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On Linnik’s approximation to Goldbach’s problem, I
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J. Pintz and I. Z. Ruzsa (Budapest)

1. Introduction. As an approximation to Goldbach’s problem Linnik
proved in 1951 [Lin1] under the assumption of the Generalized Riemann
Hypothesis (GRH), and later in 1953 [Lin2] unconditionally, that every suf-
ficiently large even integer can be written as the sum of two primes and
K powers of 2, where K is an unspecified but absolute constant. The first
explicit value for K, K = 770, was proved in 1998 by J. Y. Liu, M.-C. Liu
and T. Z. Wang [LLW1], supposing GRH. The first explicit unconditional
result K = 54 000 is due to the same authors [LLW2] and it was shown also
in 1998. The subsequent unconditional results were the following:

K = 25 000 (Li [Li1]),
K = 2 250 (Wang [Wan]),
K = 1 906 (Li [Li2]).

Assuming the Generalized Riemann Hypothesis (GRH) the correspond-
ing improvements were as follows:

GRH implies K = 200 (Liu, Liu, Wang [LLW3]),
GRH implies K = 160 (Wang [Wan]).

We have to mention yet an important work of Gallagher [Gal] who did
not give any explicit value for K, but significantly simplified the original
proofs of Linnik and in this way opened the way for the later works men-
tioned above, which provided explicit values of K.

In the present work we will investigate the distribution of values of

(1.1) r′′K(N) = #{(p1, p2, ν1, . . . , νK) : N = p1 + p2 + 2ν1 + . . .+ 2νK}
for 2 |N and

(1.2) r′K(N) = #{(p, ν1, . . . , νK) : N = p+ 2ν1 + . . .+ 2νK}
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for 2 -N , where pi and p will always denote odd (positive) primes. We will
prove the following result.

Theorem 1. Suppose GRH. Let K be a fixed natural number , K ≥ 7.
Then

(1.3) r′′K(N) > 0 if 2 |N, N > N0(K)

where N0(K) is an explicit constant , depending on K.

We will show in Part II that the same result also holds unconditionally,
under the slightly weaker assumption K ≥ 8.

We mention that independently of us the same result K = 7 under GRH,
and the value K = 13 unconditionally were proved by D. R. Heath-Brown
and J. C. Puchta [HP].

2. Results about primes. In this section we will summarize some
results about the Goldbach problem, which are mostly proved or referred to
in [LLW3]. For convenience we will use the same notations as in [LLW3].

Let N be a large integer, and P,Q parameters satisfying

(2.1) 2 ≤ P < Q ≤ N.
By Dirichlet’s lemma any α ∈ [1/Q, 1 + 1/Q] can be written as

(2.2) α =
a

q
+ λ, |λ| ≤ 1

qQ
,

with positive integers a, q with 1 ≤ a ≤ q, (a, q) = 1. Denote byM(a, q) the
set of α’s satisfying (2.2) and let

(2.3) M =
⋃

q≤P

q⋃

a=1
(a,q)=1

M(a, q), C(M) = [1/Q, 1 + 1/Q] \M.

Let

(2.4) e(α) = e2πiα, S(α) = S(α,N) =
∑

p≤N
e(pα), L = [log2N ],

where log2N denotes the logarithm to base 2.
On the major arcs we will use the following estimate.

Lemma 1. Assume GRH. Let h 6= 0 be an even number. Choose

(2.5) P =
√
N L−8, Q =

√
N.

Then

(2.6)
�
M
|S2(α)|e(hα) dα = σ(h)

max(N − |h|, 0)
log2N

+O(NL−3),
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where

(2.7) σ(h) = 2C0

∏

p|h
p>2

(
p− 1
p− 2

)
, C0 =

∏

p>2

(
1− 1

(p− 1)2

)
= 0.6601 . . .

We remark that for |h| � N/L we can write (2.6) as

(2.8)
�
M
|S2(α)|e(hα) dα = σ(h)

N

log2N

(
1 +O

(
1
L

))
.

The proof of Lemma 1 is, apart from slight changes, the same as that
of Theorem 2 of [LLW3] where the analogous result is shown for S2(α) in
place of |S(α)|2.

On the minor arcs the following estimate (see [BH, Lemma 12])—basi-
cally due to Hardy–Littlewood, [HL, Lemma 9]—will be needed.

Lemma 2. Assume GRH. If P and Q satisfy (2.1) then for α ∈ C(M)
we have

(2.9) S(α)�
(
N

P
+
√
NQ+

N√
Q

)
L2.

With the choice of P and Q in (2.5) we obtain

(2.10) S(α)� N3/4L2.

The third important theorem we include here deals with the closely con-
nected generalized twin-prime problem. The following result of Chen [Che,
Theorem 3] was proved by sieve methods and it holds unconditionally, unlike
Lemmas 1 and 2.

Lemma 3. Let h be any even integer , and N sufficiently large. Then the
number of solutions of the equation h = p1 − p2 with pj ≤ N is

(2.11) R(h) = #{h = p1 − p2 : pj ≤ N, j = 1, 2} < C∗ · 2C0 f(h)
N

log2N

where h is a positive even integer and

(2.12) f(h) =
∏

p|h
p>2

(
1 +

1
p− 2

)
, C∗ = 3.9171.

We note here that Hardy–Littlewood conjectured that if h is much
smaller than N , then

(2.13) R(h) ∼ 2C0f(h)
N

log2N
as N →∞.

Thus the factor C∗ of Chen represents the loss compared to the conjectured
value (at least for h = o(N)).
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3. Estimates for large deviations of certain exponential sums.
We shall consider the problem of finding estimates for the measure of the
set of numbers x ∈ [0, 1] for which an inequality of type

∣∣∣
L∑

j=1

e(gjx)
∣∣∣ > λL

holds. Our primary interests lie in the case gj = gj, especially for g = 2.
These estimates will be deduced from estimates of certain exponential

moments, as is often done in probability theory.
Our main interest lies in finding upper estimates, which we need for the

work on primes.

