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1. Introduction. Let p ≥ 5 be a prime and E be an elliptic curve
defined over a finite field Fp of p elements given by an affine Weierstraß
equation

E : Y 2 = X3 + aX + b

with some a, b ∈ Fp (see [1, 3, 23]).
We recall that the set of all points on E forms an abelian group, with

the “point at infinity” O as the neutral element, and we use ⊕ to denote
the group operation. As usual, we write every point P 6= O on E as P =
(x(P ), y(P )).

Let E(Fp) denote the set of Fp-rational points on E. We recall that the
celebrated result of Bombieri [4] implies in particular an estimate of order
p1/2 for exponential sums with functions from the function field of E taken
over all points of E(Fp). More recently, various character sums over points
of elliptic curves have been considered in a number of papers (see [2, 7, 10,
11, 14, 15, 16, 18, 20]) and references therein; many of these estimates are
motivated by applications to pseudorandom number generators on elliptic
curves [19].

Let Z∗m denote the unit group of the residue ring Zm modulo a positive
integer m. We also denote

e(z) = exp(2πiz) and em(z) = e(z/m).

We fix a point P ∈ E(Fp) of order t and a rational function H ∈ Z(X)
of the form

(1) H(X) = b1X
e1 + · · ·+ bdX

ed ,

where b1, . . . , bd, e1, . . . , ed ∈ Z. We consider the character sums

S(a,H) =
∑

n∈Zt\{0}

ep(ax(nP ))et(H(n))
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if all exponents e1, . . . , ed are positive and

S∗(a,H) =
∑
n∈Z∗t

ep(ax(nP ))et(H(n))

for arbitrary exponents e1, . . . , ed, where Z∗t is the group of units of the
residue ring Zt modulo t.

Certainly if d = 1, e1 = −1 then the sum

(2)
∑
n∈Z∗t

ep(ax(nP ))et(bn−1) =
∑
n∈Z∗t

ep(ax(n−1P ))et(bn),

resembles the classical Kloosterman sums (see [13]). We use the method
of [6, 21] to derive nontrivial estimates of these sums provided that t ≥ p1/2+ε

for some fixed ε > 0.
Furthermore, for the sums S(a, F ), in the case where F (X) ∈ Z[X] is a

polynomial and also for the sums

T (a, f ;N) =
N∑
n=1

ep(ax(nP ))e(f(n))

with a polynomial f(X) ∈ R[X] and an integer N < t, we use a different
method to obtain estimates of a different type.

Note that if F (X) = bX is a linear polynomial then [14, Corollary 1]
yields the bound

(3) S(a, F ) = O(p1/2).

Moreover, in the case of linear polynomials f(X) = βX the sums T (a, f ;N)
have been estimated in [18] as

(4) T (a, f ;N) = O(N1/2p1/4).

We use the bounds (3) and (4) as the bases of our inductive arguments
which extend them to polynomials of arbitrary degree.

The sums S(a,H), S∗(a,H) and T (a, f ;N) are analogues of several sums
considered in [6, 21, 22] over elements of cyclic subgroups of F∗p instead of
cyclic subgroups of E(Fp), as in the present work. We also remark that
taking k = 4, l = 8 in [21, Theorem 3.1] (instead of k = 3, l = 4 as in [21]),
one improves the exponent in [21, bound (1)] from 239/240 to 127/128. More
precisely, with the choice k = 4, l = 8 we see that [21, Theorem 3.1] implies
the bound

max
a∈F∗p

max
b∈Zt

∣∣∣∑
n∈Z∗t

ep(ag1/n)et(bn)
∣∣∣ ≤ t127/128+o(1),

where g ∈ F∗p is of multiplicative order t = p1+o(1) (for example, a primitive
root).
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Finally we note that general estimates of “pure” exponential sums with
monomial rational functions of the type (1) have been derived in [17] (see (10)
below), which we actually also use as a part of our argument, see Lemma 5.
In some special cases, more precise estimates than (10) are given in [5, 9].

Some of our results (those which are based on [15]) apply only to ordinary
(or nonsupersingular) curves, some apply to arbitrary curves (see [1, 3, 23]
for definitions of ordinary and supersingular elliptic curves).

