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1. Beta-expansions. Let β be a real number strictly greater than 1.
A real number x ≥ 0 can be represented using a sequence (xi)k≥i>−∞,
xi ∈ Z, 0 ≤ xi < β, such that

x = xkβ
k + xk−1β

k−1 + . . .+ x1β + x0 + x−1β
−1 + x−2β

−2 + . . .

for some k ∈ Z. We then write

(x)β = xkxk−1 . . . x1x0 • x−1x−2 . . .

A particular representation is the β-expansion of x (see [7]). The digits xi
of the β-expansion are computed by the “greedy” algorithm: Let [y] denote
the largest integer smaller than or equal to y. Find k ∈ Z for which βk ≤
x < βk+1. Put xk = [x/βk] and rk = x/βk mod 1. For i ∈ Z, i < k put
xi = [βri+1] and ri = βri+1 mod 1. If k < 0, i.e. 0 < x < 1, we put
x0, x1, . . . , xk+1 = 0 and write (x)β = 0 • 00 . . . 0xkxk−1 . . . If an expansion
ends in infinitely many zeros, it is said to be finite and the final zeros are
omitted.

We denote by Fin(β) the set of all x for which |x| has a finite β-expansion.
The β-expansion of every x ∈ Fin(β) has therefore the form

(x)β = xkxk−1 . . . x1x0 • x−1x−2 . . . x−l,

where xkxk−1 . . . x1x0• is the β-integer part and •x−1x−2 . . . x−l is the β-
fractional part of x. We usually call it simply the integer and the fractional
part of x. The length of the fractional part of x is denoted by fpβ(x). Ele-
ments of Fin(β) with vanishing fractional part (i.e. fpβ(x) = 0) are called
β-integers. The set of β-integers is denoted by Zβ .

The sets Zβ and Fin(β) are generally not closed under addition and
multiplication. In spite of that it is sometimes useful in computer science to
consider these operations in β-arithmetics. That is why it is important to
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study what fractional parts may appear as a result of addition and multi-
plication of β-integers.

Definition 1.1. Let β > 1. We define

L⊕(β): = min{L ∈ N0 | ∀x, y ∈ Zβ , x+ y ∈ Fin(β)⇒ fpβ(x+ y) ≤ L},
L�(β): = min{L ∈ N0 | ∀x, y ∈ Zβ , xy ∈ Fin(β)⇒ fpβ(xy) ≤ L}.

The minimum of an empty set is defined to be +∞.

The aim of this paper is to give some quantitative results for L⊕(β) and
L�(β). Let us mention some of the known results. Frougny and Solomyak
in [4] showed that L⊕(β) is finite if β is a Pisot number. A Pisot number β
is an algebraic integer such that β > 1 and all its algebraic conjugates are of
modulus smaller than 1. Let us mention that to our knowledge no example
is known of a β such that L⊕(β) or L�(β) is infinite.

Results for the special case of quadratic Pisot units are found in [3]. The
authors gave exact values for L⊕(β) and L�(β) when β > 1 is a solution
either of the equation x2 = mx − 1, m ∈ N, m ≥ 3 or of the equation
x2 = mx + 1, m ∈ N. In the first case L⊕(β) = L�(β) = 1; in the second
case L⊕(β) = L�(β) = 2.

In this article we provide estimates on L⊕(β) and L�(β) for those alge-
braic numbers β > 1 that have at least one conjugate of modulus smaller
than 1. Other results are valid for Pisot numbers β. The last part of the
paper is devoted to quadratic Pisot numbers. We recover the results of [3]
as a special case.

2. Beta-integers and cut-and-project sequences. The Rényi devel-
opment of unity plays an important role in the description of the properties
of the sets Zβ and Fin(β). For its definition we introduce the transformation
Tβ(x) := {βx} for x ∈ [0, 1]. The Rényi development of unity is defined as

d(1, β) := t1t2 . . . ti . . . , where ti := [βT i−1
β (1)] .

Parry [6] showed that x = xkxk−1 . . . x1x0 • x−1 . . . x−p is a β-expansion if
and only if xixi−1 . . . x−p is lexicographically smaller than t1t2 . . . ti . . . for
every −p ≤ i ≤ k.

Fin(β) and Zβ are centrally symmetric sets. While Fin(β) is dense in
R, Zβ has no accumulation points. Distances between consecutive points
in Zβ take values in {0 • titi+1 . . . | i ∈ N}. It is obvious that if d(1, β)
is eventually periodic, then Zβ has a finite number of distances between
consecutive points. Numbers β with this property are called beta-numbers.
Some results and conjectures on beta-numbers are given in [2, 8]; a descrip-
tion of beta-numbers is provided in [9]. Note that every Pisot number β is
a beta-number.
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The set Zβ of β-integers forms a ring only if β is a rational integer,
β > 1. If β is an algebraic integer of order q ≥ 2, then Zβ can be naturally
embedded into the ring Z[β] defined as

Z[β] := {n0 + n1β + . . .+ nq−1β
q−1 | ni ∈ Z} .

