cotπ
(
b
k + z

c
− y
)
.

Here the sum is taken over all k mod b for which the summand is not sin-
gular. Dieter remarked in [Di2] that the cotangent sums include as spe-
cial cases various modified Dedekind sums introduced by Berndt [Be, BD].
Most of them are inspired by the transformation properties of the logarithm
of the classical theta-function. We list them here using Berndt’s notation;
throughout, a and b denote relatively prime positive integers. In the first
sum, α, β ∈ N, and a−1 is defined through a−1a ≡ 1 mod b.

sα,β(a, b) :=
ab−1∑

k=1

exp
(

2πi
(
kα

a
+
kβ

b

))((
k

ab

))((
ka−1

b

))
,

S(a, b) :=
b−1∑

k=1

(−1)k+1+[ak/b],

s1(a, b) :=
b∑

k=1

(−1)[ak/b]
((

k

b

))
,
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s2(a, b) :=
b∑

k=1

(−1)k
((

k

b

))((
ka

b

))
,

s3(a, b) :=
b∑

k=1

(−1)k
((

ka

b

))
,

s4(a, b) :=
b−1∑

k=1

(−1)[ak/b],

s5(a, b) :=
b∑

k=1

(−1)k+[ak/b]
((

k

b

))
.

Yet another generalization of (4) we mention here is due to Zagier [Za]. Gen-
eralizing the topological considerations in [HZ] to arbitrary dimensions, he
arrived naturally at the following expression: Let a1, . . . , ad ∈ N be relatively
prime to a0 ∈ N. Define the higher-dimensional Dedekind sum as

s(a0; a1, . . . , ad) :=
(−1)d/2

a0

a0−1∑

k=1

cot
πka1

a0
. . . cot

πkad
a0

.

We note that this sum vanishes if d is odd, since the cotangent is an odd
function. Berndt noticed in [Be] that a version of the higher-dimensional
Dedekind sums was already introduced by Carlitz [C2] via sawtooth func-
tions.

Our Dedekind cotangent sums (Definition 1) combine the cotangent and
higher-dimensional Dedekind sums. This could have been done by only in-
troducing a shift of the variable in each cotangent of the higher-dimensional
Dedekind sum. The reason for additionally introducing cotangent derivatives
is twofold: first, they appear in lattice point enumeration formulas for poly-
hedra [DR]. We will make use of this fact in Section 6 about the computabil-
ity of the Dedekind cotangent sums. Second, the cotangent derivatives are
essentially the discrete Fourier transforms of the Bernoulli functions. That is,
our definition can be seen as the higher-dimensional “cotangent equivalent”
to Apostol’s Dedekind–Bernoulli sum. In fact, the Dedekind cotangent sums
include as special cases all generalized Dedekind sums mentioned in this sec-
tion with the exception of the Dedekind–Rademacher sum and its generaliza-
tion by Hall, Wilson, and Zagier. Technically, these sums could be treated in
the same manner. What makes a subtle difference is the shift by a real num-
ber in the argument of the Bernoulli functions: to handle these, we would
have to work with the discrete Fourier series of the shifted Bernoulli func-
tions, which turn out to be much less practical than the ones without a shift.

To be more precise, we state the discrete Fourier series of the Bernoulli
functions next. In analogy to (3), we have the straightforward
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Lemma 6. For m ≥ 2,

Bm

(
n

p

)
=

Bm
(−p)m +m

(
i

2p

)m p−1∑

k=1

cot(m−1)
(
πk

p

)
e2πkn/p.

These discrete Fourier expansions can be used, for example, to rewrite
the Dedekind–Bernoulli sums in terms of the Dedekind cotangent sums:

Corollary 7. If a, b, c ∈ N are pairwise relatively prime and m,n ≥ 2
are integers with the same parity then

sm,n(a; b, c) :=
∑

kmod a

Bm

(
kb

a

)
Bn

(
kc

a

)

= mn
(−1)(m−n)/2

2m+nam+n−1

a−1∑

k=1

cot(m−1)
(
πkc

a

)
cot(n−1)

(
πkb

a

)
+

BmBn
am+n−1

=:mn
(−1)(m−n)/2

2m+n c




a b c
m+ n− 2 n− 1 m− 1

0 0 0


+

BmBn
am+n−1 .

