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Bielliptic modular curves X1(N)
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Daeyeol Jeon and Chang Heon Kim (Seoul)

0. Introduction. Let Γ = SL2(Z) be the full modular group. For any
integer N ≥ 1, we have subgroups Γ (N), Γ1(N), Γ0(N) of Γ defined by
matrices

(
a b
c d

)
congruent modulo N to

(
1 0

0 1

)
,

(
1 ∗
0 1

)
,

(∗ ∗
0 ∗

)

respectively. We let X(N),X1(N),X0(N) be the modular curves defined
over Q associated to Γ (N), Γ1(N), Γ0(N) respectively. The X’s are compact
Riemann surfaces. Denote the genera of X1(N),X0(N) by g1(N), g0(N) re-
spectively.

A smooth, projective curve X with genus g(X) ≥ 2 is called hyperelliptic
(respectively bielliptic) if it admits a map φ : X → C of degree 2 onto a
curve C of genus zero (respectively one).

Harris and Silverman [H-S] showed that if a curve X with g(X) ≥ 2
defined over a number field K is neither hyperelliptic nor bielliptic, then the
set of quadratic points on X,

{P ∈ X(K) : [K(P ) : K] ≤ 2}
is finite.

Bars [B] determined all the bielliptic modular curves of type X0(N) and
also found all curves X0(N) which have infinitely many quadratic points
over Q.

In this paper, we shall determine all the bielliptic modular curves of type
X1(N). Our result is as follows.

Theorem 0.1. The curve X1(N) is bielliptic for exactly 8 values of N ,
namely for N = 13, 16, 17, 18, 20, 21, 22, 24.
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We also discuss the problem of determining all modular curves X1(N)
which have infinitely many quadratic points over Q.

1. Preliminaries. Let ∆ be a subgroup of (Z/NZ)∗. Let X∆(N) be
the modular curve defined over Q associated to the modular group Γ∆(N):

Γ∆(N) =

{(
a b

c d

)
∈ Γ

∣∣∣∣ c ≡ 0 mod N, (a mod N) ∈ ∆
}
.

We always assume that −1 ∈ ∆. For d |N, let πd be the natural projec-
tion from (Z/NZ)∗ to (Z/{d,N/d}Z)∗, where {d,N/d} is the least common
multiple of d and N/d.

Theorem 1.1 ([K]). The genus of the modular curve X∆(N) is

g(X∆(N)) = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2
,

where

µ = N
∏

p|N
prime

(
1 +

1

p

)
ϕ(N)

|∆| ,

ν2 = |{(b mod N) ∈ ∆ | b2 + 1 ≡ 0 mod N}| · ϕ(N)

|∆| ,

ν3 = |{(b mod N) ∈ ∆ | b2 − b+ 1 ≡ 0 mod N}| · ϕ(N)

|∆| ,

ν∞ =
∑

d|N
d>0

ϕ(d) · ϕ(N/d)

|πd(∆)| .

Proposition 1.2. Let v be any involution on the compact Riemann
surface X, and let # denote the number of fixed points of v. Then we have
the following genus formula:

g(v\X) =
1

4
(2g(X) + 2−#).

Proof. This follows from the Hurwitz formula.

For an integer a prime to N, let [a] denote the automorphism of X1(N)
represented by γ ∈ Γ0(N) such that γ ≡

(
a ∗
0 ∗
)

mod N. Sometimes we regard
[a] as a matrix.

For any matrices A,B ∈M2(Z) which give automorphisms on X1(N), we
write A ≡ B mod Γ1(N) if A−1B ∈ ±Γ1(N). In fact, if A ≡ B mod Γ1(N),
then A and B define the same automorphism on X1(N).

For each divisor d |N with (d,N/d) = 1, consider the matrices of the
form
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(
dx y

Nz dw

)

with x, y, z, w ∈ Z and determinant d. They define a unique involution on
X0(N), called the Atkin–Lehner involution and denoted by Wd. In particu-
lar, if d = N, then WN is called the full Atkin–Lehner involution. We also
denote by Wd a matrix of the above form.