4. Exponential moments of
∑
e(gjx). We assume that g is a fixed

positive integer, and put

GL(x) =
L−1∑

j=0

e(gjx).

We shall estimate exponential moments of |GL(x)| and of the related sum

SL(x) = ReGL(x) =
L−1∑

j=0

cos(2πgjx).

Theorem 2. (a) For every real λ there exists a real ψ(λ) such that (as
L→∞ with λ fixed)

(4.1)
1�
0

eλSL(x) dx = eL(ψ(λ)+o(1)).

(b) If λ ≥ 0, then for every L we have

(4.2)
1�
0

eλSL(x) dx ≤ eLψ(λ) ≤ g−L
gL−1∑

k=0

exp(λSL(kg−L)).

(c) If λ ≥ 0, then

(4.3)
1�
0

eλ|GL(x)| dx = eL(ψ(λ)+o(1)).

Inequality (4.2) forms the basis of further calculations. Indeed, to find
an upper estimate of ψ(λ), it is sufficient to apply (4.2) for some L, and
initially we did this, for g = 2 and L = 20. However, the convergence of this
process is very slow; the error is of size O(1/L), so to get n digits we need
exp expn operations. In Sections 5–7 we describe a more complicated but
much faster procedure, in fact polynomial in n. Instead of fewer than 2 exact
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digits with a direct application of (4.2), we calculated 15 (and could have
calculated more if necessary); with the low precision available by the direct
approach we could establish only weaker estimates for the K in Theorem 1.

It seems difficult (and quite irrelevant for our purposes) to estimate the
left side of (4.3) for negative λ. It is easy to see that (4.3) fails for λ < 0.

Proof of Theorem 2. (a) We consider λ to be fixed. Write

EL =
1�
0

eλSL(x) dx.

Take now two positive integers M < L. (M will be fixed as L → ∞.) We
have

SL(x) = SM (x) + SL−M (gMx),

and hence

(4.4) EL =
gM∑

k=1

k/gM�
(k−1)/gM

eλSM (x)eλSL−M (gMx) dx.

Since SL−M (gMx) is periodic with period g−M , replacing gMx by x we can
rewrite (4.4) as

(4.5) EL = g−M
1�
0

eλSL−M (x)
gM∑

k=1

eλSM ((x+k)g−M ) dx.

Define

EM = max
0≤x≤1

g−M
gM∑

k=1

eλSM ((x+k)g−M ),

EM = min
0≤x≤1

g−M
gM∑

k=1

eλSM ((x+k)g−M ).

Then (4.5) implies

EMEL−M ≤ EL ≤ EMEL−M .
By induction we get

EL ≤ E[L/M ]
M EL0 , EL ≥ E[L/M ]

M EL0 ,

where L0 is the residue of L modulo M . Hence

lim sup
L→∞

logEL
L

≤ logEM
M

,(4.6)

lim inf
L→∞

logEL
L

≥ logEM

M
(4.7)
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for every fixed M . Since

S′M (x) = −
M−1∑

j=0

2πgj sin(2πgjx),

we have

|S′M (x)| ≤ 2π
M−1∑

j=0

gj <
2π
g − 1

gM for all x,

and consequently∣∣∣∣SM
(
x+ k

gM

)
− SM

(
k

gM

)∣∣∣∣ ≤
2π
g − 1

for |x| ≤ 1.

Thus with

E∗M = g−M
gM−1∑

k=0

eλSM (kg−M )

we have

EM ≤ e2πλ/(g−1)E∗M ,(4.8)

EM ≥ e−2πλ/(g−1)E∗M .(4.9)

This shows that the bounds on the right sides of (4.6) and (4.7) differ by at
most O(1/M), hence the upper and lower limits are equal and the existence
of ψ(λ) is proved.

To prove part (b), we show that for λ ≥ 0, the bound (4.8) can be
improved to

(4.10) EM = E∗M .

In order to show this observe that the expansion of SM has nonnegative
coefficients, hence so does the expansion of SnM for every positive integer n,
and by the power-series expansion

eλSM =
∑ λn

n!
SnM

we see that so does eλSM , provided λ ≥ 0. Thus we have

(4.11) eλSM (x) =
∑

an cos(2πnx)

with coefficients an ≥ 0, whence

g−M
gM∑

k=1

eλSM ((x+k)g−M ) = g−M
∑

angM cos(2πnx).

This function assumes its maximum at x = 0, and this is precisely the
content of (4.10). This suffices to show the second inequality of (b).
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To prove the first inequality we cannot proceed analogously via EM ≥
EM , since this is clearly false. Instead, we shall show directly that

(4.12) EL ≥ EMEL−M .
Indeed, similarly to (4.11), we have

eλSL−M (gMx) =
∑

bn cos(2πnx)

with coefficient bn ≥ 0. Hence

EL =
1�
0

(∑
an cos(2πnx)

)(∑
bn cos(2πnx)

)
dx

= a0b0 +
1
2

∞∑

n=1

anbn ≥ a0b0 = EMEL−M .

The supermultiplicativity property (4.12) clearly implies

lim
logEL
L

= sup
logEL
L

,

which is equivalent to the first inequality of (b).
Now we prove part (c). Since clearly

1�
0

eλ(GL(x)) dx ≥
1�
0

eλSL(x) dx,

it suffices to find an inequality in the other direction. This will be

(4.13)
1�
0

eλ(GL(x)) dx ≤ c(1 +
√
λL)

1�
0

eλSL(x) dx for λ ≥ 0,

and it will be proved in the following more general form:

Lemma 4. Let an be complex numbers such that A =
∑∞

n=−∞ |an| <∞.
Let

G(x) =
∑

n

ane(nx), S(x) =
∑

n

|an| cos(2πnx).