We note that the parity assumption on m and n is no restriction, since
the sums vanish if m+n is odd. It is worth mentioning that a close relative
of these sums, namely,

a−1∑

k=1

Bm

(
k

a

)((
kb

a

))
= m

(−1)(m−1)/2

2m+1am

a−1∑

k=1

cot
(
πk

a

)
cot(m−1)

(
πkb

a

)

appears naturally in the study of plane partition enumeration [Al].

Proof of Corollary 7. By Lemma 6,

(8) sm,n(a; b, c) =
∑

kmod a

Bm

(
kb

a

)
Bn

(
kc

a

)

= mn

(
i

2a

)m+n ∑

kmod a

a−1∑

j,l=1

cot(m−1)
(
πj

a

)
cot(n−1)

(
πl

a

)
e2πik(jb+lc)/a

+m

(
i

2a

)m Bn
(−a)n

∑

kmod a

a−1∑

j=1

cot(m−1)
(
πj

a

)
e2πikjb/a

+ n

(
i

2a

)n Bm
(−a)m

∑

kmod a

a−1∑

l=1

cot(n−1)
(
πl

a

)
e2πiklc/a + a

BmBn
(−a)m+n .

Now we use the fact that m+n is even, a, b, c are pairwise relatively prime,
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and
∑

kmod a

e2πink/a =
{
a if a |n,

0 else.

Hence the first sum in (8) vanishes unless jb + lc is divisible by a, that is,
l ≡ −jbc−1 mod a, where c−1c ≡ 1 mod a. The second and third sums in
(8) disappear completely, and we are left with

sm,n(a;b,c)

=mn
(−1)(m+n)/2

(2a)m+n a

a−1∑

j=1

cot(m−1)
(
πj

a

)
cot(n−1)

(
−πjbc

−1

a

)
+

BmBn
am+n−1

=mn
(−1)(m+n)/2

2m+nam+n−1 (−1)n
a−1∑

j=1

cot(m−1)
(
πjc

a

)
cot(n−1)

(
πjb

a

)
+

BmBn
am+n−1 .

3. Proof of the reciprocity law

Proof of Theorem 2. Consider the function

f(z) =
d∏

j=0

cot(mj) π(ajz − zj).

We integrate f along the simple rectangular path

γ = [x+ iy, x− iy, x+ 1− iy, x+ 1 + iy, x+ iy],

where x and y are chosen such that γ does not pass through any pole of f ,
and all poles zp of f have imaginary part |Im(zp)| < y. By the periodicity
of the cotangent, the contributions of the two vertical segments of γ cancel
each other. By definition of the cotangent,

lim
y→∞

cot(x± iy) = ∓i,

and therefore also

lim
y→∞

cot(m)(x± iy) = 0

for m > 0. Hence if any of the mj > 0, then
�

γ

f(z) dz = 0.

If all mj = 0, we obtain
�

γ

f(z) dz = id+1 − (−i)d+1 = id+1(1 + (−1)d).
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This can be summarized in

1
2i

�

γ

f(z) dz =
{
id if all mj = 0 and d is even,

0 otherwise,

or, by means of the residue theorem,

π
∑

zp

Res(f(z), zp) =
{
id if all mj = 0 and d is even,

0 otherwise.
(9)

Here the sum ranges over all poles zp inside γ. It remains to compute their
residues. By assumption, f has only simple poles. We will compute the
residue at zp = (k + z0)/a0, k ∈ Z, the other residues are completely equiv-
alent. We use the Laurent expansion of the cotangent:

cotπ(a0z − z0) =
1
πa0

(
z − k + z0

a0

)−1

+ analytic part,(10)

and, more generally,

cot(m0) π(a0z − z0) =
(−1)m0m0!
(πa0)m0+1

(
z − k + z0

a0

)−(m0+1)

+ analytic part.

The other cotangents are analytic at this pole: for j > 0,

(11) cot(mj) π(ajz − zj)

=
∑

lj≥0

(πaj)lj

lj !
cot(mj+lj) π

(
aj
k + z0

a0
− zj

)(
z − k + z0

a0

)lj
.

Hence

Res
(
f(z), z =

k + z0

a0

)

=
(−1)m0m0!

πam0+1
0

∑

l1,...,ld≥0
l1+...+ld=m0

d∏

j=1

a
lj
j

lj !
cot(mj+lj) π

(
aj
k + z0

a0
− zj

)
.

