On the integers not of the form $p+2^{a}+2^{b}$

by
Hao Pan (Nanjing)

1. Introduction. As early as 1849 , Polignac conjectured that every odd integer greater than 3 is the sum of a prime and a power of 2 . Of course, Polignac's conjecture is not true, since 127 is an evident counterexample. In 1934, Romanoff [11] proved that the sumset

$$
\left\{p+2^{b}: p \text { is prime, } b \in \mathbb{N}\right\}
$$

has positive lower density. In the other direction, van der Corput [2] proved that the set

$$
\left\{n \geq 1: n \text { is odd and not of the form } p+2^{b}\right\}
$$

also has positive lower density. In fact, with the help of covering congruences, Erdős [4] found that no positive integer n with $n \equiv 7629217(\bmod 11184810)$ is no representable as the sum of a prime and a power of 2 .

In [3], Crocker proved that there exist infinitely many odd positive integers x not of the form $p+2^{a}+2^{b}$. One key to Crocker's proof is the following observation: If $b-a=2^{s} t$ with $s \geq 0$ and $2 \nmid t$, then $2^{a}+2^{b} \equiv 0$ $\left(\bmod 2^{2^{s}}+1\right)$. Crocker also constructed a suitable covering system to deal with the case $a=b$. In [13], Sun and Le considered integers not of the form $p^{\alpha}+c\left(2^{a}+2^{b}\right)$. Subsequently, Yuan 15 proved that there exist infinitely many positive odd integers x not of the form $p^{\alpha}+c\left(2^{a}+2^{b}\right)$.

Let

$$
\begin{aligned}
\mathcal{N} & =\left\{n \geq 1: n \text { is odd and not of the form } p+2^{a}+2^{b}\right\} \\
\mathcal{N}_{*} & =\left\{n \geq 1: n \text { is odd and not of the form } p^{\alpha}+2^{a}+2^{b}\right\}
\end{aligned}
$$

Erdős asked whether $|\mathcal{N} \cap[1, x]| \gg x^{\epsilon}$ for some $\epsilon>0$. Granville and Soundararajan [6] mentioned that this is true under the assumption that there exist infinitely many $m_{1}<m_{2}<\cdots$ such that all $2^{2^{m_{i}}}+1$ are composite and $\left\{m_{i+1}-m_{i}\right\}$ is bounded. Erdős even suggested [7, A19] that

[^0]Key words and phrases: prime, power of 2 .
$|\mathcal{N} \cap[1, x]| \geq C x$ for a constant $C>0$, though it seems that the covering congruences could not help here. In [1], Chen, Feng and Templier proved that

$$
\limsup _{x \rightarrow \infty} \frac{\left|\mathcal{N}_{*} \cap[1, x]\right|}{x^{1 / 4}}=+\infty
$$

if there exist infinitely many m such that $2^{2^{m}}+1$ is composite, and

$$
\limsup _{x \rightarrow \infty} \frac{\left|\mathcal{N}_{*} \cap[1, x]\right|}{\sqrt{x}}>0
$$

if there are only finitely many m such that $2^{2^{m}}+1$ is prime. Recently, in his answer to a conjecture of Sun, Poonen [10] gave a heuristic argument which suggests that for each odd $k>0$,
$\mid\left\{1 \leq n \leq x: n\right.$ is odd and not of the form $\left.p+2^{a}+k \cdot 2^{b}\right\} \mid \gg_{k, \epsilon} x^{1-\epsilon}$
for any $\epsilon>0$, where $>_{k, \epsilon}$ means the implied constant only depends on k and ϵ.