Note that the ring Z[β] is dense in R. In certain cases Z[β] coincides with
Fin(β), i.e. Fin(β) is a ring (see [4]). Let us show that for β an algebraic
integer, the ring Z[β] is a projection of an integer lattice Zq ⊂ Rq on a
one-dimensional subspace V1 for a suitable decomposition V1 ⊕ V2 of the
space Rq. A similar construction can be found in [1].

Denote by β(1) = β, β(2), . . . , β(s) the real roots of the minimal poly-
nomial of β and by β(s+1), β(s+2), . . . , β(q−1), β(q) the non-real conjugates
of β. We have ordered the complex roots in such a way that β(s+1) = β(s+2),
. . . , β(q−1) = β(q).

First we have to find (possibly) complex vectors

(~x(1))T = (x(1)
0 , x

(1)
1 , . . . , x

(1)
q−1), . . . , (~x(q))T = (x(q)

0 , x
(q)
1 , . . . , x

(q)
q−1),

such that for any ~x = (n0, n1, . . . , nq−1) ∈ Rq we have

~x =
( q−1∑

i=0

ni(β(1))i
)
~x(1) +

( q−1∑

i=0

ni(β(2))i
)
~x(2) + . . .(1)

+
( q−1∑

i=0

ni(β(q))i
)
~x(q).

Denote by X the q × q matrix with (X)ij = x
(i)
j . Then (1) holds for each ~x

if and only if
Iq = V(β(1), . . . , β(q)) · X,

where V(β(1), . . . , β(q)) is the Vandermonde matrix in variables β(1), . . . , β(q),

V(β(1), . . . , β(q)) :=




1 1 . . . 1

β(1) β(2) . . . β(q)

(β(1))2 (β(2))2 . . . (β(q))2

...
...

...
...

(β(1))q−1 (β(2))q−1 . . . (β(q))q−1



.

The determinant of V(β(1), . . . , β(q)) is equal to
∏
q≥i>j≥1(β(i)−β(j)). Since

all conjugates are distinct, the determinant is non-zero.

Using the Cramer rule to compute x(i)
j , we find that ~x(i) is real if β(i) is

real, and if β(j) and β(j+1) are complex conjugate roots then ~x(j) = ~x(j+1).
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Thus we can define a real basis ~y(1), . . . , ~y(q) of Rq in such a way that
~y(i) = ~x(i) if ~x(i) is a real vector, and ~y(j) = ~x(j) +~x(j), ~y(j+1) = i(~x(j)−~x(j)),
if ~x(j) and ~x(j+1) = ~x(j) are complex conjugate vectors.

Note that the coordinates of a vector ~x = (n0, n1, . . . , nq−1) ∈ Rq with
respect to the basis ~y(1), . . . , ~y(q) are

q−1∑

p=0

np(β(i))p if ~y(i) = ~x(i),

<
[ q−1∑

p=0

np(β(j))p
]

if ~y(j) = ~x(j) + ~x(j),

=
[ q−1∑

p=0

np(β(j))p
]

if ~y(j) = i(~x(j) − ~x(j)).

If we put V1 = R~y(1) and V2 = R~y(2) +R~y(3) + . . .+R~y(q), then the set Z[β]
is the projection of Zq on V1 along V2.

Projections of crystallographic lattices and non-crystallographic lattices
are studied by the theory of cut-and-project sets. Let us recall a special case
of their definition, which will be used here.

Definition 2.1. Let U1 and U2 be linear subspaces of Rd such that
dimU1 = 1, dimU2 = d− 1 and U1 ⊕U2 = Rd. Denote by π1 the projection
on U1 along U2 and by π2 the projection on U2 along U1. Let Ω ⊂ U2
be a bounded set with non-empty interior Ω◦, such that the closures of Ω
and Ω◦ coincide. If the mapping π1 : Zq → π1(Zd) is one-to-one and π2(Zd)
is dense in V2, then the set Σ(Ω) = {π1(x) | x ∈ Zd, π2(x) ∈ Ω} is called
a cut-and-project set with acceptance window Ω.

Basic properties of cut-and-project sets can be found in [5]. For us the
most important property is that Σ(Ω) is relatively dense and uniformly
discrete, i.e. there exists a real increasing sequence (αn)n∈Z and constants
r,R > 0 such that Σ(Ω) = {αn~y | n ∈ Z} and r ≤ αn+1 − αn ≤ R for all
n ∈ Z. In particular, the distances between consecutive points of Σ(Ω) take
only finitely many values, i.e. the set {αn+1 − αn | n ∈ Z} is finite.

Let us consider again an algebraic integer β of order q and the decom-
position Rq = V1 ⊕ V2 as described above. As shown by Akiyama [1], the
projection π1(Z2) = Z[β] of Z2 on V1 is one-to-one and the projection π1(Z2)
on V2 is dense in V2. For α ∈ Q[β] we denote by α(k) the image of α un-
der the kth Galois isomorphism Q[β]→ Q[β(k)] induced by the assignment
β 7→ β(k), i.e. if α =

∑q−1
i=0 niβ

i for ni ∈ Q, then α(k) =
∑q−1

i=0 ni(β
(k))i.