Now we fix a matrix Wd. By [K-Ko2], Wd belongs to the normalizer
of Γ1(N) in PSL2(R) and therefore defines an automorphism of X1(N).
For each integer a prime to N, [a]Wd defines a different automorphism of
X1(N). Furthermore Wd, in general, does not give an involution on X1(N).
But when d = N, WN still gives an involution on X1(N) whose properties
are investigated in the following proposition.

Proposition 1.3. Let ψ : X1(N)→ X0(N) be the Galois covering with
Galois group G = (Z/NZ)∗/± 1.

(1) WN defines an involution on X1(N) and [a]WN ≡ WN [a−1] mod
Γ1(N) for each a ∈ G.

(2) Let τ0 ∈ X0(N) be a fixed point of WN . Then the covering ψ is
unramified at each inverse image of τ0. Thus the number of inverse images
of τ0 is equal to the degree of ψ.

(3) Let τ ∈ X1(N) be a fixed point of WN . For each a ∈ G, [a]τ is also
fixed by WN if and only if a2 ≡ ±1 mod N .

(4) Let c ∈ G \G2 and τ, τ ′ ∈ X1(N) be fixed by WN and [c]WN respec-
tively. Then ψ(τ) 6= ψ(τ ′).

Proof. (1) We can write WN = [b]
(

0 −1
N 0

)
for some b ∈ G. It is easy to

check that [b]
(

0 −1
N 0

)
≡
(

0 −1
N 0

)
[b−1] mod Γ1(N). Thus W 2

N ≡
(

0 −1
N 0

)2
mod

Γ1(N) defines the identity map onX1(N) and the relation [a]WN ≡WN [a−1]
mod Γ1(N) is satisfied.

(2) If 1 ≤ N ≤ 4, then ψ is the trivial covering and thus it is unramified.
If N ≥ 5, then one can show that the coset Γ0(N)WN = Γ0(N)

(
0 −1
N 0

)
has

no parabolic elements and can have elliptic elements of order 2. Therefore
the fixed points of WN on X0(N) are neither elliptic points nor cusp points.
Thus ramification does not occur over those points.

(3) is straightforward.
(4) If ψ(τ) = ψ(τ ′), then τ ′ = [b]τ for some b ∈ G. Thus [b]WN [b]−1τ ′

= τ ′. Now [b]2WN turns out to be [c]WN . This is a contradiction to c ∈
G \G2.

Corollary 1.4. With the notation of Proposition 1.3 and N ≥ 5, let n
denote the degree of ψ (= |G|). Assume that (1) n is odd or (2) n is even
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and g0(N) ≤ 1. Then the numbers of fixed points of WN on X0(N) and on
X1(N) are the same.

Proof. (1) Let τ0 ∈ X0(N) be a fixed point of WN . By Proposition 1.3(2),
there are n distinct points of X1(N) lying over τ0. Since WN permutes these
points and n is odd, at least one of them must be fixed. But by Proposition
1.3(3), exactly one of them is fixed.

(2) First we consider the case g0(N) = 1. The matrix
(

0 −1
N 0

)
always

has a fixed point on the complex upper half plane H, and hence WN al-
ways has a fixed point on X0(N). Thus by Proposition 1.2, WN fixes ex-
actly four points of X0(N). The fixed points of WN on X1(N) certainly
lie over those four points. By a suitable choice of γ ∈ Γ1(N) we can form
an elliptic element γWN . Thus WN has at least one fixed point on X1(N).
Except N = 24, the order of G/G2 is 2. Thus the number of fixed points
is less than or equal to 8. Possible numbers are 4, 8, 2 or 6. From Proposi-
tion 1.2 the latter two are impossible. By Proposition 1.3(4), 8 can also be
excluded. If N = 24, the order of G/G2 is 4. Thus WN has at least four
fixed points. But for each c = 5, 7, 11, [c]WN also has at least four fixed
points. By Proposition 1.3(4), the image sets of their fixed points cannot
intersect and so we are done. The case g0(N) = 0 can be proved simi-
larly.