On the other hand, using Selberg's sieve method, Tao [14] proved that for any $\mathcal{K} \geq 1$ and sufficiently large x, the number of primes $p \leq x$ such that $\left|k p \pm j a^{i}\right|$ is composite for all $1 \leq a, j, k \leq \mathcal{K}$ and $1 \leq i \leq \mathcal{K} \log x$, is at least $C_{\mathcal{K}} x / \log x$, where $C_{\mathcal{K}}$ is a constant only depending on \mathcal{K}. Motivated by Tao's idea, in this short note, we shall unconditionally prove

Theorem 1.1.

$$
\left|\mathcal{N}_{*} \cap[1, x]\right| \gg x \cdot \exp \left(-C \log x \cdot \frac{\log \log \log \log x}{\log \log \log x}\right),
$$

where $C>0$ is an absolute constant.
Clearly Theorem 1.1 implies $\left|\mathcal{N}_{*} \cap[1, x]\right| \gg_{\epsilon} x^{1-\epsilon}$ for any $\epsilon>0$. The proof of Theorem 1.1 will be given in the next section. Unless indicated otherwise, the constants implied by \ll, \gg and $O(\cdot)$ are always absolute.
2. Proof of Theorem 1.1. Since
$\mid\left\{1 \leq n \leq x: n\right.$ is of the form $p^{\alpha}+2^{a}+2^{b}$ with $\left.\alpha \geq 2\right\} \mid=O(\sqrt{x} \log x)$, we only need to show that

$$
|\mathcal{N} \cap[1, x]| \gg x \cdot \exp \left(-C \log x \cdot \frac{\log \log \log \log x}{\log \log \log x}\right) .
$$

We need several auxiliary lemmas. The first lemma is a special case of the Brun-Titchmarsh theorem (cf. [8, Theorem 3.7]).

Lemma 2.1. Suppose that $W \geq 1$ and β are integers with $(\beta, W)=1$. Then

$$
\mid\{1 \leq n \leq x: W n+\beta \text { is prime }\} \left\lvert\, \leq \frac{C_{1} x}{\log x} \prod_{p \mid W}\left(1-\frac{1}{p}\right)^{-1}\right.
$$

where C_{1} is an absolute constant.

The next lemma is an easy application of the Selberg sieve method (cf. [8, Theorems 3.2 and 4.1], [9, Theorem 7.1]).

Lemma 2.2. Suppose that x is a sufficiently large integer. Suppose that p_{1}, \ldots, p_{h} are distinct primes less than $x^{1 / 8}$. Then

$$
\mid\left\{1 \leq n \leq x: n \not \equiv 0\left(\bmod p_{j}\right) \text { for every } 1 \leq j \leq h\right\} \left\lvert\, \leq C_{2} x \prod_{j=1}^{h}\left(1-\frac{1}{p_{j}}\right)\right.
$$

where C_{2} is an absolute constant.
The third lemma is due to Ford, Luca and Shparlinski [5, Theorem 1].
Lemma 2.3. The series

$$
\sum_{n=1}^{\infty} \frac{(\log n)^{\gamma}}{P\left(2^{n}-1\right)}
$$

converges for any $\gamma<1 / 2$, where $P(n)$ denotes the largest prime factor of n.
Now we are ready to prove Theorem 1.1. Let

$$
C_{3}=\sum_{p \text { prime }} \frac{1}{P\left(2^{p}-1\right)}
$$

Suppose that x is sufficiently large. Let

$$
K=\left\lfloor\frac{\log \log \log x}{100 \log \log \log \log x}\right\rfloor
$$

and $L=\log \left(2^{9} C_{1} C_{2} K\right)+2 C_{3}$, where $\lfloor\theta\rfloor=\max \{z \in \mathbb{Z}: z \leq \theta\}$.
Let $u=e^{e^{K(L+1)}}$. By the Mertens theorem (cf. [9, Theorem 6.7]), we know that

$$
\sum_{\substack{p \leq u \\ p \text { prime }}} \frac{1}{p}=\log \log u+B+O\left(\frac{1}{\log u}\right)=K(L+1)+O(1)
$$

where $B=0.2614972 \ldots$ is a constant. So we may choose some distinct odd primes less than u,

$$
p_{1,1}, \ldots, p_{1, h_{1}} ; p_{2,1}, \ldots, p_{2, h_{2}} ; \ldots ; p_{K, 1}, \ldots, p_{K, h_{K}}
$$

such that

$$
\sum_{j=1}^{h_{i}} \frac{1}{p_{i, j}} \geq L
$$

for $1 \leq i \leq K$. Let $q_{i, j}=P\left(2^{p_{i, j}}-1\right)$ for $1 \leq i \leq K$ and $1 \leq j \leq h_{i}$. Clearly these $q_{i, j}$ are all distinct. Now,