We have

(4.14)
1�
0

e|G(x)| dx ≤ c(1 +
√
A)

1�
0

eS(x) dx

with an absolute constant c.

(4.13) follows by putting G(x) = λGL(x).

Proof. We have

e|G(x)| ≤ e|G(x)| + e−|G(x)| = 2
∞∑

j=0

|G(x)|2j
(2j)!

,
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and so

(4.15)
1�
0

e|G(x)| dx ≤
∞∑

j=0

2
(2j)!

1�
0

|G(x)|2j dx.

Write

G0(x) =
∞∑

n=−∞
|an|e(nx).

Clearly
1�
0

|G(x)|2j dx =
∑

m1+...+mj=n1+...+nj

am1 . . . amjan1 . . . anj

≤
∑
|am1 . . . amjan1 . . . anj | =

1�
0

(G0(x))2j dx.

Furthermore S(x) = ReG0(x) = (G0(x) +G0(x))/2, so

1�
0

S(x)2j dx = 2−2j
2j∑

ν=0

(
2j
ν

) 1�
0

G0(x)νG0(x)2j−ν dx.

Each integral is nonnegative, being a positive polynomial in the coefficients,
and retaining only the middle term we obtain

1�
0

S(x)2j dx ≥ 2−2j
(

2j
j

) 1�
0

|G0(x)|2j dx,

or

(4.16)
1�
0

|G0(x)|2j dx ≤ c
√
j + 1

1�
0

S(x)2j dx

with a certain absolute constant c.
We split the sum in (4.15) into two parts. For j < K we apply (4.16),

and for j ≥ K we use the trivial estimate |G(x)| ≤ A. This gives us

(4.17)
1�
0

e|G(x)| dx ≤ c1

K−1∑

j=0

√
j + 1

(2j)!

1�
0

S(x)2j dx+
∞∑

j=K

2A2j

(2j)!
.

We estimate the first term as follows:

≤ c1
√
K

K−1∑

j=0

1
(2j)!

1�
0

S(x)2j dx ≤ c1
√
K

∞∑

j=0

1
j!

1�
0

S(x)j dx = c1
√
K

1�
0

eS(x) dx,

since � 1
0 S(x)j dx ≥ 0 for every j.
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The second term of (4.17) is

2A2K

(2K)!

(
1 +

A2

(2K + 1)(2K + 2)
+ . . .

)
≤ 4A2K

(2K)!
,

if K is so large that A2/((2K+1)(2K+2)) ≤ 1/2, which will hold if K ≥ A.
Hence

1�
0

e|G(x)| dx ≤ c1
√
K

1�
0

eS(x) dx+
4A2K

(2K)!
.

The choice of K = 2[A] + 1 makes the second term bounded by an absolute
constant independent of A and we are done.

5. A recurrence for certain moments. In this section we show how
to estimate

2π�
0

L−1∏

j=0

ϕ(gjx) dx

and the related finite sum for trigonometric polynomials

(5.1) ϕ(x) = b0 + b1 cosx+ . . .+ bk cos kx.

Since for given λ and ε we can find ϕ and ϕ such that

(5.2) 0 < ϕ(x) ≤ eλ cosx ≤ ϕ(x), ϕ(x)/ϕ(x) ≤ 1 + ε

for all x, this can be used to estimate our exponential moments. A choice of
ϕ and ϕ will be described in the next section.

We consider the integral and the finite sum jointly. In what follows let
µn be one of the following two sequences of measures on [0, 2π]:

(a) µ(1)
n = µ = the Lebesgue measure, normed by the factor 1/2π on

[0, 2π], independently of n;

(b) µ(2)
n is the discrete measure supported at the points (j/gn)2π, j =

0, . . . , gn − 1, each having weight g−n.

Write

vn,L =
2π�
0

cosnx
L−1∏

j=0

ϕ(gjx) dµL(x).

Lemma 5. We have

vn,L+1 =
1
2

( k∑

j=0
g|j+n

bjv(j+n)/g,L +
k∑

j=0
g|j−n

bjv|j−n|/g,L
)
.
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Proof. Note that

vn,L+1 =
2π�
0

(ϕ(x) cosnx)︸ ︷︷ ︸
h(x)

L∏

j=1

ϕ(gjx) dµL+1(x).

As the product has period 2π/g, we can rewrite this as

vn,L+1 =
2π/g�

0

L∏

j=1

ϕ(gjx)
g−1∑

ν=0

h

(
x+

2πν
g

)
dµL+1(x).

Now

h(x) =
k∑

j=0

bj cos jx cosnx =
1
2

k∑

j=0

bj(cos(j + n)x+ cos(j − n)x),

hence
g−1∑

ν=0

h

(
x+

2πν
g

)
=
g

2

(∑

g|j+n
bj cos(j + n)x+

∑

g|j−n
bj cos(j − n)x

)

= gh∗(gx)

with

h∗(x) =
1
2

( k∑

j=0
g|j+n

bj cos
j + n

g
x+

k∑

j=0
g|j−n

bj cos
j − n
g

x

)
.

So

vn,L+1 = g

2π/g�
0

L∏

j=1

ϕ(gjx)h∗(gx) dµL+1(x).

If we change the variable x to x/g, the interval changes to [0, 2π] and the
measure gµL+1 becomes µL in both cases. Hence

vn,L+1 =
2π�
0

L−1∏

j=0

ϕ(gjx)h∗(x) dµL(x)

=
1
2

( k∑

j=0
g|j+n

bjv(j+n)/g,L +
k∑

j=0
g||j−n|

bjv|j−n|/g,L
)
.