We shall focus on specific acceptance windows Ω(h) ⊂ V2 for h > 0. As
the acceptance window Ω(h) ⊂ V2 we choose the cartesian product of one-
dimensional line-segments {t~y(i) | |t| < h} if β(i) is real and two-dimensional
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ellipses {t~y(j) + s~y(j+1) | t2 + s2 < h2} if β(j) and β(j+1) are complex conju-
gate. Such an acceptance window Ω(h) satisfies the assumptions of Defini-
tion 2.1.

The point α~y(1) belongs to Σ(Ω(h)) if and only if α ∈ Z[β] and |α(k)| < h
for k = 2, . . . , q. In other words, we have the following proposition.

Proposition 2.2. Let β be an algebraic integer of order q. If h > 0,
then the set

Σ(h) = {α ∈ Z[β] | |α(k)| < h, k = 2, . . . , q}
is relatively dense and uniformly discrete and the distances in Σ(h) take
only finitely many values.

In the following, the setsΣ(h) are called cut-and-project sequences. In the
case that β is a Pisot number, we show the relation between cut-and-project
sequences and β-integers Zβ .

Proposition 2.3. Let β be a Pisot number of order q. Set

l = [β] max{(1− |β(i)|)−1 | i = 2, . . . , q}.
Then

Zβ ⊂ Σ(l), Zβ + Zβ ⊂ Σ(2l), ZβZβ ⊂ Σ(l2).

Proof. Let x ∈ Zβ, i.e. x = ±∑n
i=0 xiβ

i for some n. Then

|x(j)| ≤
n∑

i=0

[β]|β(j)|i < [β]
1

1− |β(j)| ≤ l for j = 2, . . . , q.

The statement follows easily.

3. Sufficient conditions for finiteness of L⊕ and L�. In this section
we provide sufficient conditions on β so that L⊕(β) and L�(β) are finite.
First we demonstrate Theorem 3.1 stating that L⊕(β) and L�(β) are finite
for a Pisot β. The statement for L⊕ has been proven in [4], but we provide
a different and simpler proof. We further show that this condition is not
necessary. Theorem 3.3 provides a different sufficient condition together with
bounds on L⊕(β) and L�(β). In the next section we apply Theorem 3.3 to
the case of quadratic Pisot numbers.

Theorem 3.1. Let β be a Pisot number. Then L⊕(β) and L�(β) are
finite.

Proof. Let x, y ∈ Zβ . To determine L�(β) it suffices to consider x, y > 0.
Set z0 = max{z ∈ Zβ | z ≤ xy} and r := xy − z0. Since distances in Zβ
are bounded by 1, we have 0 ≤ r < 1. Therefore obviously the remainder
r is the fractional part of the β-expansion of xy, i.e. xy ∈ Fin(β) if and
only if r ∈ Fin(β). Since l > 1, we have Σ(l) ⊂ Σ(l2) and according to
Proposition 2.3 both xy and z0 belong to Σ(l2).
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According to Proposition 2.2 distances in Σ(l2) take only finitely many
values, say f1, . . . , fT . The gap r between z0 and xy must be composed
of these distances. Therefore 1 > r = xy − z0 =

∑
hifi, where hi ∈ N0.

Fractional parts of all results of multiplication xy belong to the set

F :=
{∑

i

hifi < 1
∣∣∣ hi ∈ N0

}
,

which is finite and therefore

L�(β) ≤ max{fpβ(r) | r ∈ F ∩ Fin(β)}.
To derive the finiteness of L⊕(β) one uses an analogous argument.

A simple consequence of the above proof is that Zβ is a Meyer set.

Corollary 3.2. Let β be a Pisot number. Then there exists a finite set
F such that

Zβ + Zβ ⊂ Zβ + F, ZβZβ ⊂ Zβ + F.

Theorem 3.1 gives a sufficient condition for finiteness of L⊕(β) and
L�(β). An upper bound on L⊕(β) is determined in [10] using some com-
plicated techniques. However, their result applies only to a class of Pisot
numbers. The condition that β is Pisot is however not necessary. In the fol-
lowing theorem we provide a similar estimate on L⊕(β) with less restrictive
criteria for β. Moreover, we determine an upper bound for L�(β).

Theorem 3.3. Let β > 1 be an irrational algebraic number such that at
least one of its conjugates, say β′, is of modulus smaller than 1. Define

H = sup{|z′| | z ∈ Zβ}, K = inf{|z′| | z ∈ Zβ , z 6∈ βZβ}.
If K > 0, then L⊕(β) and L�(β) are finite and

(
1
|β′|

)L⊕(β)

<
2H
K
,(2)

(
1
|β′|

)L�(β)

<
H2

K
.(3)

Proof. Let x, y ∈ Zβ and x+ y ∈ Fin(β), x+ y =
∑k

i=−L aiβ
i, a−L ≥ 1.

Then βL(x+ y) ∈ Zβ and βL(x+ y) 6∈ βZβ. Thus

K ≤ |β′|L|x′ + y′| ≤ |β′|L(|x′|+ |y′|) < 2H|β′|L,
which implies (2). Note that the supremum H is never attained, i.e. |z ′| < H
for all z ∈ Zβ. The proof for multiplication is similar.