By [O1] we have the following description of cusps. The cusps of X(N)
can be regarded as pairs ±

( x
y

)
, where x, y ∈ Z/NZ, and are relatively prime,

and
( x
y

)
,
(−x
−y
)

are identified; Γ/Γ (N) operates naturally on the left, and so
a cusp of X0(N) or X1(N) can be regarded as an orbit of Γ0(N)/Γ (N) or
Γ1(N)/Γ (N). For each d |N, a cusp of X1(N) is represented by a pair

( x
y

)

with x reduced modulo d = (y,N) and (x, d) = 1. If g1(N) > 0, then we
have 1

2ϕ(d)ϕ(N/d) cusps
( x
y

)
with d = (y,N) and the cusps

( x
y

)
with a fixed

value of ±y are conjugate, and in particular are rational only if ϕ(d) = 1,
i.e. d = 1 or 2. For each d |N, a cusp of X0(N) is represented by a pair(
x
d

)
with x reduced modulo t = (d,N/d). We have ϕ(t) conjugate cusps(

x
d

)
corresponding to d, each with ramification degree e = t in the Galois

covering X1(N)→ X0(N).
Let Γ ∗1 (N) be the normalizer of Γ 1(N) = ±Γ1(N)/±1 in PSL2(R). Let

AutX1(N) be the group of automorphisms of X1(N). In [K-Ko2], Kim and
Koo showed that Γ ∗1 (N) is generated by Γ 0(N) = Γ0(N)/±1 and the ma-
trices Wd with d |N and (d,N/d) = 1. Also Ishii and Momose [I-M] es-
tablished that AutX1(N) is equal to Γ ∗1 (N)/Γ 1(N) for hyperelliptic curves
X1(N), i.e. N = 13, 16, 18. Later for square free N, Momose [M] verified
that AutX1(N) = Γ ∗1 (N)/Γ 1(N). Therefore, for such N, AutX1(N) is
generated by Γ 0(N)/Γ 1(N) and the automorphisms induced by the ma-
trices Wd.
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2. Non-bielliptic curves. For the reader’s convenience, in Table 1 we
tabulate the genera of X1(N) for 1 ≤ N ≤ 60 ([K-Ko1]). There is a misprint
in the table of [K-Ko1, p. 297]: g1(18) = 3 should be corrected to g1(18) = 2.

We assume that g1(N) ≥ 2, i.e. N = 13 or N ≥ 16. We recall that if
X1(N) is a bielliptic curve, there exists an involution v, called a bielliptic
involution, such that v\X1(N) is an elliptic curve. If g1(N) ≥ 6, by Propo-
sition 1.2 of [Sch], v is unique, defined over Q, and lies in the center of
AutX1(N). Then either v is contained in the Galois group of X1(N) over
X0(N) or it induces an involution ṽ on X0(N) such that ṽ\X0(N) is a ra-
tional or elliptic curve. In the first case, we must of course have g0(N) ≤ 1.
Now we divide N into 3 cases.

Table 1

N g1(N) N g1(N) N g1(N) N g1(N) N g1(N) N g1(N)

1 0 11 1 21 5 31 26 41 51 51 65

2 0 12 0 22 6 32 17 42 25 52 55

3 0 13 2 23 12 33 21 43 57 53 92

4 0 14 1 24 5 34 21 44 36 54 52

5 0 15 1 25 12 35 25 45 41 55 81

6 0 16 2 26 10 36 17 46 45 56 61

7 0 17 5 27 13 37 40 47 70 57 85

8 0 18 2 28 10 38 28 48 37 58 78

9 0 19 7 29 22 39 33 49 69 59 117

10 0 20 3 30 9 40 25 50 48 60 57

Case I: g1(N) > 6 and g0(N) = 0 or 1, i.e. N = 19, 25, 27, 32, 36, 49.
Case II: g1(N) > 6 and g0(N) ≥ 2.
Case III: 2 ≤ g1(N) ≤ 6, i.e. N = 13, 16, 17, 18, 20, 21, 22, 24.

First we consider the six values of N which belong to Case I.