Since γ has horizontal width 1, we have a0 poles of the form (k + z0)/a0
inside γ, where k runs through a complete set of residues modulo a0. This
gives, by definition of the Dedekind cotangent sum,
∑

kmod a0

Res
(
f(z), z =

k + z0

a0

)

=
1
π

(−1)m0m0!
∑

l1,...,ld≥0
l1+...+ld=m0

al11 . . . a
ld
d

l1! . . . ld!
c



a0 a1 . . . ad
m0 m1 + l1 . . . md + ld
z0 z1 . . . zd


 .
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The other residues are computed in the same way, and together with (9)
give the statement.

4. Variations on a theme. The conditions on the parameters appear-
ing in Theorem 2 are not crucial; however, without them the theorem would
not be as easy to state. Indeed, the conditions simply ensure that all poles
of the function f used in the proof are simple. We will now state some spe-
cial cases of Theorem 2 in which we drop some of the conditions. Strictly
speaking, these “corollaries” are really corollaries of the proof of Theorem 2.
The first of those cases is the classical Dedekind reciprocity law ([De, The-
orem 1]). Recall that

s(a, b) =
1
4

c



b a 1
0 0 0
0 0 0


 .

Proof of Theorem 1. To modify our proof of Theorem 2, we have to
consider the function

f(z) = cot(πaz) cot(πbz) cot(πz).

The residues are computed as above and yield the classical Dedekind sums;
the only difference is an additional pole of order three at z = 0 (we may
choose our integration path γ such that 0 is inside γ). Its residue is easily
computed as

Res(f(z), z = 0) = −1
3

(
a

b
+

1
ab

+
b

a

)
.

From here we can proceed as before.

It should be mentioned that a proof of Dedekind’s reciprocity law along
these lines is given in [RG, p. 21]. In fact, it was this proof that motivated
the proof of Theorem 2.

The second special case is an identity equivalent to the reciprocity law
for the Dedekind–Bernoulli sums [Ap, C1, Mi]. The respective statement for
them can be obtained through Corollary 7.

Corollary 8. Let a0, a1, a2 ∈ N be pairwise relatively prime, and
m0,m1,m2 ∈ N0 not all zero, such that m0 +m1 +m2 is even. Then

(−1)m0m0!
∑

l1,l2≥0
l1+l2=m0

al11 a
l2
2

l1!l2!
c



a0 a1 a2
m0 m1 + l1 m2 + l2
0 0 0




+ (−1)m1m1!
∑

l0,l2≥0
l0+l2=m1

al00 a
l2
2

l0!l2!
c



a1 a0 a2
m1 m0 + l0 m2 + l2
0 0 0



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+ (−1)m2m2!
∑

l0,l1≥0
l0+l1=m2

al00 a
l1
1

l0!l1!
c



a2 a0 a1
m2 m0 + l0 m1 + l1
0 0 0




= φ(a0, a1, a2,m0,m1,m2),

where

φ(a0, a1, a2,m0,m1,m2) := (−4)(m0+m1+m2)/2

×
(

(−1)m0

am0+1
0

∑

2k1≥m1+1
2k2≥m2+1
2(k1+k2−1)

=m0+m1+m2

(
m0

2k1 − 1−m1

)
B2k1B2k2

k1k2
a2k1−1−m1

1 a2k2−1−m2
2

+
(−1)m1

am1+1
1

∑

2k0≥m0+1
2k2≥m2+1
2(k0+k2−1)

=m0+m1+m2

(
m1

2k2 − 1−m2

)
B2k0B2k2

k0k2
a2k0−1−m0

0 a2k2−1−m2
2

+
(−1)m2

am2+1
2

∑

2k0≥m0+1
2k1≥m1+1
2(k0+k1−1)

=m0+m1+m2

(
m2

2k0 − 1−m0

)
B2k0B2k1

k0k1
a2k0−1−m0

0 a2k1−1−m1
1

)

+
2m0+m1+m2+2Bm0+m1+m2+2

m0 +m1 +m2 + 2

(
(−1)(m0+m1−m2)/2m0!m1!am0+m1+1

2

(m0 +m1 + 1)!am0+1
0 am1+1

1

+
(−1)(m0+m2−m1)/2m0!m2!am0+m2+1

1

(m0 +m2 + 1)!am0+1
0 am2+1

2

+
(−1)(m1+m2−m0)/2m1!m2!am1+m2+1

0

(m1 +m2 + 1)!am1+1
1 am2+1

2

)
.