We are interested in v0,L, and this recurrence involves all vn,L. Fortu-
nately we can restrict our attention to a few values of n. If we take m so
that [

m+ k

g

]
≤ m,
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then the combined recurrence for v0,L, . . . , vm,L will involve only the same
values. The smallest such m is given by

m =
[
k − 1
g − 1

]
.

So the above lemma implies the following:

Lemma 6. Write

vL = (v0,L, v1,L, . . . , vm,L).

Then vL+1 = UvL, where U is an (m+ 1)× (m+ 1) matrix , whose entries
are given by

unl =
1
2

(bgl−n + bgl+n + bn−gl), 0 ≤ n, l ≤ m,
where we extend bj = 0 for j < 0 and j > k.

We have the same recurrence for the continuous and the discrete mea-
sures. The initial values are, however, different. In the continuous case we
have

v0,0 = 1, vn,0 = 0 for n ≥ 1,

while in the discrete case

vn,0 = 1 for all n.

Hence we have the following:

Lemma 7. With the matrix U as given above, and writing UL = (u(L)
nl ),

we have

1
2π

2π�
0

L−1∏

j=0

ϕ(gjx) dx = u
(L)
00 ,

g−L
gL−1∑

ν=0

L−1∏

j=0

ϕ

(
2πgj

ν

gL

)
= u

(L)
00 + u

(L)
01 + . . .+ u

(L)
0m .

The asymptotic behaviour of these sequences depends on the largest
eigenvalue of U . In practice we rather calculated UL for some large L, which
can be done in O(logL) matrix multiplications, and used the above formulas.

6. Polynomial approximations to exponential functions. In this
section we will describe those cosine polynomials ϕ,ϕ of degree k, for a given
λ, which satisfy

(6.1) ϕ(x) ≤ γ(x) = eλ cosx ≤ ϕ(x),

and which are nearest to γ(x) in L1 norm. The “best” polynomial for the
calculations of the preceding section would optimize the largest eigenvalue
of the described matrix U . We cannot determine these, but one can show
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that our polynomials are also quite good. Indeed, it follows immediately
from Bernstein’s inequality that ‖ϕ(x) − ϕ(x)‖∞ ≤ k‖ϕ(x) − ϕ(x)‖1, and
this quantity can be shown to be of order ck/k! with some c depending on λ.

A cosine polynomial can also be written as ϕ(x) = f(cosx) with an
algebraic polynomial f , so (6.1) is related to the description of polynomials
f , f , satisfying

(6.2) f(x) ≤ g(x) = eλx ≤ f(x).

From now on we think of λ as fixed, and reserve the notation g(x) = eλx.
Let f be a polynomial of degree ≤ k. We say that f is an extremal upper

approximation of g if

f(x) ≥ g(x) for |x| ≤ 1,

and there is no polynomial f ∗ 6= f of degree ≤ k such that

f(x) ≥ f∗(x) ≥ g(x).

Extremal lower approximations are defined analogously.
Let f be a polynomial, and let

−1 = a0 < a1 < . . . < al = 1

be the sequence of roots of f − g and the endpoints.
Let di be the order of ai as a zero of f − g (so d0 and dl may be 0).

Lemma 8. (a) f is an extremal approximation if and only if
∑l

i=0 di =
k + 1 and 2 | di for 1 ≤ i ≤ l − 1.

(b) For every upper (resp. lower) approximation f one can always find
an extremal upper (resp. lower) approximation f ∗ such that f ≥ f∗ ≥ g
resp. f ≤ f∗ ≤ g.

(c) An extremal approximation is upper if dl is odd , and lower if dl is
even.

(d) For a sequence ai, di with
∑
di = k + 1 there exists a unique f such

that f − g has roots of order di at ai.

Proof. First observe that f(x)− g(x) has at most k + 1 real roots alto-
gether (counted with multiplicities). Indeed,

(f(x)− g(x))(k+1) = −g(k+1)(x) = −λk+1eλx

has no root and the claim follows by calculus. In particular,
∑
di ≤ k + 1.

If f ≥ g and f is not extremal, then the inequality

f(x) ≥ f∗(x) ≥ g(x)

shows that f∗ − f has roots of order ≥ di at ai. As this is a nonzero poly-
nomial of degree ≤ k, we have

∑
di ≤ k. This shows the “if” part of (a)

for upper approximations; for lower approximations the proof works with
obvious modifications.
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The condition 2 | di for 1 ≤ i ≤ l− 1 is clearly equivalent to the property
that f − g does not change sign, that is, f is either an upper or a lower
approximation.

Now we prove the “only if” part of (a), and claim (b) together. Consider
a polynomial f ≥ g. We show that if

∑
di ≤ k, then there is an f1 such

that f ≥ f1 ≥ g and the total number of roots of f1 − g is ≥ 1 +
∑
di. If

we repeat this process, in at most k + 1−∑ di steps we stop at a function
with value k + 1, which must be extremal by claim (a).

Consider the function
f(x)− g(x)∏

(x− ai)di
.

It has no root, so it is of constant sign.
Let c be its minimum if it is positive, its maximum if it is negative, and

suppose it is assumed at a. Then

f1(x) = f(x)− c
∏

(x− ai)di

satisfies f ≥ f1 ≥ g, and f1−g has at least one more root than f−g, namely
at a.

For claim (c), observe that f(x)− g(x)→ −∞ as x→∞. As f − g has
already k+1 roots in [−1, 1] and cannot have more, it has no root in (1,∞).
Thus it is negative in (1,∞); if it is positive in (−1, 1), it must change sign
at 1, and if it is negative, it cannot.