Lemma 2.1. X1(19) is not a bielliptic curve.

Proof. Note that AutX1(19) is generated by Γ 0(19)/Γ 1(19) and W19.
First, there is no involution of type [a]. By Proposition 1.2 and Corollary 1.4,
we have g(W19\X1(19)) = 3. Therefore W19 is not a bielliptic involution.

Lemma 2.2. X1(27) is not a bielliptic curve.

Proof. According to [Ke-M1], the only points on X1(27) that are rational
or quadratic over Q are certain cusps. The bielliptic involution v would be
defined over Q and hence would preserve these points. Let Sd be the set of
Γ1(N)-inequivalent cusps

( x
y

)
with (y,N) = d. Then S1 (resp. S3) consists

of rational (resp. quadratic) cusps and it is not changed by v. Under an
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involution W27, the set S1 (resp. S3) is mapped to S27 (resp. S9). Since v
commutes with W27, all cusps in S9 or S27 are also preserved by v. Thus v
induces an automorphism of Y1(27) and so comes from an element in the
normalizer of Γ1(27). First, there is no involution of X1(27) of type [a]. By
Proposition 1.2 and Corollary 1.4, g(W27\X1(27)) = 6. Thus W27 is not a
bielliptic involution.

Lemma 2.3. X1(25) and X1(32) are not bielliptic.

Proof. Note that [7] (resp. [15]) induces an involution on X1(25) (resp.
X1(32)). By Theorem 1.1, the genus of [7]\X1(25) (resp. [15]\X1(32)) is 4
(resp. 5) and g1(25) = 12 (resp. g1(32) = 17). By Proposition 1.2, [7] (resp.
[15]) has 10 (resp. 16) fixed points. However, if a curve of genus at least 6
has an involution with more than 8 fixed points, then by Proposition 1.2(b)
of [Sch] either this involution is the bielliptic involution or the curve is not
bielliptic. Now the assertion follows immediately.

Lemma 2.4. X1(36) and X1(49) are not bielliptic.

Proof. Suppose thatX1(36) is bielliptic with bielliptic involution v. From
Theorem 1.1 one can check that v does not belong to the Galois group of
X1(36) over X0(36). Let ṽ be the involution on X0(36) induced by v. Note
that g0(36) = 1 and g(ṽ\X0(36)) = 0. By Proposition 1.2, ṽ has 4 fixed
points. Since the degree of the covering X1(36) → X0(36) is equal to 6,
there are 24 fixed points of v in X1(36). But this contradicts Proposition
1.2. Thus X1(36) is not bielliptic. Similarly, X1(49) is not bielliptic, either.

Now we consider Case II. The image of a bielliptic curve under a finite
morphism of curves is either bielliptic, hyperelliptic, elliptic or rational (see
[H-S]). Since there is a finite morphism X1(N)→ X0(N), we have

Lemma 2.5 (Corollary 3.16 of [B]). The modular curves X1(N) are not
bielliptic for N ≥ 132 and for all N in the table below :

52, 57, 58, 66, 67, 68, 70, 73, 74, 76, 77, 78, 80, 82, 84, 85,
86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105,
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130.

Lemma 2.6. X1(N) is not a bielliptic curve for the following N :

23, 29, 31, 41, 43, 47, 53, 59, 61, 65, 71, 75, 79, 83, 89, 95,
101, 119, 131.

Proof. Let N be one of the numbers of the above list. Then the curve
X0(N) is either hyperelliptic or bielliptic, but not both. From the tables in
[B, O2], we know that the hyperelliptic or bielliptic involution is the full
Atkin–Lehner involution. Suppose that X1(N) is bielliptic and let v be the



Bielliptic modular curves X1(N) 81

bielliptic involution. Since g0(N) ≥ 2, the involution v induces an involution
ṽ on X0(N) which is the full Atkin–Lehner involution. Then ṽ maps the
cusp

(
0
1

)
to
(

1
0

)
. Thus v maps the cusps lying above

(
0
1

)
to the cusps lying

above
(

1
0

)
. Note that the cusps over

(
0
1

)
are rational but the cusps over

(
1
0

)

are non-rational. This is a contradiction.