$$
\sum_{j=1}^{h_{i}} \log \left(1-\frac{1}{p_{i, j}}\right) \leq-\sum_{j=1}^{h_{i}} \frac{1}{p_{i, j}}
$$

whence

$$
\prod_{j=1}^{h_{i}}\left(1-\frac{1}{p_{i, j}}\right) \leq e^{-L}
$$

Noting that $1+\theta \leq e^{\theta}$ for $\theta \geq 0$, we have

$$
\prod_{i=1}^{K} \prod_{j=1}^{h_{i}}\left(1-\frac{1}{q_{i, j}}\right)^{-1} \leq \prod_{i=1}^{K} \prod_{j=1}^{h_{i}}\left(1+\frac{2}{q_{i, j}}\right) \leq \exp \left(\sum_{i=1}^{K} \sum_{j=1}^{h_{i}} \frac{2}{q_{i, j}}\right) \leq e^{2 C_{3}}
$$

Let

$$
W_{1, i}=\prod_{j=1}^{h_{i}} q_{i, j} \quad \text { for } 1 \leq i \leq K, \quad W_{1}=\prod_{i=1}^{K} W_{1, i}
$$

Then

$$
W_{1} \leq 2^{\sum_{i=1}^{K} \sum_{j=1}^{h_{i}} p_{i, j}} \leq 2^{u^{2} / \log u}
$$

since (cf. [12])

$$
\sum_{\substack{p \leq u \\ p \text { prime }}} p=\left(\frac{1}{2}+o(1)\right) \frac{u^{2}}{\log u}
$$

Noting that for sufficiently large x,

$$
\frac{\log \log \log \left(2^{u^{2} / \log u}\right)}{\log \log \log \left(x^{1 / K}\right)} \leq \frac{2 K(L+1)}{\log (\log \log x-\log K)} \leq 1
$$

we have $W_{1} \leq x^{1 / K}$.
Let $m=\left\lfloor\log _{2} \log _{2}\left(x^{2 /(K-1)}\right)\right\rfloor$ and $K^{\prime}=1+\left\lfloor 2^{-m} \log _{2} x\right\rfloor$, where $\log _{2} x=$ $\log x / \log 2$. We have

$$
K^{\prime} \leq 1+\frac{\log _{2} x}{2^{m}} \leq 1+\frac{2 \log _{2} x}{2^{\log _{2} \log _{2}\left(x^{2 /(K-1)}\right)}}=1+\frac{2 \log _{2} x}{\frac{2}{K-1} \cdot \log _{2} x}=K
$$

For each $k \geq 0$, let γ_{k} be the smallest prime factor of $2^{2^{k}}+1$. Let

$$
W_{2}=\prod_{k=0}^{m-1} \gamma_{k}
$$

and $W=W_{1} W_{2}$. It is not difficult to see that $\left(W_{1}, W_{2}\right)=1$. Moreover,

$$
W \leq W_{1} \prod_{k=0}^{m-1}\left(1+2^{2^{k}}\right) \leq x^{1 / K} \cdot x^{2 /(K-1)} \leq x^{3 /(K-1)}
$$

Let β be an odd integer such that

$$
\beta \equiv 2^{2^{m}(i-1)}+1\left(\bmod \prod_{j=1}^{h_{i}} q_{i, j}\right) \quad \text { and } \quad \beta \equiv 0\left(\bmod \gamma_{k}\right)
$$

for $1 \leq i \leq K^{\prime}$ and $0 \leq k \leq m-1$.