Throughout the paper, the implied constants in the symbols “O” and
“�” may occasionally depend on the exponents e1, . . . , ed and the integer
parameters k, l, s, and are absolute otherwise (we recall that U � V and
U = O(V ) are both equivalent to the inequality |U | ≤ cV with some constant
c > 0).

2. Preliminaries

2.1. Exponential sums over elliptic curves. In one of our main
results we need to estimate exponential sums with multiples of a point P
on an elliptic curve. The following result gives us an upper bound for this
kind of exponential sums (see [15, Corollary 5]), which is the main tool in
our results.

Lemma 1. Let E be an ordinary curve defined over Fp. For any integers
1 ≤ u1 < · · · < us ≤ U and elements c1, . . . , cs ∈ Fp with cs 6= 0, the
following bound holds:∑

R∈H
R 6=O

ep
( s∑
i=1

cix(uiR)
)
� U2p1/2,

where H is an arbitrary subgroup of E(Fp) of order t = #H such that
gcd(t, u1, . . . , us) = 1.

In order to estimate exponential sums with rational functions in the
function field of an elliptic curve E we use the following bound from [14],
which in turn is a generalization of the classical bound of [4].

Lemma 2. For any point P ∈ E(Fp) of order t, for any integer b and for
any rational function ψ(X,Y ) ∈ Fp(X,Y ) of degree d, which is not constant
on E, the bound ∑∗

n∈Zt

ep(ψ(nP ))et(bn) = O(p1/2)

holds, where
∑∗ means that the poles of ψ(X,Y ) are excluded from the

summation.

Let f be any rational function in Fp(X,Y ) which is not constant on E
and let Q be a generic point on E. For a = (a1, . . . , as) ∈ Fsp and W =
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(W1, . . . ,Ws) ∈ Es we consider the function

La,W(Q) =
s∑
j=1

ajx(Wj ⊕Q)

as a function in the function field Fp(E).
We use Lemma 2 in combination with the following special case of [12,

Lemma 1].

Lemma 3. For any nonzero vector a = (a1, . . . , as) ∈ Fsp, and for any
vector W = (W1, . . . ,Ws) ∈ Es with Wi 6= Wj, 1 ≤ i < j ≤ s, the function
La,W(Q) is not constant on E.

2.2. Symmetric systems of congruences. Our estimates depend on
upper bounds on the number of solutions of some systems of symmetric
congruences.

Let e = (e1, . . . , ed) ∈ Zd. If all exponents e1, . . . , ed are nonnegative,
then we denote by Nk(e; t) the number of solutions of the symmetric system
of congruences

2k∑
j=1

(−1)jnei
j ≡ 0 (mod t), i = 1, . . . , d,

with n1, . . . , n2k ∈ Zt. Furthermore, for arbitrary nonzero exponents
e1, . . . , ed, we denote by N∗k (e; t) the number of solutions of the same system
of congruences with variables n1, . . . , n2k ∈ Z∗t .

Clearly we have the trivial bounds

(5) N∗k (e; t)� t2k−1 and Nk(e; t)� t2k−1,

which are the best possible if d = 1 (and certainly we have N∗k (e; t) ≤
Nk(e; t) whenNk(e; t) is defined). However, for t with a small square-full part
a much better bound follows by a slight modification of a result of [8, 24].

Lemma 4. Assume that t→∞ over a sequence of integers such that for
the largest square divisor v2 | t we have v = to(1). If the components of the
vector e = (e1, . . . , ed) are pairwise distinct positive integers, then for k ≥ d
we have

N∗k (e; t) ≤ Nk(e; t) ≤ t2k−d+o(1).

Proof. First of all we recall that if t = q is prime then by [8, Lemma 3.1]
or [24, Theorem 1.2] we have

(6) Nd(e; q) ≤ Eqd

where E depends only on e.
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We recall that for any integer m ≥ 1 we have the identity

1
m

∑
r∈Zm

em(rv) =
{

1 if v ≡ 0 (mod m),
0 if v 6≡ 0 (mod m).