Lemma 2.7. X1(N) is not a bielliptic curve for the following N :

30, 33, 35, 38, 39, 42, 46, 51, 55, 60, 62, 69, 92, 94.

Proof. Let N be one of the numbers of the above list. From the tables
in [B, O2], we know that any hyperelliptic or bielliptic involution on X0(N)
is equal to one of the Atkin–Lehner involutions Wd with d 6= 2. Suppose
that X1(N) is bielliptic and v is the bielliptic involution. Then v induces an
involution ṽ on X0(N) which is Wd with d 6= 2. Note that Wd is represented
by a matrix

(
dx y
Nz dw

)
where x, y, z, w ∈ Z and detWd = d. We can choose

w = 1 and (y, d) = 1. Then ṽ maps the cusp
(

0
1

)
to
( y
d

)
. Since the cusps

lying above
( y
d

)
are non-rational, v maps rational cusps to non-rational

cusps. This gives rise to a contradiction.

Lemma 2.8. X1(N) is not a bielliptic curve for the following N :

26, 28, 34, 40, 44, 45, 48, 50, 54, 56, 64, 72, 81.

Proof. Let N be one of the numbers of the above list. Suppose that
X1(N) is a bielliptic curve with bielliptic involution v. Let ṽ be the induced
involution on X0(N). Since N 6= 37, 63, every automorphism of X0(N) is
a modular automorphism (see [Ke-M2]). So for our 13 values of N , the
possible candidate for ṽ is also a modular automorphism. Thus v is induced
from an element of Γ ∗1 (N). If v is Wd with d 6= 2, we are done by the same
arguments as in Lemmas 2.6 and 2.7. For example, if N = 40, v can be one
of W5,W8,W40 and so we can apply the rationality argument.

If N = 54, v cannot be W2 since the genus of W2\X0(56) is 2. For
N = 26, 34, 50, v may happen to be W2. In these 3 cases we can use the
counting argument used in the proof of Lemma 2.4 to show that X1(N) is
not bielliptic, either.

Lemma 2.9. X1(37) and X1(63) are not bielliptic curves.

Proof. Let N be 37 or 63. Suppose that X1(N) is bielliptic and v is the
bielliptic involution. Let ṽ be the induced involution on X0(N).

If N = 37, AutX1(37) is generated by Γ 0(37)/Γ 1(37) and W37 because
37 is square free. Thus the involution ṽ must be a modular automorphism,
and hence equal to W37. By the same argument as in the proof of Lemma
2.6, this is a contradiction.
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If N = 63, the involution ṽ must be a bielliptic involution. We can deal
with this case by applying the counting argument used in the proof Lemma
2.4 to show that X1(63) is not bielliptic, either.

3. Bielliptic curves. In this section we will show that for all values
of N in Case III, X1(N) is bielliptic.

Lemma 3.1. X1(N) is a bielliptic curve for N = 13, 16, 18, 20.

Table 2

N Some bielliptic involutions

13 [a]( 0 −1
13 0 ) (a = 1, . . . , 6)

16 [a]( 0 −1
16 0 ) (a = 1, 3, 5, 7)

18 [a]( 0 −1
18 0 ), [7a]W2( 0 −1

18 0 ) (a = 1, 5, 7)

20 [9], [a]( 0 −1
20 0 ) (a = 1, 3, 7, 9)

Proof. From Proposition 1.2 and Corollary 1.4, it follows that WN =
[a]
(

0 −1
N 0

)
is a bielliptic involution of X1(N) for N = 13, 16, 18, 20.

For N = 13, 16, 18, the curves X1(13),X1(16),X1(18) have genus 2 and
so they are hyperelliptic. The hyperelliptic involution u is unique and given
by [5], [7],W2[7], respectively ([I-M]). Because these curves have genus 2,
any other involution v must be bielliptic. But since u commutes with every
automorphism, uv will be another bielliptic involution. For N = 20, since
g([9]\X1(20)) = g(X∆(20)) = 1 where ∆ = {±1,±9}, [9] is also a bielliptic
involution of X1(20).