Remark 3.4. 1. Using the same inequalities as in the proof of Proposi-
tion 2.3 we obtain

H ≤ [β]
1

1− |β′| .
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2. If β′ ∈ (0, 1), then K = 1. Indeed, for z =
∑n

i=0 ziβ
i, z0 6= 0, one has

z′ =
n∑

i=0

zi(β′)i ≥ z0 ≥ 1.

Corollary 3.5. Let β > 1 be an algebraic integer such that at least one
of its conjugates, say β′, belongs to (0, 1). Then

(
1
|β′|

)L⊕(β)

<
2[β]

1− β′ ,
(

1
|β′|

)L�(β)

<
[β]2

(1− β′)2 .

4. Theorem 3.3 for quadratic Pisot numbers. So far we have been
interested in L⊕(β) and L�(β) for general algebraic integers β. From now on
we shall focus on quadratic Pisot numbers. In the quadratic case the Pisot
condition implies that β is a solution of an equation

x2 = mx− n, m, n ∈ N, m ≥ n+ 2,

x2 = mx+ n, m, n ∈ N, m ≥ n.
We shall try to apply Theorem 3.3 for such β and derive the corresponding
bounds on L⊕(β) and L�(β). It will be seen that the situation drastically
differs for the two types of quadratic equations.

Note that for n = 1, the root β is a quadratic Pisot unit. For such β the
values of L⊕(β) and L�(β) have been determined in [3].

Let us now study the case of β > 1 solving the equation x2 = mx − n,
m,n ∈ N, m ≥ n+ 2. Note that [β] = m− 1, thus the digits in β-expansions
are 0, 1, . . . ,m − 1. The conjugate β ′ of β satisfies β′ ∈ (0, 1), and the β-
development of unity is d(1, β) = (m − 1)(m − n − 1)ω. For z ∈ Zβ , z =∑n

i=0 ziβ
i we have

z′ =
n∑

i=0

zi(β′)i < (m− 1) + (m− 2)β′ + (m− 2)β′2 + . . .(4)

= 1 + (m− 2)
1

1− β′ =
β(β − 1)
β − n = H.

Clearly, β(β − 1)/(β − n) above is the desired supremum H of Theorem 3.3,
since we can construct a sequence of numbers

zn = (m− 1)β0 +
n∑

i=1

(m− 2)βi ∈ Zβ \ βZβ

such that limn→∞ |z′n| = H. For the relation (4) we have considered the
admissibility of sequences of digits in β-expansions. According to Remark 3.4
we haveK = 1, and hence we can use Theorem 3.3 to derive results for L⊕(β)
and L�(β).
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Proposition 4.1. Let β2 = mβ − n, m ≥ n+ 2. Then

L⊕(β) ≤ 3m lnm, L�(β) ≤ 4m lnm.

In particular , if n = 1, then L⊕(β) = L�(β) = 1.

Proof. Since K = 1 and H = β(β − 1)/(β − n) = (β − 1)2/(m− n− 1)
we can estimate

(
m− 1
n

)L⊕
<

(
β

n

)L⊕
=
(

1
β′

)L⊕
< 2

(β − 1)2

m− n− 1
< 2

(m− 1)2

m− n− 1
.

For n = 1 we obtain directly L⊕ ≤ 1. For general n ≤ m − 2 we estimate
the left hand side of the inequality by

(
m− 1
n

)L⊕
≥
(
m− 1
m− 2

)L⊕
> eL⊕/m,

where we have used (1 + 1/k)k+1 > e for k ∈ N. The right hand side of
the inequality is estimated by m3. Altogether we get L⊕(β) ≤ 3m lnm. The
estimate for L�(β) is derived analogously, the first step for n = 1 being

βL� =
(

1
β′

)L�
<

(
β(β − 1)
β − 1

)2

= β2 ⇒ L� ≤ 1.

In order to show that for n = 1 we have L⊕(β) = L�(β) = 1 it suffices to
observe that

((m−1)+(m−1))β = (2 · (m−1))β =
(
β+(m−2)+

1
β

)

β

= 1(m−2)•1.

Let us now study the case of β > 1 solving the equation x2 = mx+n,
m,n ∈ N, m ≥ n. Note that [β] = m. Therefore the digits in β-expansions
are 0, 1, . . . ,m. The β-development of unity is d(1, β) = mn. Now the con-
jugate β′ of β satisfies β′ ∈ (−1, 0). If w ∈ Zβ, w =

∑n
i=0wiβ

i, we have

. . .+mβ′3 +mβ′ < w′ < m+mβ′2 +mβ′4 + . . . ,

−1 < w′ <
m

1− β′2 =
β2m

mβ + n− n2 = H.

Unfortunately, in this case K = 0 for all n ∈ N except n = 1. Therefore only
for n = 1 can we use Theorem 3.3 to find L⊕(β) and L�(β). In this case for
z ∈ Zβ, z =

∑n
i=0 ziβ

i with z0 6= 0, we have

z′ ≥ z0 + z1β
′ + z3β

′3 + z5β
′5 + . . .