Again the parity restriction on m0 + m1 + m2 is no constraint, since
otherwise all the sums vanish.

Proof. As in the last proof, we use the function

f(z) = cot(m0)(πa0z) cot(m1)(πa1z) cot(m2)(πa2z).

By the pairwise-prime condition, the poles of f are all simple with exception
of the pole at z = 0 (again we may choose our integration path such that 0
is contained inside). The residues at z = k/a0, for example, yield, as in the
proof of Theorem 2,
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a0−1∑

k=1

Res
(
f(z), z =

k

a0

)

=
1
π

(−1)m0m0!
∑

l1,l2≥0
l1+l2=m0

al11 a
l2
2

l1!l2!
c



a0 a1 a2
m0 m1 + l1 m2 + l2
0 0 0


 .

Similar expressions are obtained for the other non-zero poles of f . To get
the residue at z = 0, we use the following expansion of the cotangent, which
follows directly from the definition (6) of the Bernoulli polynomials [BS]:

cot z =
1
z

+
∑

k≥1

(−1)k22kB2k

(2k)!
z2k−1.(12)

Hence

cot(m) z =
(−1)mm!
zm+1 +

∑

2k≥m+1

(−1)k22k−1B2k

k(2k − 1−m)!
z2k−1−m,

from which we obtain

Res(f(z), z = 0) = − 1
π
φ(a0, a1, a2,m0,m1,m2).

Since not all m0,m1,m2 are zero, the sum of the residues of f vanishes as
in the proof of Theorem 2, and the statement follows.

Next we prove the reciprocity law for the cotangent sums [Di2]. Recall
that

c(a, b, c;x, y, z) = c



c a b
0 0 0
z x y


 .

It is easy to see that the reciprocity law of Meyer and Sczech [MS] is a
special case of

Corollary 9 (Dieter). Let a, b, c ∈ N be pairwise relatively prime, and
define A,B,C by

Abc+Bca+ Cab = 1.

Let x, y, z ∈ R, not all integers, and set

x′ = cy − bz, y′ = az − cx, z′ = bx− ay.
Finally , let

δ(x) =
{

1 if x ∈ Z,
0 else.

Then
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c(a, b, c;x, y, z) + c(b, c, a; y, z, x) + c(c, a, b; z, x, y)

= − 1− c

ab
δ(z′) cot(1) π(Acx′ − (Bc+ Cb)y′)

− a

bc
δ(x′) cot(1) π(Bay′ − (Ca+ Ac)z′)

− b

ac
δ(y′) cot(1) π(Cbz′ − (Ab+Ba)x′).

Proof. As in the proof of Theorem 2, we use the function

f(w) = cotπ(aw − x) cotπ(bw − y) cotπ(cw − z).

If f has only simple poles, the statement is a direct special case of Theorem 2.
Otherwise, suppose we have a double pole wp, that is, there exist integers
m and n such that (for example)

wp =
m+ x

a
=
n+ y

b
.

To compute the residue of f at this pole, we use once again the Laurent
series (10) and (11) of the cotangent to obtain

Res(f(w), w = wp) =
c

πab
cot(1) π(cwp − z).

We obtain similar residues for the simple poles as before, and the residue
theorem yields an identity. That this identity is equivalent to Dieter’s can
be easily seen by following the remarks in [Di2] just before Theorem 2.3.

The last special case is one in general “dimension”, Zagier’s higher-
dimensional Dedekind sums [Za]. Recall that

s(a0; a1, . . . , ad) = (−1)d/2 c



a0 a1 . . . ad
0 0 . . . 0
0 0 . . . 0


 .

Corollary 10 (Zagier). If a0, . . . , ad ∈ N are pairwise relatively prime
then

d∑

n=0

s(an; a0, . . . , ân, . . . , ad) = 1− h(a0, . . . , ad),

where

h(a0, . . . , ad) :=
2d

a0 . . . ad

∑

k0,...,kd≥0
k0+...+kd=d/2

B2k0 . . . B2kd

(2k0)! . . . (2kd)!
a2k0

0 . . . a2kd
d .