Lemma 3.2. Suppose N is even and congruent to 2 modulo 4. Then
W2[a] ≡ [a]W2 mod Γ1(N) for all a ∈ (Z/NZ)∗.

Proof. Say

[a] =

(
a b

c d

)
, W2 =

(
2x y

Nz 2w

)
.

By a simple calculation, the (1, 1)-entry of W−1
2 [a]−1W2[a] is equal to 2xw−

1
2a

2yzN mod N. Since 4xw−yzN = 2, 2xw− 1
2a

2yzN = 1+ 1
2(1−a2)yzN ≡

1 mod N.

Consider the case N = 22. Take W2 =
(

8 −3
22 −8

)
. Then W2 is an ellip-

tic element and gives an involution on X1(22). Thus W2τ = τ for some
τ ∈ H. Note that W2 defines a bielliptic involution of X0(22). From Propo-
sition 1.2, we know that the number of fixed points of W2 in X0(22) is 2.
Let τ1, τ2 be the fixed points with τ1 = τ. Since the degree of the cover-
ing X1(22) → X0(22) is 5 and this covering is unramified, there are five
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points of X1(22) lying above τi (i = 1, 2). For each i = 1, 2, the five points
lying above τi are represented by [d]τi with d ∈ (Z/22Z)∗. By the above
lemma,

W2[d]τ1 = [d]W2τ1 = [d]τ1 on X1(22).

Thus W2 fixes the five points lying above τ1. W2 permutes the five points
lying above τ2 so that at least one of them must be fixed. Let W2 fix [d]τ2

for some d ∈ (Z/22Z)∗. For each d′ ∈ (Z/22Z)∗,

W2[d′]τ2 = W2[d′][d]−1[d]τ2 = [d′][d]−1W2[d]τ2

= [d′][d]−1[d]τ2 = [d′]τ2 on X1(22).

Thus W2 fixes exactly 10 points of X1(22). By Proposition 1.2, W2 must be
a bielliptic involution. Moreover since g1(22) = 6, W2 is a unique bielliptic
involution.

Lemma 3.3. X1(22) is a bielliptic curve. W2 =
(

8 −3
22 −8

)
is the only biel-

liptic involution.

Lemma 3.4. X1(17) is a bielliptic curve. [4] is the only bielliptic involu-
tion.

Proof. Only [4] is an involution of X1(17) of type [a]. By Theorem 1.1,
g([4]\X1(17)) = g(X∆(17)) = 1 where ∆ = {±1,±4}. Thus [4] is a bielliptic
involution of X1(17). By [M] and [K-Ko2], other involutions must be of type
W17. By Proposition 1.2 and Corollary 1.4, we obtain g(W17\X1(17)) = 2.
Thus W17 is not a bielliptic involution.

Lemma 3.5. X1(21) is a bielliptic curve. All the bielliptic involutions
are W3 =

(
9 −4
21 −9

)
and [8]W3.

Proof. Take W3 =
(

9 −4
21 −9

)
. Then W3 is an elliptic element and it defines

an involution on X1(21). For a = 1, 2, 4, 5, 8, 10, we have [a]W3 ≡W3[a] mod
Γ1(21). By an argument similar to the proof of Lemma 3.2, W3 has at least
six fixed points on X1(21). By Proposition 1.2, the number of fixed points
of W3 must be 8 or 12. Since X1(21) is not a hyperelliptic curve, W3 cannot
have twelve fixed points. Thus the number of fixed points of W3 is 8 and then
W3 is a bielliptic involution. It can be easily seen that [8]W3 also gives an
involution on X1(21) and it is the only involution of type [a]W3 with a 6= 1.
We can choose a matrix [8] so that [8]W3 is an elliptic element. Similarly
[8]W3 gives another bielliptic involution.

By [M] and [K-Ko2], other involutions can be of type [a], W7 or W21.
Write W7 =

(
7x y
21z 7w

)
and assume 1

7W
2
7 ≡ ±1 mod Γ1(21). Combined with

the condition detW7 = 7, this leads to a contradiction. So W7 cannot give
an involution on X1(21).