≥ 1 + (m− 1)β′ +mβ′3 +mβ′5 + . . .

= 1− β′ + mβ′

1− β′ = −β′ = 1
β

= K.
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Note that H is equal to β for n = 1. Using (2) and (3), we obtain for m ≥ 2

βL⊕ < 2β2 < β3

βL� < β3

}
⇒ L⊕(β) ≤ 2,

L�(β) ≤ 2.

To prove that L⊕(β) = L�(β) = 2 we calculate

(m+m)β = (2 ·m)β =
(
β+(m−1)+

m− 1
β

+
1
β2

)

β

= 1(m−1)• (m−1)1.

For m = 1, i.e. β the golden ratio, it is not true that 2β2 < β3. A slightly
finer discussion is necessary to obtain the exact bound on the number of
fractional digits of the sum x+ y.

In the above considerations we are not able to derive any estimates on
L⊕(β) and L�(β) if β is a solution of x2 = mx+ n, m,n ∈ N, m ≥ n ≥ 2.
Therefore in the rest of the paper we focus on such quadratic Pisot numbers.
First we give an estimate on L�(β) using L⊕(β) and then we determine the
value of L⊕(β).

5. Relation of L⊕ and L� for quadratic Pisot numbers. In Sec-
tion 2 we have shown that Zβ can be embedded into a cut-and-project
sequence with a suitably chosen window. In our case β is a solution of
x2 = mx + n, m,n ∈ N, m ≥ n ≥ 2. Therefore we choose Σ(H), where
H = m/(1− β′2). We show that a cut-and-project set with arbitrary win-
dow can be embedded into a finite union of shifted copies of Zβ, where the
shifts belong to Z[β]. In fact, a product xy of x, y ∈ Zβ can be expressed
as a sum of a β-integer and a small rational integer and therefore we can
find an upper estimate of L�(β) using L⊕(β). A similar result can also
be proven for non-quadratic Pisot β. The demonstration is however rather
technical.

Theorem 5.1. Let β > 1 be a solution of x2 = mx + n, m,n ∈ N,
m ≥ n, and let h > 0. Then there exists p ∈ N such that

Σ(h) ⊂ Zβ + {−p,−p+ 1, . . . ,−1, 0, 1, . . . , p− 1, p},
where

p ≤ h− β′H = h− β′ m

1− β′2 .

Proof. Since β is a quadratic integer, we can write every power βk as an
integer combination of 1 and β. Define Fk, Gk by

βk = Fkβ +Gk.

Since βk+1 = β(Fkβ + Gk) = Fkmβ + Fkn + Gkβ, the sequences (Fk)k∈N0 ,
(Gk)k∈N0 satisfy Fk+1 = mFk + Gk, Gk+1 = nFk, which gives a recurrence
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relation
Fk+2 = mFk+1 + nFk, where F0 = 0, F1 = 1.

It is easy to see that every x ∈ N can be written in the form x =
∑j

i=1 ciFi,
where ci ∈ {0, 1, . . . ,m} and cici−1 is lexicographically smaller thanmn. The
coefficients cj, cj−1, . . . , c1 can be found by the so-called greedy algorithm.
Thus j is a number for which Fj ≤ x < Fj+1 and cj := [xF−1

j ]. We obtain the
coefficients ci, i < j, by applying the same steps to the integer x̃ = x− cjFj .

Let z ∈ Σ(h), i.e. z = a + bβ and |z′| < h. Since both Σ(h) and Zβ are
symmetric with respect to the origin, it suffices to show the statement for
b ≥ 0. Let b =

∑j
i=1 ciFi. Then

z =
j∑

i=1

ci(Fiβ +Gi)−
j∑

i=1

ciGi + a = z1 + z2,(5)

where z2 := a−∑j
i=1 ciGi ∈ Z and z1 :=

∑j
i=1 ciβ

i ∈ βZβ ⊂ Zβ . Applying
the Galois automorphism to the equality z = z1 + z2 gives z2 = z′ − z′1.
Since |z′| < h and |z′1| < −β′H, the integer z2 belongs to the interval
(−h+ β′H,h− β′H).

Corollary 5.2.

ZβZβ ⊂ Zβ + {−p, . . . , p}, where p ≤ (m+ 2)4/4.

Proof. Since Zβ ⊂ Σ(H), we have ZβZβ ⊂ Σ(H2). The proof will be
completed if we verify that H2 − β′H ≤ 1

4(m+ 2)4. Let us first show that

1
1− β′2 <

m+ 3
2

.(6)

We have −β′ = n/β, thus for n ≤ m− 1,

1− β′2 = 1− n2

β2 > 1− n2

m2 ≥ 1− (m− 1)2

m2 =
2m− 1
m2 ≥ 2

m+ 3
.

For n=m the inequality (6) is verified directly using β ′= 1
2(m−

√
m2 + 4m).

Therefore

H2 − β′H ≤ H2 +H =
m2

(1− β′2)2
+

m

1− β′2 <
m2(m+ 3)2

4
+
m(m+ 3)

2

=
1
4
m(m+ 1)(m+ 2)(m+ 3) ≤ 1

4
(m+ 2)4.