To prove (d), observe that a polynomial satisfying f (ν)(ai) = g(ν)(ai)
for 0 ≤ ν ≤ di can be constructed by Hermite’s interpolation. The order
of roots will then be exactly di, for otherwise we would have > k + 1 roots
altogether (counted with multiplicities), contradicting our starting remark.

Now we consider γ(x) = eλ cosx and a cosine polynomial ϕ(x) = f(cosx).
Let

0 = α0 < α1 < . . . < αl = π

be the sequence of roots of ϕ−γ in [0, π] and the endpoints. Assume that αi
has order δi. Then f −g has roots at the points ai = cosαi (which, however,
are now in descending order), and the orders of the roots satisfy

δi =
{
di for 1 ≤ i ≤ l − 1,

2di for i = 0 or i = l.
Hence Lemma 8 can be reformulated as follows:

Lemma 9. (a) ϕ is an extremal approximation to γ if and only if

(6.3)
l−1∑

i=1

δi +
δ0 + δl

2
= k + 1

and 2 | δi for 1 ≤ i ≤ l − 1.
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(b) For every upper (resp. lower) approximation ϕ one can always find
an extremal upper (resp. lower) approximation ϕ∗ such that

ϕ ≥ ϕ∗ ≥ γ resp. ϕ ≤ ϕ∗ ≤ γ.
(c) An extremal approximation is upper if δ0 ≡ 2 (mod 4) and lower if

δ0 ≡ 0 (mod 4).
(d) For a sequence αi, δi satisfying (6.3) there exists a unique ϕ such that

γ − ϕ has roots of order δi at αi.

Write
ϕ(x) = b0 + b1 cosx+ . . .+ bk cos kx.

Since for an upper or lower approximation ϕ we have

‖ϕ− γ‖1 =
1

2π

∣∣∣
2π�
0

ϕ− γ
∣∣∣ =

∣∣∣∣b0 −
1

2π

2π�
0

γ

∣∣∣∣,

finding the best (in L1 norm) upper and lower approximations is equiv-
alent to minimizing (resp. maximizing) b0 among the upper (resp. lower)
approximations.

For any ϕ of degree k, any K ≥ k + 1 and any real t we have

b0 =
1
K

K−1∑

j=0

ϕ

(
t+

2πj
K

)
,

hence

(6.4) b0
≥
≤

1
K

K−1∑

j=0

γ

(
t+

2πj
K

)

for upper (resp. lower) approximations.
If we find ϕ such that there is equality in (6.4) for some t, it must be the

extremal function and we must have

ϕ

(
t+

2πj
K

)
= γ

(
t+

2πj
K

)
for all j.

However, as the functions are even, the same equality holds for the num-
bers −t + 2πj/K. One can easily see that this means too many roots for
ϕ − γ, so these must coincide, which happens only if t ≡ 0 (mod 2π/K) or
t ≡ π

K (mod 2π/K), and even then the only possibility is K = k + 1. We
shall see that these cases do actually occur and they yield the best upper
and lower approximations.

Theorem 3. Let K = k + 1, t = 0 or t = π/K. There exists a unique
cosine polynomial ϕ = ϕt of degree k satisfying

(6.5) ϕ

(
t+

2πj
K

)
= γ

(
t+

2πj
K

)
, ϕ′

(
t+

2πj
K

)
= γ′

(
t+

2πj
K

)
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for all j. This polynomial is given by the formula

(6.6) ϕ(x) = σ0 + 2
k∑

j=1

(K − j)σj − %j
K

cos jx,

where

σj =
1
K

K−1∑

m=0

γ

(
t+

2πm
K

)
cos j

(
t+

2πm
K

)
,(6.7)

%j =
1
K

K−1∑

m=0

γ′
(
t+

2πm
K

)
sin j

(
t+

2πm
K

)
.(6.8)

ϕ = ϕ0 is the best upper approximation, and ϕ = ϕπ/k is the best lower
approximation in L1 norm.

Proof. Since our functions are even, if equation (6.5) holds for j ≤ K/2,
it will hold for all j. (Here we use the fact that t is of the prescribed special
form.) If t = 0 and K = 2l, this means roots of order 2 at the points

0,
2π
2l
,
4π
2l
, . . . ,

2lπ
2l

;

if t = π/K, at
π

2l
,

3π
2l
, . . . ,

(2l − 1)π
2l

;

if t = 0 and K = 2l + 1, at

0,
2π

2l + 1
,

4π
2l + 1

, . . . ,
2lπ

2l + 1
;

if t = π/K, at
π

2l + 1
,

3π
2l + 1

, . . . ,
(2l + 1)π

2l + 1
.

In all four cases we can easily check that (6.3) holds, so existence and unique-
ness follows from Lemma 9(d).

Now we find the coefficients in

ϕ(x) =
k∑

i=0

bi cos ix.

We have

ϕ(x) cos jx =
k∑

i=0

bi cos ix cos jx(6.9)

=
k∑

i=0

bi
2

(cos(i+ j)x+ cos(i− j)x),
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ϕ′(x) sin jx = −
k∑

i=0

ibi sin ix sin jx(6.10)

=
k∑

i=0

ibi
2

(cos(i+ j)x− cos(i− j)x).

Moreover,

1
K

K−1∑

m=0

cos l
(
t+

2πm
K

)
=
{

cos lt if K | l,
0 if K - l.

We apply this to (6.9) and (6.10) to express σj and %j by the coefficients bi.
Recall that K = k + 1, so K | i − j is equivalent to i = j, and K | i + j is
equivalent to i = j = 0 or i+ j = K. Hence we obtain

σ0 = b0, σj =
bj
2

+
bK−j

2
cosKt (1 ≤ j ≤ k),(6.11)

%0 = 0, %j = −jbj
2

+
(K − j)bK−j

2
cosKt (1 ≤ j ≤ K).(6.12)

Multiplying (6.11) by K − j and subtracting (6.12) we obtain

(K − j)σj − %j
K

=
bj
2

as claimed.