Let

$$
\mathcal{S}=\{1 \leq n \leq x: n \equiv \beta(\bmod 2 W)\}
$$

Clearly,

$$
\frac{x}{2 W}-1 \leq|\mathcal{S}| \leq \frac{x}{2 W}+1
$$

Let

$$
\begin{aligned}
& \mathcal{T}_{1}=\left\{n \in \mathcal{S}: n \text { is of the form } p+2^{a}+2^{b} \text { with } p \mid W\right\} \\
& \mathcal{T}_{2}=\left\{n \in \mathcal{S} \backslash \mathcal{T}_{1}: n \text { is of the form } p+2^{a}+2^{b} \text { with } p \nmid W\right\}
\end{aligned}
$$

Clearly $\left|\mathcal{T}_{1}\right|=O\left(W(\log x)^{2}\right)$.
Suppose that $n \in \mathcal{S}$ and $n=p+2^{a}+2^{b}$ with p prime and $0 \leq a \leq b$. If $a \not \equiv b\left(\bmod 2^{m}\right)$, then $b=a+2^{s} t$ where $0 \leq s \leq m-1$ and $2 \nmid t$. Thus

$$
p=n-2^{a}\left(2^{2^{s} t}+1\right) \equiv \beta-2^{a}\left(2^{2^{s}}+1\right) \sum_{j=0}^{t-1}(-1)^{j} 2^{2^{s} j} \equiv 0\left(\bmod \gamma_{s}\right)
$$

Since p is prime, we must have $p=\gamma_{s}$, i.e., $n \in \mathcal{T}_{1}$.
Below we assume that $a \equiv b\left(\bmod 2^{m}\right)$. Write $b-a=2^{m}(t-1)$ where $1 \leq t \leq K^{\prime}$. If $a \equiv 0\left(\bmod p_{t, j}\right)$ for some $1 \leq j \leq h_{t}$, then recalling $2^{p_{t, j}} \equiv 1$ $\left(\bmod q_{t, j}\right)$, we have

$$
p=n-2^{a}\left(2^{2^{m}(t-1)}+1\right) \equiv \beta-\left(2^{2^{m}(t-1)}+1\right) \equiv 0\left(\bmod q_{t, j}\right)
$$

So $p=q_{t, j}$ and $n \in \mathcal{I}_{1}$. On the other hand, for any $a \geq 0$ satisfying $a \not \equiv 0$ $\left(\bmod p_{t, j}\right)$ for all $1 \leq j \leq h_{t}$, i.e., $\left(a, W_{1, t}\right)=1$, by Lemma 2.1, we have

$$
\begin{aligned}
& \mid\left\{n \in \mathcal{S}: n-2^{a}\left(2^{2^{m}(t-1)}+1\right) \text { is prime }\right\} \mid \\
& \quad \leq \frac{2 C_{1}|\mathcal{S}|}{\log |\mathcal{S}|} \prod_{k=0}^{m-1}\left(1-\frac{1}{\gamma_{k}}\right)^{-1} \prod_{i=1}^{K} \prod_{j=1}^{h_{i}}\left(1-\frac{1}{q_{i, j}}\right)^{-1} \leq \frac{2^{5} C_{1} e^{2 C_{3}}}{W} \cdot \frac{x}{\log x}
\end{aligned}
$$

since $\gamma_{k} \equiv 1\left(\bmod 2^{k+1}\right)$ and $\gamma_{k}>2^{k+1}$. Noting that

$$
\frac{\log \log u}{\log \log \left(\left(\log _{2} x\right)^{1 / 8}\right)} \leq \frac{K(L+1)}{\log (\log \log x-\log \log 2-\log 8)}<1
$$

we have $u<\left(\log _{2} x\right)^{1 / 8}$. By Lemma 2.2.

$$
\begin{aligned}
& \mid\left\{0 \leq a \leq \log _{2} x: a \not \equiv 0\left(\bmod p_{t, j}\right) \text { for all } 1 \leq j \leq h_{t}\right\} \mid \\
& \qquad C_{2} \frac{\log x}{\log 2} \prod_{j=1}^{h_{t}}\left(1-\frac{1}{p_{t, j}}\right) \leq 2 C_{2} e^{-L} \log x
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\mathcal{T}_{2}\right| & \leq \sum_{t=1}^{K^{\prime}} \sum_{\substack{0 \leq a \leq \log _{2} x \\
\left(a, W_{1, t}\right)=1}} \mid\left\{n \in \mathcal{S}: n-2^{a}\left(2^{2^{m}(t-1)}+1\right) \text { is prime }\right\} \mid \\
& \leq K \cdot \frac{2^{5} C_{1} e^{2 C_{3}}}{W} \cdot \frac{x}{\log x} \cdot 2 C_{2} e^{-L} \log x \leq \frac{x}{4 W}
\end{aligned}
$$