The above corollary states that a product of two β-integers can be writ-
ten as a sum of a β-integer and a rational integer. Let us derive the number
of fractional digits of the β-expansion of a rational integer p.

Lemma 5.3. Let p ∈ N. Then

fpβ(p) ≤ (1 + log2 p)L⊕(β).
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Proof. The proof is based on the simple observation that

fpβ(x+ y) ≤ max{fpβ(x), fpβ(y)}+ L⊕(β),(7)

which in particular gives fpβ(2x) ≤ fpβ(x) + L⊕(β). Applying the latter k
times we obtain fpβ(2k) ≤ kL⊕(β). We use induction on j to prove that if
p has a binary expansion p =

∑j
i=0 ai2

i then fpβ(p) ≤ (j + 1)L⊕(β). Using
the hypothesis for p =

∑j
i=0 ai2

i = 2j +
∑j−1

i=0 ai2
i we obtain

fpβ(p) ≤ max
{

fpβ(2j), fpβ
(j−1∑

i=0

ai2i
)}

+ L⊕(β)

≤ max{jL⊕(β), jL⊕(β)}+ L⊕(β) = (j + 1)L⊕(β).

The statement of the lemma follows easily from the fact that j ≤ log2 p.

The following theorem is a simple consequence of Corollary 5.2 and
Lemma 5.3.

Theorem 5.4. Let β > 1 be a solution of x2 = mx + n, m,n ∈ N,
m ≥ n. Then

L�(β) ≤ 4L⊕(β) log2(m+ 2).

Proof. Let x, y ∈ Zβ. Using Corollary 5.2, we have fpβ(xy) = fpβ(z + p)
for some z ∈ Zβ and p ∈ N, p ≤ 1

4(m+ 2)4. Now, due to (7),

fpβ(z + p) ≤ fpβ(p) + L⊕(β) ≤ (2 + log2 p)L⊕(β)

≤
(

2 + log2
(m+ 2)4

4

)
L⊕(β).

The statement of the theorem follows easily.

6. L⊕ for quadratic β. In this section we obtain an upper bound on
L⊕(β). This is done in two steps: first we find an upper bound on fp(x+ y)
where x is an arbitrary β-integer and y is a β-integer of a specific form.
Then we show that any β-integer can be written as a finite sum of numbers
of this specific form. An upper bound on L⊕(β) is obtained by combining
both results.

Let β > 1 be a solution of x2 = mx + n, m,n ∈ N, m ≥ n. Let (x)β =
xkxk−1 . . . x1x0 • x−1x−2 . . . x−p be a β-representation of x, i.e. 0 ≤ xi ≤ m.
The β-representation (x)β is a β-expansion of x if and only if xixi−1 is
lexicographically smaller than mn = d(1, β) for every i.

The following lemma is an easy consequence of the result of Frougny
and Solomyak in [4]. It is mentioned here in order to make the article self-
contained.

Lemma 6.1. Let (x)β = xkxk−1 . . . x1x0•x−1x−2 . . . x−p be a β-represen-
tation of x. Then fpβ(x) ≤ p.
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Proof. If the representation is already in the form of a β-expansion, then
fpβ(x) = p. Otherwise we can find the largest j such that xjxj−1 is lexico-
graphically greater than or equal to mn. Since xi ≤ m for all i, necessarily
xj = m and xj−1 ≥ n. Since j was the largest index with this property,
xj+1 < m. Therefore we can define a new representation of x as

(x)β = x̃kx̃k−1 . . . x̃1x̃0 • x̃−1x̃−2 . . . x̃−p,

where x̃j := xj − m, x̃j−1 := xj−1 − n, x̃j+1 := xj+1 + 1, and x̃i = xi
otherwise. In the new representation the sum of digits is strictly smaller
than in the previous one. This procedure can be repeated and in finitely
many steps we obtain the β-expansion of x. The result follows easily, since
in each step the number of digits in the fractional part of the representation
does not increase.

Let us first determine a lower bound on L⊕(β). It suffices to find a
single example of addition with specified fractional part length. We use the
following example.

Example 6.2. Consider x = m
∑k−1

i=0 β
2i. Then it can be shown by in-

duction on k that

x+ x =
k−1∑

i=0

(Ak−iβ +Bk−i)β2i +
k−1∑

i=0

(
ak−i
β

+
bk−i
β2

)
β−2i,

where the coefficients Ai, Bi, ai and bi, i ∈ N, are defined by

Ai = i(m− n+ 1)−m+ n,

Bi = 2m− n− i(m− n+ 1),

ai = i(m− n+ 1)− 1,

bi = m+ 1− i(m− n+ 1).

Formally, we have

x+ x = A1B1A2B2 . . . AkBk • akbk . . . a2b2a1b1.

The above expression is a β-expansion if and only if all the coefficients Ai,
Bi, ai and bi take values in {0, 1, . . . ,m} for i = 1, . . . , k. This implies the
following conditions on k:

k(m− n+ 1) ≤ m+ 1,

(k − 1)(m− n+ 1) ≤ m− 1.