7. The estimate of large deviations. Our aim was to find for certain
positive numbers c another number d with the following property: for

GL(x) =
L−1∑

j=0

e(2jx),

we have
∆ = µ(x ∈ [0, 1] : |GL(x)| > dL) < e−cL.

Since
1�
0

eλ|GL(x)| dx > ∆eλdL

and we know that the left side is eψ(λ)L+o(L), we have

∆ < e(ψ(λ)−λd+o(1))L.

So d is good if there is a λ such that ψ(λ)− λd < −c, that is, if

(7.1) d > inf
λ

ψ(λ) + c

λ
.

That is, to exhibit an acceptable value of d it is sufficient to take any value
of λ and calculate an upper estimate of ψ(λ). Such an estimate can be found
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by taking any trigonometric polynomial ϕ satisfying ϕ(x) ≥ eλ cosx for all
x, calculating the matrix U described in Section 5, calculating UL for some
value of L and applying Lemma 7. For ϕ we took the polynomial described in
Section 6, using degree 19, and for L we took powers of 2, so that UL could
be determined by repeated squaring. We also calculated lower estimates
via the corresponding polynomial ϕ to reassure ourselves about the order of
error. To find a good value of λ we observed that ψ is convex by Hölder’s
inequality, and it follows easily that the function ψ1(λ) = (ψ(λ) + c)/λ is
first decreasing, then increasing for any fixed value of c. Hence if for some
λ1 < λ2 < λ3 we have

ψ1(λ1) > ψ1(λ2), ψ1(λ2) < ψ1(λ3),

then the minimum is in [λ1, λ3]. By calculating values at midpoints, smaller
and smaller intervals can be found.

We will formulate two corollaries to be applied later: (1) in the case when
GRH is supposed to be true, (2) unconditionally in Part II.

Corollary 1. We have

|GL(x)| =
∣∣∣
L−1∑

j=0

e(2jx)
∣∣∣ ≤ 0.7163435444776661L

if x ∈ [0, 1] \ E where µ(E) = |E| = O(N−1/2L−100).

Corollary 2. We have

|GL(x)| ≤ 0.7894008449792309L

if x ∈ [0, 1] \ E where µ(E) = |E| = O(N−3/5L−100).

The actual calculations were done using U-basic, a multiprecision lan-
guage written by and available for free from Professor Yuju Kida, Rikkyo
University.

We remark that it is also possible to find lower estimates for ∆ for a given
d, or for d for a given c. To do this one takes three numbers λ1 < λ2 < λ3
and applies Hölder’s inequality on the set where |GL(x)| > dL. In this way
it is possible to prove that inequality (7.1) is an equality, assuming that the
function ψ is differentiable. This seems to be very likely, though we have not
proved it.

8. On numbers of the form p+2ν. During the proof the distribution
of the numbers

(8.1) r1(n) = #{(p,m) : n = p+ 2m, p ≤ N, 1 ≤ m ≤ L}.
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will play an important role. These numbers determine the important func-
tion

(8.2) s(N) = #{(p1, p2,m1,m2) : p1 − p2 = 2m2 − 2m1 ,

pj ≤ N, 1 ≤ mj ≤ L, j = 1, 2}
through the relation

(8.3) s(N) =
∑

n

r2
1(n).

Romanov used upper estimates for this quantity to show that a positive
proportion of odd integers can be written in the form p+ 2k.

Using the generating functions of primes,

S(α) =
∑

p≤N
e(pα),

and of powers of 2,
G(α) =

∑

m≤L
e(2mα),

we can express s(N) also by the following integral:

(8.4) s(N) =
1�
0

|S(α)G(α)|2 dα.

Similarly to previous works we will use the important theorem of Chen
(our Lemma 3) to prove an upper bound for the integral (8.4) via estimating
s(N) from above. This problem was dealt with by Romanov [Rom] using
Brun’s sieve (see also [Pra, Satz 8.1]) with an unspecified constant in the
upper bound.

Lemma 10. We have unconditionally

(8.5) s(N) =
1�
0

|S(α)G(α)|2 dα ≤ 2
log2 2

C2N

where C2 < 5.3636.

This is a significant improvement over the estimate C2 < 16.1214 given
implicitly in [LLW2, Lemma 4]. Further, it turns out later that actually we
only need an estimate of the integral |S(α)G(α)|2 on C(M) instead of [0, 1]
(cf. (10.5)). Assuming GRH we can prove a better bound for the integral on
C(M) as follows.

Lemma 11. Assume GRH. Then

(8.6) s2(N) =
�

C(M)

|S(α)G(α)|2 dα ≤ 2
log2 2

C ′2N

where C ′2 < 3.9095.
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In [LLW2] this integral is estimated directly by the whole integral on
[0, 1], so our final gain is our final value C ′2 < 3.9095 compared to 16.1214
in [LLW2]. Unlike the case of Romanov, the direct arithmetic information
about s(N) and r1(n) is irrelevant here. What we need is the estimate of the
integral |SG|2 and only on C(M), which yields further savings as compared
to the previous treatments.

In the proofs of Lemmas 10 and 11 we will work with the function f(h)
in (2.12) instead of the function g(h) =

∏
p|h(1 + 1/p) of [LLW2]. Using

the definitions of s(N), R(h), f(h) in (8.2) and (2.11), (2.12), taking into
account R(0) = π(N) we obtain, by Chen’s theorem (2.11),

s(N) ≤ 2
∑

1≤m1<m2≤L
f(2m2 − 2m1) · 2C0C

∗ N

log2N
+ π(N)L(8.7)

= 2
L−1∑

l=1

f(2l − 1)(L− l) · 2C0C
∗ N

log2N
+ π(N)L

(with l = m2 −m1). We shall investigate the quantity

(8.8) F (L) =
2
L

L−1∑

l=1

(
1− l

L

)
f(2l − 1) as L→∞.