This description of h(a0, . . . , ad) in terms of Bernoulli numbers was first
used by Berndt [Be]; however, it is easily seen to be equivalent to the version
given by Zagier. It is interesting to note that h(a0, . . . , ad) can be expressed
in terms of Hirzebruch L-functions [Za].
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Proof. This time consider the function

f(z) = cotπa0z . . . cotπadz.

As before, f has simple poles aside from the pole at z = 0. The residues are
calculated as usual, for example,

a0−1∑

k=1

Res
(
f(z), z =

k

a0

)
=

1
πa0

a0−1∑

k=1

cot
πka1

a0
. . . cot

πkad
a0

=
(−1)d/2

π
s(a0; a1, . . . , ad).

The residue at 0 can be computed through rewriting (12) as

z cot z =
∑

k≥0

(−1)k22kB2k

(2k)!
z2k.

Hence

f(z) =
1

a0 . . . ad(πz)d+1

d∏

j=0

∑

kj≥0

(−1)kj22kjB2kj

(2kj)!
(πajz)2kj ,

and we obtain the residue

Res(f(z), z = 0)
(−1)d/22d

πa0 . . . ad

∑

k0,...,kd≥0
k0+...+kd=d/2

B2k0 . . . B2kd

(2k0)! . . . (2kd)!
a2k0

0 . . . a2kd
d

=
(−1)d/2

π
h(a0, . . . , ad).

It remains to apply the residue theorem and (9).

5. Petersson–Knopp identities. Knopp applied in [Kno] Hecke oper-
ators to log η to arrive at Theorem 3. This identity was stated by Petersson
in the 1970’s with additional congruence restrictions on a and b. For n prime,
the Petersson–Knopp identity was already known to Dedekind [De]. The-
orem 3 was generalized by Parson and Rosen [PR] to Dedekind–Bernoulli
sums, by Apostol and Vu [AV] to their “sums of Dedekind type”, and, most
broadly, by Zheng [Zh] to what we will call sums of Dedekind type with
weight (m1,m2). We will state and further generalize Zheng’s Petersson–
Knopp identity after the following

Definition 2. Let a, a1, . . . , ad ∈ N. The sum

S(a; a1, . . . , ad) :=
∑

kmod a

f1

(
ka1

a

)
. . . fd

(
kad
a

)
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is said to be of Dedekind type with weight (m1, . . . ,md) if for all j = 1, . . . , d,
fj(x+ 1) = fj(x), and for all a ∈ N,

∑

kmod a

fj

(
x+

k

a

)
= amjfj(ax).(13)

Note that the Bernoulli functions Bm(x) satisfy (13) (with “weight”
−m + 1), as do the functions cot(m)(πx) (with “weight” m + 1). Zheng’s
theorem is the “two-dimensional” (d = 2) case of the following

Theorem 11. Let n, a, a1, . . . , ad ∈ N. If

S(a; a1, . . . , ad) :=
∑

kmod a

f1

(
ka1

a

)
. . . fd

(
kad
a

)

is of Dedekind type with weight (m1, . . . ,md) then
∑

b|n
b−m1−...−md

∑

r1,...,rd mod b

S

(
ab;

n

b
a1 + r1a, . . . ,

n

b
ad + rda

)

= nσd−1−m1−...−md
(n)S(a; a1, . . . , ad).

Our proof is a relatively straightforward extension of Zheng’s [Zh] proof
for d = 2. We need the following two identities:

Lemma 12. Let a, a1, . . . , ad ∈ N. If

S(a; a1, . . . , ad) :=
∑

kmod a

f1

(
ka1

a

)
. . . fd

(
kad
a

)

is of Dedekind type with weight (m1, . . . ,md) then for all j = 1, . . . , d,
∑

kmod a

fj

(
x+

kb

a

)
= (a, b)1−mjamjfj

(
ax

(a, b)

)
(14)

and
S(ab; a1b, . . . , adb) = bS(a; a1, . . . , ad).(15)

Proof. For (14), note first that if (a, b) = 1, the statement is vacuous.
Next, if a and b are not relatively prime, let a′ = a/(a, b) and b′ = b/(a, b).
Then

∑

kmod a

fj

(
x+

kb

a

)
=

∑

kmod a

fj

(
x+

kb′

a′

)
= (a, b)

∑

kmod a′
fj

(
x+

kb′

a′

)

= (a, b)
∑

kmod a′
fj

(
x+

k

a′

)

= (a, b)a′mjfj(a′x) = (a, b)1−mjamfj

(
ax

(a, b)

)
.
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For (15), we have

S(ab; a1b, . . . , adb) =
∑

kmod ab

f1

(
ka1

a

)
. . . fd

(
kad
a

)

= b
∑

kmod a

f1

(
ka1

a

)
. . . fd

(
kad
a

)
= bS(a; a1, . . . , ad).