Therefore, for any integers h1, . . . , hd, the number of solutions to the system
of congruences

(7)
2d∑
j=1

(−1)jnei
j ≡ hi (mod q), i = 1, . . . , d,

can be written as

1
qd

∑
n1,...,n2d∈Zq

d∏
i=1

∑
ri∈Zq

eq
(
ri

( 2d∑
j=1

(−1)jnei
j − hi

))

=
1
qd

∑
r1,...,rd∈Zq

eq
(
−

d∑
i=1

rihi

) 2d∏
j=1

∑
nj∈Zq

eq
(

(−1)j
d∑
i=1

rin
ei
j

)

=
1
qd

∑
r1,...,rd∈Zq

eq
(
−

d∑
i=1

rihi

)∣∣∣∑
n∈Zq

eq
( d∑
i=1

rin
ei

)∣∣∣2d.
Since

1
qd

∑
r1,...,rd∈Zq

eq
(
−

d∑
i=1

rihi

)∣∣∣∑
n∈Zq

eq
( d∑
i=1

rin
ei

)∣∣∣2d
≤ 1
qd

∑
r1,...,rd∈Zq

∣∣∣∑
n∈Zq

eq
( d∑
i=1

rin
ei

)∣∣∣2d = Nd(e; q),

we see from (6) that for any h1, . . . , hd the system of congruences (7) has at
most Eqd solutions. This immediately implies that for k ≥ d we have

(8) Nk(e; q) ≤ Eq2k−d.

We now write t = uv2 where u is square-free. Since by the Chinese
Remainder Theorem Nk(e; t) is a multiplicative function of t, we see that

Nk(e; t) ≤ (t/u)2kNk(e;u) = (t/u)2k
∏
q|u

q prime

Nk(e; q).

Using (8) and the well-known estimate for the number ω(t) of prime divisors
of t:

(9) ω(t) ≤ (1 + o(1))
log t

log log t
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(which follows immediately from the trivial inequalities ω(u)! ≤ u and s! ≥
(s/2)(s−1)/2), we now derive

Nk(e; t) ≤ (t/u)2kNk(e;u) ≤ (t/u)2kEω(u)u2k−d

≤ (t/u)2kEω(t)u2k−d = t2k+o(1)u−d = t2k−d+o(1)v2d.

Since v = to(1), the result follows.

We now show that if d ≥ 2 then for N∗k (e; t) one can obtain an im-
provement of (5) by using the bound of exponential sums with monomial
rational functions from [17]. Our main tool is the bound

(10)
∑
n∈Z∗t

et(r1ne1 + · · ·+ rdn
ed)� t1−1/d+o(1)D1/d

uniformly over integers r1, . . . , rd with gcd(r1, . . . , rd, t) = D, which follows
from [17, Lemma 5] and the multiplicative property of exponential sums
(see [13, equation (12.21)] or [17, Lemma 6]).

Lemma 5. If the components of the vector e = (e1, . . . , ed) are pairwise
distinct nonzero integers, then for any k ≥ 1 and d ≥ 2 we have

N∗k (e; t) ≤
{
t2k−1−(2k−2)/d+o(1), k < d(d− 1)/2 + 1,
t2k−d+o(1), k ≥ d(d− 1)/2 + 1.

Proof. As in the proof of Lemma 4, we have

N∗k (e; t) =
1
td

∑
r1,...,rd∈Zt

∣∣∣∑
n∈Z∗t

et
( d∑
i=1

rin
ei

)∣∣∣2k.
Now for each D | t we collect together the terms with the same value of
gcd(r1, . . . , rd, t) = D, getting

(11) N∗k (e; t) =
1
td

∑
D|t

σD,

where

σD =
∑

r1,...,rd∈Zt

gcd(r1,...,rd,t)=D

∣∣∣∑
n∈Z∗t

et
( d∑
i=1

rin
ei

)∣∣∣2k.
We now write

σD =
∑

r1,...,rd∈Zt

gcd(r1,...,rd,t)=D

∣∣∣∑
n∈Z∗t

et
( d∑
i=1

rin
ei

)∣∣∣2k−2∣∣∣∑
n∈Z∗t

et
( d∑
i=1

rin
ei

)∣∣∣2
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and apply (10), getting