It follows that
$\mid\left\{n \in \mathcal{S}: n\right.$ is not of the form $\left.p+2^{a}+2^{b}\right\} \mid$

$$
=|\mathcal{S}|-\left|\mathcal{T}_{1}\right|-\left|\mathcal{T}_{2}\right| \geq \frac{x}{2 W}-1-O\left(W(\log x)^{2}\right)-\frac{x}{4 W} \gg x^{1-4 / K}
$$

The proof of Theorem 1.1 is complete.
REmark. Using a similar discussion, it is not difficult to prove that for any given $\mathcal{K} \geq 1$,
$\mid\left\{1 \leq n \leq x: n\right.$ is odd and $n \neq p+c\left(2^{a}+2^{b}\right)$ with p prime,

$$
\begin{array}{r}
a, b \geq 0,1 \leq c \leq \mathcal{K}\} \mid \\
>_{\mathcal{K}} x \cdot \exp \left(-C_{\mathcal{K}} \log x \cdot \frac{\log \log \log \log x}{\log \log \log x}\right),
\end{array}
$$

where the constant $C_{\mathcal{K}}>0$ only depends on \mathcal{K}.
Recently, Professor Y.-G. Chen asked the author the following question:
Are there infinitely many positive odd numbers which are not divisible by 3 and cannot be represented as $p+2^{a}+2^{b}$? Similar problems can be posed with 3 replaced by 5, 17 etc.

Acknowledgments. The author is grateful to the anonymous referee for his/her useful comments. The author also thanks Professors Yong-Gao Chen and Zhi-Wei Sun for helpful discussions on this paper.

The author is supported by National Natural Science Foundation of China (Grant No. 10901078).

References

[1] Y.-G. Chen, R. Feng and N. Templier, Fermat numbers and integers of the form $a^{k}+a^{l}+p^{\alpha}$, Acta Arith. 135 (2008), 51-61.
[2] J. G. van der Corput, On de Polignac's conjecture, Simon Stevin 27 (1950), 99-105.
[3] R. Crocker, On the sum of a prime and two powers of two, Pacific J. Math. 36 (1971), 103-107.
[4] P. Erdős, On integers of the form $2^{k}+p$ and some related problems, Summa Brasil. Math. 2 (1950), 113-123.
[5] K. Ford, F. Luca and I. E. Shparlinski, On the largest prime factor of the Mersenne numbers, Bull. Austral. Math. Soc. 79 (2009), 455-463.
[6] A. Granville and K. Soundararajan, A binary additive problem of Erdös and the order of $2 \bmod p^{2}$, Ramanujan J. 2 (1998), 283-298.
[7] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004.
[8] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monogr. 4, Academic Press, London, 1974.
[9] M. B. Nathanson, Additive Number Theory. The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996.
[10] B. Poonen, The 47 conjecture, 2009, http://listserv.nodak.edu/cgi-bin/wa.exe?A2 $=$ ind0903\& $\mathrm{L}=$ nmbrthry \& $\mathrm{T}=0 \& \mathrm{P}=1147$.
[11] N. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 109 (1934), 668-678.
[12] T. Salát and S. Znám, On sums of the prime powers, Acta Fac. Rer. Nat. Univ. Comenianae Math. 21 (1968), 21-25.
[13] Z.-W. Sun and M.-H. Le, Integers not of the form $c\left(2^{a}+2^{b}\right)+p^{\alpha}$, Acta Arith. 99 (2001), 183-190.
[14] T. Tao, A remark on primality testing and decimal expansions, J. Austral. Math. Soc., to appear.
[15] P. Z. Yuan, Integers not of the form $c\left(2^{a}+2^{b}\right)+p^{\alpha}$, Acta Arith. 115 (2004), 23-28.

Hao Pan

Department of Mathematics
Nanjing University
Nanjing 210093, People's Republic of China
E-mail: haopan79@yahoo.com.cn

[^0]: 2010 Mathematics Subject Classification: Primary 11P32; Secondary 11A07, 11B05, 11B25, 11N36.