Proof of Theorem 11. We will make use of two properties of the Möbius
µ-function

µ(n) =





1 if n = 1,

(−1)m if n = p1 . . . pm is square-free,

0 otherwise,

namely,
∑

d|n
µ(d) =

{
1 if n = 1,

0 otherwise,
(16)

and
ab∑

k=1
(k,b)=1

f(k) =
∑

t|b
µ(t)

ab/t∑

k=1

f(tk).(17)

These suffice to prove our statement:
∑

b|n
b−m1−...−md

∑

r1,...,rd mod b

S

(
ab;

na1

b
+ r1a, . . . ,

nad
b

+ rda

)

=
∑

b|n
b−m1−...−md

∑

r1,...,rd mod b
kmod ab

f1

(
kna1

ab2
+
kr1

b

)
. . . fd

(
knad
ab2

+
krd
b

)

(14)
=
∑

b|n
b−m1−...−md

∑

kmod ab

(k, b)1−m1bm1

× f1

(
kna1

ab(a, b)

)
. . . (k, b)1−mdbmdfd

(
knad
ab(a, b)

)

=
∑

b|n

∑

kmod ab

(k, b)d−m1−...−mdf1

(
kna1

ab(a, b)

)
. . . fd

(
knad
ab(a, b)

)

=
∑

b|n

∑

c|b
cd−m1−...−md

∑

kmod ab
(k,b)=c

f1

(
kna1

abc

)
. . . fd

(
knad
abc

)
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=
∑

b|n

∑

c|b
cd−m1−...−md

∑

kmod ab/c
(k,b/c)=1

f1

(
kna1

ab

)
. . . fd

(
knad
ab

)

(17)
=
∑

b|n

∑

c|b
cd−m1−...−md

∑

t|b/c
µ(t)

∑

kmod ab/(ct)

f1

(
tkna1

ab

)
. . . fd

(
tknad
ab

)

=
∑

b|n

∑

c|b
cd−m1−...−md

∑

t|b/c
µ(t)S

(
ab

ct
;
na1

c
, . . . ,

nad
c

)

=
∑

cte|n
cd−m1−...−mdµ(t)S

(
ae;

na1

c
, . . . ,

nad
c

)

=
∑

ce|n
cd−m1−...−mdS

(
ae;

na1

c
, . . . ,

nad
c

) ∑

t|n/(ce)
µ(t)

(16)
=

∑

ce=n

cd−m1−...−mdS(ae; a1e, . . . , ade)

(15)
= nσd−1−m1−...−md

(n)S(a; a1, . . . , ad).

The fact that the Dedekind cotangent sums

am0+1
0 c



a0 a1 . . . ad
m0 m1 . . . md

0 0 . . . 0


 =

∑

kmod a0

d∏

j=1

cot(mj) πkaj
a0

have weight (m1 + 1, . . . ,md + 1) immediately yields the Petersson–Knopp-
like Theorem 4.

A particularly simple form of Theorem 4 is achieved for Zagier’s higher-
dimensional Dedekind sums (the case m0 = . . . = md = 0): with

nσ−1(n) =
∑

d|n

n

d
=
∑

d|n
d = σ(n),

we obtain

Corollary 13. For n, a0, . . . , ad ∈ N,
∑

b|n
b1−d

∑

r1,...,rd mod b

s

(
a0b;

n

b
a1 + r1a0, . . . ,

n

b
ad + rda0

)