σD ≤ (t1−1/d+o(1)D1/d)2k−2
∑

r1,...,rd∈Zt

gcd(r1,...,rd,t)=D

∣∣∣∑
n∈Z∗t

et
( d∑
i=1

rin
ei

)∣∣∣2.
Writing ri = siD, 0 ≤ si < t/D, i = 1, . . . , d (and discarding the condition
gcd(r1, . . . , rd, t) = D), we obtain

σD ≤ (t1−1/d+o(1)D1/d)2k−2
∑

s1,...,sd∈Zt/D

∣∣∣∑
n∈Z∗t

et/D
( d∑
i=1

sin
ei

)∣∣∣2(12)

= (t1−1/d+o(1)D1/d)2k−2(t/D)dW,

where W is the number of solutions to the system of congruences

nei ≡ mei (mod t/D), i = 1, . . . , d,

with n,m ∈ Z∗t . Clearly for every n there are O(D) possibilities for m, thus
W � Dt. Substituting this bound in (12) we derive

σD � td+2k−1−(2k−2)/d+o(1)D−d+(2k−2)/d+1.

Returning to (11) we obtain the estimate

N∗k (e; t) ≤ t2k−1−(2k−2)/d+o(1)
∑
D|t

D−d+(2k−2)/d+1

≤ t2k−1−(2k−2)/d+o(1) max{1, t−d+(2k−2)/d+1}
∑
D|t

1.

Using the well-known estimate ∑
D|t

1 = to(1),

we derive the desired result.

We note that even if all exponents e1, . . . , ed are positive integers, the
bound (10) cannot be extended to the sums over the whole ring Zt. For the
same reason, no analogue of Lemma 5 is possible for Nk(e; t).

3. Main results

3.1. Exponential sums twisted by monomial rational functions.
Following the approach of [6, 21], we obtain the following estimate for the
sum S(a,H).

Theorem 6. Let E be an ordinary curve defined over Fp and let P ∈ E
be of order t. Then for any d ≥ 1 fixed pairwise distinct positive inte-
gers e1, . . . , ed and for any integers k, l ≥ 2, uniformly over a ∈ F∗p and
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b1, . . . , bd ∈ Z, we have the bound

|S(a,H)| ≤ t1−2αk,l+βd,k,lpαk,l+o(1),

where the polynomial H is given by (1) and

αk,l =
1

4(4k + l)
and βd,k,l =

2(d− 1)l + 1
4kl

.

Proof. Clearly, we can assume that

(13) t ≥ p1/2(log p)2

as otherwise the bound is trivial.
For any integer k ≥ 2 we have

S(a,H)k =
t−1∑

n1,...,nk=1

ep
(
a

k∑
j=1

x(njP )
)
et
( k∑
j=1

H(nj)
)
.

For each vector (m1, . . . ,md) ∈ Zdt , we collect together the terms with nei
1 +

· · ·+ nei
k ≡ mi (mod t), i = 1, . . . , d. Then we obtain

S(a,H)k =
∑

m1,...,md∈Zt

et(b1m1 + · · ·+ bdmd)

×
t−1∑

n1,...,nk=1
n

ei
1 +···+nei

k ≡mi (mod t)
i=1,...,d

ep
(
a

k∑
j=1

x(njP )
)
,

and thus

|S(a,H)|k ≤
∑

m1,...,md∈Zt

∣∣∣ t−1∑
n1,...,nk=1

n
ei
1 +···+nei

k ≡mi (mod t)
i=1,...,d

ep
(
a

k∑
j=1

x(njP )
)∣∣∣.

We now apply the Cauchy inequality and derive

|S(a,H)|2k ≤ td
∑

m1,...,md∈Zt

∣∣∣ t−1∑
n1,...,nk=1

n
ei
1 +···+nei

k ≡mi (mod t)
i=1,...,d

ep
(
a

k∑
j=1

x(njP )
)∣∣∣2

= td
∑

(n1,...,n2k)∈Nk

ep
(
a

2k∑
j=1

(−1)jx(njP )
)
,

where the outside summation is taken over the set of vectors

Nk = {(n1, . . . , n2k) ∈ (Zt \ {0})2k :
nei

1 + · · ·+ nei
2k−1 ≡ n

ei
2 + · · ·+ nei

2k (mod t), i = 1, . . . , d}.
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We note that for any m with gcd(m, t) = 1 we have

(14)
∑

(n1,...,n2k)∈Nk

ep
(
a

2k∑
j=1

(−1)jx(njP )
)

=
∑

(n1,...,n2k)∈Nk

ep
(
a

2k∑
j=1

(−1)jx(mnjP )
)
.