For m = n the latter condition is stronger and the maximal k satisfying it
is k = m. If on the other hand m > n, the first condition is stronger and
the maximal k ∈ N satisfying it is

k0 :=
[

m+ 1
m− n+ 1

]
.
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Corollary 6.3. Let β be the larger solution of x2 = mx+n, m,n ∈ Z,
m ≥ n > 0. Then

L⊕(β) ≥
{

2m if m = n,

2k0 if m > n.

From now on we focus on determining the upper bound for L⊕(β).

Lemma 6.4. Let x, y ∈ Zβ , x, y ≥ 0, with β-expansions

(x)β = xlxl−1 . . . x1x0•,
(y)β = ykyk−1 . . . y1y0•,

where yi ≤ m− n+ 1 for i = 0, 1, . . . , k − 2, k − 1. Then the β-expansion of
x+ y is

(x+ y)β = zrzr−1 . . . z1z0 • z−1z−2,

where
z−1

β
+
z−2

β2 ∈
{

0,
n

β
,
m− n
β

+
n

β2

(
= 1− n

β

)}
.

Proof. We make use of the relation m+p = β+p−1+(m−n)β−1+nβ−2

for p ≤ m, i.e. (m+p)β = 1(p−1)•(m−n)n. Symbolically it may be rewritten
as

m

+ p

1 (p− 1) (m− n) n

(8)

We proceed by induction on the values of y. Let y = y0 ≤ m − n + 1.
Then, according to (8), the β-representation of x+ y is

(x+ y)β =
{
xl . . . x1(x0 + y0)• if x0 + y0 ≤ m,
xl . . . (x1 + 1)(x0 + y0 −m− 1) • (m− n)n if x0 + y0 > m.

Note that x1 + 1 ≤ m in the second case, since x1 = m implies x0 ≤ n− 1,
and thus x0 + y0 ≤ n− 1 +m− n+ 1 = m, which is a contradiction.

Now assume that the statement holds for all ỹ < y satisfying the condi-
tions of the lemma. Suppose that there exists an index i such that yi > 0 and
xi < m. Then x+y = x̃+ ỹ, where according to Lemma 6.1, x̃ = x+βi ∈ Zβ
and ỹ = y − βi satisfies the conditions of the lemma. We may thus use the
induction hypothesis.

Suppose that yi > 0 implies xi = m for all i ≤ k. Since xlxl−1 . . . x1x0
is an expansion, xi = m implies xi−1 ≤ n − 1 < m. Thus yi > 0 implies
yi−1 = 0. Since yk > 0, we have xk = m and xk+1 < m. Without loss of
generality we can consider only the case when l ≤ k+ 1. Therefore we have
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the following situation:

xk+1 m xk−1 xk−2 . . . x1 x0

yk 0 yk−2 . . . y1 y0

Let j be the smallest integer among {1, 2, . . . , [k/2]} such that yk−2j <
m− n+ 1. Then

xk+1 m xk−1 m . . . xk−2j+3 m xk−2j+1 xk−2j xk−2j−1 . . . x0

yk 0 m− n+ 1 . . . 0 m− n+ 1 0 yk−2j yk−2j−1 . . . y0

We may check by elementary algebra using the relation β2 = mβ + n that

(9) mβk + (m− n+ 1)
j−1∑

i=1

βk−2i

= βk+1 − βk + (m− n+ 1)β
j−1∑

i=1

βk−2i + (m− n)βk−2j+1 + nβk−2j.

Using this relation, we may write the sum x+ y = x̃+ ỹ as

(xk+1 + 1) (yk − 1) x̃k−1 m . . . x̃k−2j+3 m x̃k−2j+1 xk−2j xk−2j−1 . . . x0

(yk−2j + n) yk−2j−1 . . . y0

where x̃k−2i+1 = xk−2i+1 + m − n + 1 for i = 1, . . . , j − 1 and x̃k−2j+1 =
xk−2j+1 +m− n. The first row represents the summand x̃, the second row
the summand ỹ. Due to (9) we have x+ y = x̃+ ỹ. Obviously x̃, ỹ ∈ Zβ, the
digits of ỹ are ≤ m− n+ 1, except its first non-zero digit from the left. We
have ỹ < y and thus we may use the induction hypothesis.

It remains to solve the case where yk−2i = m − n + 1 for all i ∈
{1, 2, . . . , [k/2]}. Then either

y = yk 0 (m− n+ 1) 0 (m− n+ 1) . . . 0 (m− n+ 1),

or

y = yk 0 (m− n+ 1) 0 (m− n+ 1) . . . 0 (m− n+ 1) 0,

i.e.

y = ykβ
k + (m− n+ 1)

[k/2]∑

i=1

βk−2i

for k even or odd. We may deduce from (9) that the results of the addition
x+y have fractional parts 1−n/β and n/β respectively. This completes the
proof.
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Lemma 6.5. Let x, y ∈ Zβ , x > y ≥ 0. Then

x− y =





z

z + (n− 1)
k∑

i=0

β2i + 1

z + (n− 1)
k∑

i=1

β2i−1 +
n

β

with z ∈ Zβ, z ≥ 0, k ≥ 0.