= σ(n)s(a0; a1, . . . , ad).
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6. Proof of the polynomial-time computability. In this last sec-
tion, we prove that the Dedekind cotangent sums are computable in poly-
nomial time (Theorem 5). Our proof is similar to the last section of [BR],
where the computability of Zagier’s higher-dimensional Dedekind sums was
shown. Again we will “merge” two theorems in combinatorial geometry, due
to Barvinok [Ba] and Diaz–Robins [DR]. The latter allows us to express
generating functions for the lattice point count in cones in terms of cotan-
gents; Barvinok’s theorem tells us that the respective rational functions are
computable. The usual generating function for lattice point enumeration for
a d-dimensional cone K,

FK(q) = FK(q1, . . . , qd) :=
∑

m=(m1,...,md)∈K∩Zd
qm1

1 . . . qmdd ,

assumes in [DR] an exponential variable:

Theorem 14 (Diaz–Robins). Suppose the cone K ⊂ Rd is generated by
the positive real span of the integer vectors v1, . . . ,vd ∈ Zd such that the
d × d-matrix M = (aij), whose column vectors are v1, . . . ,vd, is lower-
triangular. Let pk := a11 . . . akk (k = 1, . . . , d) and G := (Z/p1Z) × . . . ×
(Z/pdZ). Then

∑

m∈K∩Zd
e−2π 〈m,s〉 =

1
2d|G|

∑

r∈G

d∏

k=1

(
1 + coth

π

pk
〈s + ir,vk〉

)
.

Here 〈, 〉 denotes the usual scalar product in Rd.

We note that the assumption on M being lower-triangular is not cru-
cial for practical purposes: by Hermite normal form, any cone generated
by integer vectors is unimodular equivalent to a cone described by a lower-
triangular matrix.

Theorem 15 (Barvinok). For fixed dimension d, the rational function
FK(q) is polynomial-time computable in the input size of K.

These two powerful theorems combined allow us to compute the Dede-
kind cotangent sum in polynomial time:

Proof of Theorem 5. It suffices to prove the polynomial-time computabil-
ity of

∑

kmod a

d∏

j=1

cotπ
(
kaj
a

+ zj

)
.

We will do this inductively by constructing a cone whose generating function
has the above Dedekind cotangent sum + “lower-dimensional” sums, that
is, Dedekind cotangent sums with a lower number of factors. More precisely,
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we will construct a cone whose generating function will be
∑

kmod a

(
1 + cotπ

(
ka1

a
+ z1

))
. . .

(
1 + cotπ

(
kad
a

+ zd

))
.

By induction and Barvinok’s Theorem 15, this will prove the computability
of the Dedekind cotangent sum. Let K be the positive real span of




a
0

...

0
b1



,




0
a
0
...
0
b2



, . . . ,




0

...

0
a

bd−1



,




0

...

0
a



.

The integers b1, . . . , bd−1 are to be chosen later. We will repeatedly use the
fact that

∑

kmod a

cothπ
(
ik

a
+ z

)
= a cothπaz.(18)

To apply Theorem 14 to K, note that in our case pk = ak. Hence

∑

m∈K∩Zd
e−2π〈m,s〉 =

1
2dad(d+1)/2

∑

rj mod aj

(j=1,...,d)

d∏

k=1

(
1 + coth

π

ak
〈s + ir,vk〉

)

=
1

2dad(d+1)/2

∑

rj mod aj

(j=1,...,d)

(
1 + coth

π

a
((s1 + ir1)a+ (sd + ird)b1)

)

×
(

1 + coth
π

a2 ((s2 + ir2)a+ (sd + ird)b2)
)

× . . .×
(

1 + coth
π

ad
(sd + ird)a

)

=
1

2dad(d+1)/2−1

∑

rj mod aj

(j=3,...,d)

(
1 + cothπ

(
s1 + (sd + ird)

b1
a

))

×
(

1 + coth
π

a3 ((s3 + ir3)a+ (sd + ird)b3)
)

× . . .×
(

1 + coth
π

ad−1 (sd + ird)
)

×
∑

r2 mod a2

(
1 + cothπ

(
ir2

a
+
s2

a
+ (sd + ird)

b2
a2

))
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(18)
=

1
2dad(d+1)/2−3

∑

rj mod aj

(j=4,...,d)

(
1 + cothπ

(
s1 + (sd + ird)

b1
a

))

×
(

1 + cothπ
(
s2 + (sd + ird)

b2
a

))

×
(

1 + coth
π

a4 ((s4 + ir4)a+ (sd + ird)b4)
)

× . . .×
(

1 + coth
π

ad−1 (sd + ird)
)

×
∑

r3 mod a3

(
1 + cothπ

(
ir3

a2 +
s3

a2 + (sd + ird)
b3
a3

))

(18)
= . . . =

1
2dad

∑

rd mod ad

(
1 + cothπ

(
s1 + (sd + ird)

b1
a

))
× . . .