Let the integer Q be such that

(15) Q ≥ 2 log t

and define
Q = {q ≤ Q : q prime, gcd(q, t) = 1}.

Averaging over all q ∈ Q and changing the order of summation we obtain

|S(a,H)|2k ≤ td

#Q
∑

(n1,...,n2k)∈Nk

∣∣∣∑
q∈Q

ep
(
a

2k∑
j=1

(−1)jx(qnjP )
)∣∣∣.

We remark that #Nk ≤ ϕ(t)2k−1 ≤ t2k−1, where ϕ(t) is the Euler function.
Moreover, recalling (9), by the prime number theorem and (15), we see that

#Q ≥ (1 + o(1))
Q

logQ
− (1 + o(1))

log t
log log t

≥ 0.4
Q

logQ

for a sufficiently large Q.
We now apply the Hölder inequality and then extend the summation

over all integers 1 ≤ n1, . . . , n2k ≤ t− 1. Then we obtain

|S(a,H)|4kl ≤ t2dl

#Q2l
(#Nk)2l−1

∑
(n1,...,n2k)∈Nk

∣∣∣∑
q∈Q

ep
(
a

2k∑
j=1

(−1)jx(qnjP )
)∣∣∣2l

≤ t2dl

#Q2l
(#Nk)2l−1

t−1∑
n1,...,n2k=1

∣∣∣∑
q∈Q

ep
(
a

2k∑
j=1

(−1)jx(qnjP )
)∣∣∣2l

=
t2dl

#Q2l
(#Nk)2l−1

×
t−1∑

n1,...,n2k=1

∑
q1,...,q2l∈Q

ep
(
a

2k∑
j=1

2l∑
h=1

(−1)j+hx(qhnjP )
)

=
t2dl

#Q2l
(#Nk)2l−1

∑
q1,...,q2l∈Q

∣∣∣ t−1∑
n=1

ep
(
a

2l∑
h=1

(−1)hx(qhnP )
)∣∣∣2k.
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We now write the inner sum as
t−1∑
n=1

ep
(
a

2l∑
h=1

(−1)hx(qh(nP ))
)

=
∑
R∈H
R 6=O

ep
(
a

2l∑
h=1

(−1)hx(qhR)
)
,

where H = {nP : n = 1, . . . , t}.
For O((#Q)l) = O(Ql(logQ)−l) tuples (q1, . . . , q2l) ∈ Q2l such that the

tuple of the elements on the odd positions (q1, . . . , q2l−1) is a permutation
of the tuple of the elements on the even positions (q2, . . . , q2l) we estimate
the inner sum trivially by t.

For the rest of O((#Q)2l) = O(Q2l(logQ)−2l) tuples, we apply Lemma 1
and estimate the inner sum by O(Q2p1/2).

Putting all together, we get

|S(a,H)|4kl� t2dl(logQ)2l

Q2l
(#Nk)2l−1(Ql(logQ)−lt2k +Q2l+4k(logQ)−2lpk)

= t2dl(#Nk)2l−1(Q−l(logQ)lt2k +Q4kpk).

Taking
Q = d2t2k/(4k+l)p−k/(4k+l)(log p)l/(4k+l)e

and recalling (13) for which (15) is satisfied, we derive

(16) |S(a,H)|4kl � t2dl+8k2/(4k+l)(#Nk)2l−1pkl/(4k+l)(log p)4kl/(4k+l).

Using the trivial bound (5), after simple calculations we conclude the proof.