By Proposition 1.2 and Corollary 1.4, the genus of W21\X1(21) is 2 so
that the involution W21 cannot be a bielliptic involution.
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Among the types [a], only [8] is an involution of X1(21). By Theorem
1.1, g([8]\X1(21)) = 3. Thus [8] is not a bielliptic involution.

Lemma 3.6. X1(24) is a bielliptic curve. Among the modular automor-
phisms, [11] is the only bielliptic involution.

Proof. [5], [7], [11] are all the involutions of type [a]. Put ∆1 = {±1,±5},
∆2 = {±1,±7}, ∆3 = {±1,±11}. Then g(X∆1(24)) = g(X∆2(24)) = 3 and
g(X∆3(24)) = 1. Thus [11] is the only bielliptic involution among the above
involutions.

Consider the involutions of types W3,W8,W24. By Proposition 1.2 and
Corollary 1.4, W24 cannot be a bielliptic involution. And W3 does not give
an involution on X1(24). Write W8 =

(
8 −3
24 −8

)
. Then W8 is an elliptic el-

ement and gives an involution. For any a prime to 24, a2 is congruent to
1 mod 24 so that [a]W8 ≡W8[a] mod Γ1(N). Thus, for such a, [a]W8 defines
an involution on X1(24). As in the proof of Lemma 3.2, there are at least
four fixed points of W8 in X1(24). We can choose a matrix [a] so that [a]W8

is an elliptic element for any a prime to 24. Thus each [a]W8 also has at
least four fixed points in X1(24). One can show that Proposition 1.3(4) is
also valid for W8. Thus we conclude that W8 has exactly four fixed points
and so it cannot be a bielliptic involution.

Summarizing the results of the last two sections, we obtain Theorem
0.1.

Remark 3.7. X1(N) is a bielliptic curve if and only if 2 ≤ g1(N) ≤ 6.

4. Quadratic points. Let K be a quadratic field over Q and E an
elliptic curve defined over K. Denote by Etors(K) the group of K-rational
torsion points of E. Then one has a complete description of Etors(K).

Theorem 4.1 ([Ka-Ma],[Ke-M1]). Etors(K) is isomorphic to one of the
following :

(i) Z/mZ with m ≤ 16, or m = 18,
(ii) Z/2Z× Z/2kZ with k ≤ 6,
(iii) Z/3Z× Z/3lZ with l ≤ 2,
(iv) Z/4Z× Z/4Z.
As a corollary we can state the following known result:

Theorem 4.2. The following are equivalent :

(a) N ≤ 18, N 6= 17.
(b) g1(N) ≤ 2.
(c) X1(N) is rational , elliptic or hyperelliptic.
(d) X1(N) has infinitely many quadratic points over Q.
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(e) X1(N) has quadratic points over Q that are not cusps.
(f) There exist infinitely many non-isomorphic elliptic curves E with

a primitive N -torsion point P such that E is defined over some quadratic
number field K (depending on E and P ) and P is K-rational.

(g) There exists at least one elliptic curve E defined over some quadratic
number field K with a K-rational , primitive N -torsion point.

Proof. (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(g) and (d)⇒(f)⇒(g) are clear, while
(g)⇒(a) follows from Theorem 4.1.

Remark 4.3. (1) Without the above theorem, our classification of biel-
liptic curves X1(N) shows that there are only finitely many N (essentially
N < 25) for which X1(N) can have infinitely many quadratic points over Q.

(2) 13, 16, 18 are the only values of N such that X1(N) is a bielliptic
curve admitting infinitely many quadratic points over Q.

(3) Since a curve X with g(X) ≥ 2 has infinitely many quadratic points
over Q if and only if X is a hyperelliptic curve or a bielliptic curve over Q
mapping to an elliptic curve E with positive rank, we deduce that all elliptic
curves over Q doubly covered by X1(N) (N = 17, 20, 21, 22, 24) have rank
zero.
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