Proof. First note that for every x ∈ Zβ there exists a β-representation
(x)β = xl . . . x1x0• such that xi + xi−1 > 0 for all 0 < i ≤ l, i.e. the
β-representation is “dense”. The dense form can be found by the following
procedure: Find the first pair of zeros from the left, say xi = xi−1 = 0,
xi+1 > 0. Put x̃i+1 = xi+1 − 1, x̃i = m, x̃i−1 = n, and x̃j = xj for all other
0 ≤ j ≤ l. The new β-representation (x)β = x̃l . . . x̃1x̃0• has strictly lower
number of vanishing coefficients. Thus the procedure is finite.

The proof of the lemma is by induction on the value of y. Without
loss of generality we may assume that both (x)β = xl . . . x1x0• and (y)β =
yk . . . y1y0• are written in their dense form.

Assume that there is an index i such that both xi and yi are non-zero.
Then x − y = x̃ − ỹ, where x̃ = x − βi and ỹ = y − βi. Clearly, x̃, ỹ ∈ Zβ
and ỹ < y, thus we may use the induction hypothesis.

Assume that yi > 0 implies xi = 0 for all indices i. Since xi + xi−1 > 0,
we have yi−1 = 0. Since yk > 0, we have xk = 0 and xk+1 > 0. Without loss
of generality we consider l = k+ 1 and xk+1 = 1. Since both x and y are in
their dense form, the remaining cases are as follows. First assume that the
maximal index k such that yk is non-zero, is even. We have x− y equal to

1 0 xk−1 0 xk−3 . . . x1 0

− yk 0 yk−2 0 . . . 0 y0

1 0 xk−1 0 xk−3 . . . x1 0

− 1 0 0 0 0 . . . 0 0

+ m (n− 1) m (n− 1) . . . (n− 1) m n

− yk 0 yk−2 0 . . . 0 y0

(m− yk) xk−1 (m− yk−2) xk−3 . . . x1 (m− y0)

+ (n− 1) 0 (n− 1) . . . (n− 1) 0 n

which corresponds to the statement of the lemma. For k odd we may write
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similarly that x− y equals

1 0 xk−1 0 xk−3 . . . x2 0 x0

− yk 0 yk−2 0 . . . 0 y1 0

(m− yk) xk−1 (m− yk−2) xk−3 . . . x2 (m− y1) x0

+ (n− 1) 0 (n− 1) . . . (n− 1) 0 n

which is of the desired form.

Theorem 6.6. Let β be the larger solution of x2 = mx + n, m,n ∈ Z,
m ≥ n > 0. Then

L⊕(β) = 2m if m = n

and

2
⌊

m+ 1
m− n+ 1

⌋
≤ L⊕(β) ≤ 2

⌈
m

m− n+ 1

⌉
if m > n.

Proof. Let x, y ∈ Zβ, xy > 0. Every y splits as y = y(1) + . . .+ y(s), for
some s, where the summands y(i) have digits ≤ m− n+ 1, and thus satisfy
the assumptions of Lemma 6.4. We can always choose y(i) in such a way
that the sum has at most

s0 :=
⌈

m

m− n+ 1

⌉

non-vanishing summands. Lemma 6.4 then implies that

fpβ(x+ y) ≤ 2s0.

Now let xy < 0, without loss of generality x > −y. Then, according to
Lemma 6.5, x+ y can be written either as z+w for some 0 ≤ z, w ∈ Zβ, or

x+ y = z + (n− 1)
k∑

i=1

β2i−1 + n/β for 0 ≤ z ∈ Zβ .

The sum (n−1)
∑k

i=1 β
2i−1 can be written as addition of d n−1

m−n+1e = s0−1
summands with digits ≤ m− n+ 1. Therefore

fpβ
(
z + (n− 1)

k∑

i=1

β2i−1
)
≤ 2(s0 − 1).

Adding n/β to the result may yield only two more fractional digits (cf.
Lemma 6.4).

Thus the proof for the upper bound on L⊕(β) is finished. The lower
bound of L⊕(β) is given by Corollary 6.3.
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The last two sections were devoted to the study of arithmetic of β-
expansions for β > 1 a solution of x2 = mx + n, m,n ∈ N, m ≥ n. This
is the case where Theorem 3.3 does not provide us with any results, since
K = 0. Let us comment on the results obtained in Sections 5 and 6:

1. The lower and upper bounds for L⊕(β) found in Theorem 6.6 differ
at most by 2. They coincide if and only if

m− n+ 1 divides m or m+ 1.

Based on observation, we conjecture that for m > n we actually have
L⊕(β) = 2k0. We also note that for m > n the results of subtraction x− y,
where x, y > 0, have lower numbers of fractional digits than addition, more
precisely, fpβ(x− y) ≤ 2k0 − 1.

2. According to Theorem 5.4 we may use the bound on L⊕(β) to derive
an upper estimate on L�(β). For example for m = n this gives

L�(β) ≤ 8m(log2(m+ 2)).
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