Denote the order of 2 for an odd modulus d by

(8.9) ξ(d) = min
ν≥1
{ν : 2ν ≡ 1 (modd)}.

Further let
∑′ mean summation over squarefree odd integers and let

(8.10) k(d) =
∏

p>2
p|d

1
p− 2

so f(h) =
∑′

d|h
k(d) (f(1) = k(1) = 1).

With these notations we have

F (L) =
2
L

L−1∑

l=1

(
1− l

L

) ∑′

d|2l−1

k(d) =
2
L

2L∑′

d=1

k(d) ·
L−1∑

l=1
ξ(d)|l

(
1− l

L

)
(8.11)

=
2
L

2L∑′

d=1

k(d)
∑

1≤m≤L/ξ(d)

(
1− m

L/ξ(d)

)
.

Using the simple relation

(8.12)
∑

m≤M

(
1− m

M

)
= [M ]− [M ]([M ] + 1)

2M
≤ [M ]− [M ]

2
≤ M

2
,
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from (8.11) we obtain

(8.13) F (L) ≤
∑′

1≤d≤2L

k(d)
ξ(d)

=: F0(L).

We know already from Romanov’s work [Rom] that the positive series F0(L)
converges to a constant R0 as L → ∞. One can show by calculations the
estimate (see [KP, Corollary 1])

(8.14) 1.936 < R0 < 1.94.

This implies by the prime number theorem, for any ε > 0 and N > N0(ε),

s(N) ≤ L2 ·R02C0C
∗ N

log2N
+
NL(1 + ε)

logN
(8.15)

≤ 2N
log2 2

(
C0R0C

∗ +
log 2

2
+ ε

)
.

Taking into account the values

(8.16) C0 < 0.6602, R0 < 1.94, C∗ = 3.9171,

we obtain the proof of Lemma 10.
In order to show Lemma 11 we can write

s2(N) =
L∑

m1=1

L∑

m2=1

R2(2m2 − 2m1)(8.17)

= 2
∑

1≤m1<m2≤L
R2(2m2 − 2m1) + LR2(0),

where

(8.18) R2(h) =
�

C(M)

|S2(α)| e(−hα) dα =
1�
0

−
�
M
.

Using Lemma 1 and (8.7)–(8.14) we have

(8.19) 2
∑

1≤m1<m2≤L
R2(2m2 − 2m1)

= 2
∑

1≤m1<m2≤L
R(2m2 − 2m1)− 2C0

N

log2N
2

∑

1≤m1<m2≤L
f(2m2 − 2m1)

+O

(
log logN
log2N

) ∑

1≤m1<m2≤L
(2m2 − 2m1) +O(N/L)

≤ 2C0N

log2 2
(R0C

∗ −R0) +O

(
L log logN ·N

log2N

)
.
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Further supposing GRH we have, in view of (2.5),

R2(0) = π(N)−
�
M
|S2(α)| dα(8.20)

∼ liN −
∑

q≤P

µ2(q)
ϕ2(q)

q∑

a=1
(a,q)=1

1/qQ�
−1/qQ

∣∣∣∣
∑

n≤N

e(nη)
logn

∣∣∣∣
2

dη

∼ N

logN
−
∑

q≤P

µ2(q)
ϕ(q)

(
N

log2N
+O(qQ)

)

∼ N

logN
− N logP

log2N
+O(NL−8).

Taking into account logP ∼ (logN)/2, from (8.20) we get

(8.21) LR2(0) ∼ L N

2 logN
∼ N

2 log 2

and this together with (8.17)–(8.19) implies

(8.22) s2(N) ≤ 2N
log2 2

(
C0R0(C∗ − 1) +

log 2
4

+ o(1)
)
,

which proves Lemma 11, in view of (8.16).

9. Sums of k powers of 2. In this section we will investigate the
function

(9.1) rk,k(m) = #{m = 2ν1 + . . .+ 2νk − 2µ1 − . . .− 2µk : νi, µj ∈ [1, L]}.
First we state the simple

Lemma 12. rk,k(0) ≤ 2L2k−2.

The proof (see Lemma 5 of [Gal]) follows from the fact that choosing all
νi and µ1, . . . , µk−2 arbitrarily we have at most one representation for the
remaining n as 2µk−1 + 2µk if µk−1 ≤ µk.

As we will see later in the final result, a crucial role will be played by
the upper estimation of

(9.2) S1(k,N) =
�
M
|S2(α)G2k(α)| dα.

Lemma 1 implies that the above quantity is

(9.3) S1(k,N) =
∑

m≤N
rk,k(m)σ(m)

N − |m|
log2N

+O(NL2k−3),
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which can be estimated from above by

(9.4) S1(k,N) ≤ N

log2N
S(k, L) +O(NL2k−3),

where S(k, L) =
∑

m rk,k(m)σ(m). Although it has no significance for the
final result we remark that actually

(9.5) S1(k,N) ∼ N

log2N
S(k, L),

because S(k, L) ≥ L2k · 2C0 and

(9.6)
∑

m≤N
rk,k(m)σ(m)|m|

≤ c log logN
{

(L− logL)2k N

2logL + L2k−1 logL ·N
}
.