×
(

1 + cothπ
(
sd−1 + (sd + ird)

bd−1

a

))(
1 + coth

π

ad−1 (sd + ird)
)

=
1

2dad

ad−1∑

n=1

a∑

k=1

(
1 + cothπ

(
s1 + (sd + i(na+ k))

b1
a

))

× . . .×
(

1 + cothπ
(
sd−1 + (sd + i(na+ k))

bd−1

a

))

×
(

1 + coth
π

ad−1 (sd + i(na+ k))
)

=
1

2dad−1

a∑

k=1

(
1 + cothπ(s1 + (sd + ik)

b1
a

)
)

× . . .×
(

1 + cothπ
(
sd−1 + (sd + ik)

bd−1

a

))

×
ad−2∑

n=1

(
1 + cothπ

(
in

ad−2 +
sd
ad−1 +

ik

ad−1

))

(18)
=

1
2da

a∑

k=1

(
1 + cothπ

(
s1 + (sd + ik)

b1
a

))
× . . .

×
(

1 + cothπ
(
sd−1 + (sd + ik)

bd−1

a

))(
1 + cothπ

(
sd
a

+
ik

a

))
.

If we now choose bj = a−1
d aj (j = 1, . . . , d−1), where a−1

d ad ≡ 1 mod a, and

sj = izj − izdbj (j = 1, . . . , d− 1), sd = iazd,

this generating function becomes
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∑

m∈K∩Zd
e−2π〈m,s〉

=
1

2da

∑

kmod a

(
1 + cotπ

(
ka1

a
+ z1

))
. . .

(
1 + cotπ

(
kad
a

+ zd

))
.

7. Closing remarks. There remain many open questions. First, for
all Dedekind sums there are closed formulas for special cases, for example,
s(1, a). Many of such formulas can be found in [BY]. The Dedekind cotan-
gent sum and its variations attain such closed formulas for special variables;
it is not clear how far these cases lead. Second, it seems desirable to have
a parallel theory for the respective Dedekind sum in which the cotangents
get replaced by Bernoulli functions. This will most certainly require differ-
ent methods than the ones used in this paper. Finally, we can apply our
very general Petersson–Knopp-like Theorem 11 to various other sums, for
example, to such “Dedekind Bernoulli sums”.

Acknowledgements. I am grateful to Sinai Robins for good discus-
sions and Thomas Zaslavsky for many helpful comments on a previous ver-
sion of this paper.

References

[Al] G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Experiment.
Math. 7 (1998), 343–359.

[Ap] T. M. Apostol, Generalized Dedekind sums and transformation formulae of cer-
tain Lambert series, Duke Math. J. 17 (1950), 147–157.

[AV] T. M. Apostol and T. H. Vu, Identities for sums of Dedekind type, J. Number
Theory 14 (1982), 391–396.

[Ba] A. I. Barvinok, Computing the Ehrhart polynomial of a convex lattice polytope,
Discrete Comput. Geom. 12 (1994), 35–48.

[BR] M. Beck and S. Robins, Dedekind sums: a combinatorial-geometric viewpoint ,
Discrete Math. Theoret. Comput. Sci., to appear.

[Be] B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Adv.
Math. 23 (1977), 285–316.

[BD] B. C. Berndt and U. Dieter, Sums involving the greatest integer function and
Riemann–Stieltjes integration, J. Reine Angew. Math. 337 (1982), 208–220.

[BY] B. C. Berndt and B. P. Yeap, Explicit evaluations and reciprocity theorems for
finite trigonometric sums, Adv. Appl. Math. 29 (2002), 358–385.

[BV] M. Brion and M. Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc.
10 (1997), 371–392.

[BS] I. N. Bronstein und K. A. Semendjajew, Taschenbuch der Mathematik , Harri
Deutsch, Thun, 1989.

[C1] L. Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3
(1953), 513–522.

[C2] —, A note on generalized Dedekind sums, Duke Math. J. 21 (1954), 399–404.



130 M. Beck
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