An evaluation or even a good upper estimate of S(k, L) in (9.4) turns
out to be a rather difficult task. Using theoretical arguments and extensive
computation the following result was proved in [KP] (cf. Theorems 1 and 2):

Theorem 4. For any given k ≥ 1 the limit

(9.7) A(k) := lim
L→∞

(
S(k, L)
2L2k − 1

)

exists, it strictly decreases with k, and

A(k) > 2−2k−1 for every k,(9.8)

lim
k→∞

A(k) = 0.(9.9)

Further ,

(9.10) 0.0126 < A(3) < 0.0136, 0.003 < A(4) < 0.004.

We remark that the value A(k) can be determined for any given k with
a precision of ε in a finite time T (k, ε) using a finite amount M(R, ε) of
memory with the methods applied in [KP].

10. Proof of Theorem 1. In order to prove Theorem 1 the crucial
estimate is, similarly to [Gal] and [LLW1]:

Lemma 13. Assume GRH. Let η = 0.283656. For k ≥ 1 and any δ > 0
there exists Nk,δ, depending on k and δ only , such that for N ≥ Nk,δ we
have

(10.1)
∑

m≤N
(r′k(m))2 ≤ 2NL2k

log2N
{1 + A(k) + C ′2(1− η)2k−2 + δ},
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where A(k) is defined by Theorem 4, and C ′2 = 3.9095 by Lemma 11. In
particular

(10.2) A(3) + C ′2(1− η)4 < 1.0431, A(4) + C ′2(1− η)6 < 0.5323.

In general, we will follow [LLW1], since the method of [LLW3] is not so
efficient in our case.

Proof of Lemma 13. Ignoring the terms with m > N we obtain by Par-
seval’s identity

(10.3)
∑

m≤N
(r′k(m))2 ≤

1�
0

|S(α)Gk(α)|2 dα =
�
M

+
�

C(M)∩E
+

�
C(M)∩C(E)

where E is defined in Corollary 1 and M is given by (2.3) with P and Q as
in (2.5). For the integral on the major arcs we have, by Lemmas 1, 12 and
Theorem 4,�

M
|SGk|2 =

∑

m

rk,k(m)
�
M
|S(α)|2e(mα) dα(10.4)

≤ rk,k(0)
1�
0

|S(α)|2 dα+
∑

m6=0

rk,k(m)
�
M
|S(α)|2e(mα) dα

≤ 2L2k−2 2N
logN

+
∑

m6=0

rk,k(m)σ(m)
N

log2N

(
1 +O

(
1
L

))

≤ 2NL2k

log2N

(
1 + A(k) +

δ

3

)
.

Using Lemma 11 and Corollary 1 we obtain�
C(M)∩C(E)

≤ ((1− η)L)2k−2
�

C(M)

|S(α)G(α)|2 dα(10.5)

≤ 2C ′2N((1− η)L)2k−2

log2 2
.

Finally, since |E| = o(N−1/2L−6) (see Corollary 1) and by (2.10) we infer

(10.6)
�

C(M)∩E
≤ C|E| ·N3/2L4L2k ≤ δ

3
NL2k−2.

Now the three estimates (10.4)–(10.6) prove our lemma.

From now on we will exactly follow [LLW1] but our estimate will be
significant for much smaller values of k. We remark that [LLW1] follows
basically [Gal], for the special case g = 2. Our next lemma is the following
simple relation.



192 J. Pintz and I. Z. Ruzsa

Lemma 14 ([Gal, Lemma 14]). For N →∞,

(10.7)
∑

n≤N
r′k(n) ∼ NLk

logN
=
N

2
· 2Lk

logN
.

Proof of Theorem 1. The dispersion method and Lemma 14 yield

E =
∑

n≤N
2-n

(r′k(n)− λk)2(10.8)

=
∑

n≤N
2-n

(r′k(n))2 − 2λk
∑

n≤N
2-n

r′k(n) + λ2
k

∑

n≤N
2-n

1

≤
∑

n≤N
2-n

(r′k(n))2 − 2NL2k

log2N
(1 + o(1)),

where

(10.9) λk :=
2Lk

logN
∼ 2Lk−1

log 2
.

Put K = i + j with either i = j or i = j + 1 according as K is even or
not. Then

(10.10) r′′K(N) =
∑

m+n=N
2-m, 2-n

r′i(m)r′j(n).

Let

(10.11) r′i(m) = λi + si(m) =
2Li

logN
+ si(m) for 2 -m.

Then

(10.12) r′′K(N)

=
4Li+j

log2N

∑

m+n=N
2-m, 2-n

1 + 2
{

Li

logN

∑

m+n=N
2-m, 2-n

sj(n) +
Lj

logN

∑

m+n=N
2-m, 2-n

si(m)
}

+
∑

m+n=N
2-m, 2-n

si(m)sj(n).

The 2nd and 3rd terms are o(NLi+j−2) = o(NLK−2), since by Lemma 14,

(10.13)
∑

m≤N
2-m

sk(m) =
∑

m≤N
2-m

r′k(m)− 2Lk

logN
· N

2
= o(NLk−1).
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By Cauchy’s inequality, (10.8) and Lemma 13 the last sum is bounded by

(10.14)
{ ∑

m≤N
2-m

s2
i (m)

}1/2{∑

n≤N
2-n

s2
j (n)

}1/2

≤ 2NLK

log2N
(A(i) + C ′2(1− η)2i−2 + δ)1/2(A(j) + C ′2(1− η)2j−2 + δ)1/2.

If we choose K = 7, i = 4, j = 3, the above term is

(10.15) ≤ 2NL7

log2N
· 0.7452,

by (10.2). Since the first term in (10.12) is

(10.16)
2NLK

log2N
=

2NL7

log2N
,

the statement of Theorem 1 is proved for K = 7. For K ≥ 7 the result
follows either directly from this (using ν8 = . . . = νK = 1 for example) or
we could prove better bounds for the sum in (10.14) using the fact that A(k)
is strictly increasing and tends to 0 as k →∞.
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