Clearly, as for any m with gcd(m, t) = 1 we have a full analogue of (14)
with

(17) N ∗k = {(n1, . . . , n2k) ∈ (Z∗t )2k :
nei

1 + · · ·+ nei
2k−1 ≡ n

ei
2 + · · ·+ nei

2k (mod t), i = 1, . . . , d}

instead of Nk, the proof of Theorem 6 also applies to the sums S∗(a,H). In
particular, for d = 1, for example for the sums (2), and points P of order of
the largest possible magnitude t = p1+o(1) with k = 4 and l = 16 the bound
of Theorem 6 becomes

|S(a,H)|, |S∗(a,H)| ≤ t255/256+o(1).

However, for d ≥ 2, using Lemma 5 instead of (5) we obtain a stronger
result, but only for the sums S∗(a,H).

Theorem 7. Let E be an ordinary curve defined over Fp and let P ∈ E
be of order t. Then for any d ≥ 1 fixed pairwise distinct positive inte-
gers e1, . . . , ed and for any integers k, l ≥ 2, uniformly over a ∈ F∗p and
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b1, . . . , bd ∈ Z, we have the bounds

|S∗(a,H)| ≤
{
t1−2αk,l+γd,k,lpαk,l+o(1), k < d(d− 1)/2 + 1,
t1−2αk,l+δd,k,lpαk,l+o(1), k ≥ d(d− 1)/2 + 1,

where the rational function H is given by (1) and

αk,l =
1

4(4k + l)
, γd,k,l =

2d2l − (2l − 1)(2k − 2 + d)
4kld

and

δd,k,l =
d

4kl
.

For d ≥ 2 and “almost” square-free integers, using the bound of Lemma 4
in the estimate (16), we derive:

Theorem 8. Assume that t→∞ over a sequence of integers such that
for the largest square divisor v2 | t we have v = to(1). Let E be an ordinary
curve defined over Fp and let P ∈ E be of order t. Then for any fixed integers
k ≥ d ≥ 2 and l ≥ 2, uniformly over a ∈ F∗p and b1, . . . , bd ∈ Z, we have the
bounds

|S(a,H)| ≤ t1−2αk,l+δd,k,lpαk,l+o(1)

for any fixed pairwise distinct positive integers e1, . . . , ed, and

|S∗(a,H)| ≤ t1−2αk,l+δd,k,lpαk,l+o(1)

for any fixed pairwise distinct nonzero integers e1, . . . , ed, where the rational
function H is given by (1) and

αk,l =
1

4(4k + l)
and δd,k,l =

d

4kl
.

Clearly, almost all (in the sense of asymptotic density) integers t satisfy
the conditions of Theorem 8.

3.2. Exponential sums twisted by rational polynomials. Here
we estimate the sums S(a, F ) with F ∈ Z[X] and we use the inductive
argument on the degree of F . For this we define and estimate the more
general exponential sums

Sr(a,W, F ) =
t∑∗

n=1

ep
( r∑
j=1

ajx(nP ⊕Wj)
)
et(F (n)),

where a = (a1, . . . , ar) ∈ Frp, W = (W1, . . . ,Wr) ∈ Er with Wi 6= Wj

for i 6= j, and, as before,
∑∗ means that the poles of the function in the

exponent are excluded from the summation.
We have the following estimate for the sums Sr(a,W, F ):
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Theorem 9. Let F ∈ Z[X] be a polynomial of degree d ≥ 1. Then for
any vector W = (W1, . . . ,Wr) ∈ Er with Wi 6= Wj, 1 ≤ i < j ≤ r, and for
any nonzero vector a = (a1, . . . , ar) ∈ Frp we have

Sr(a,W, F )� t1−1/2d−1
p1/2d

.

Proof. We proceed by induction on the degree d of the polynomial F .
When d = 1, the polynomial F (X) = bX with b ∈ Z is linear and thus
Lemmas 2 and 3 imply that

Sr(a,W, F )� p1/2.

We assume that d ≥ 2 and that the result holds for polynomials of degree
d− 1, d ≥ 1, and we prove it for d. We have

|Sr(a,W, F )|2 =
t∑

m=1

t∑∗

n=1

ep
( r∑
j=1

aj(x(nP ⊕Wj)− x(mP ⊕Wj))
)

× et(F (n)− F (m)).

Replacing n with n+m, we obtain

|Sr(a,W, F )|2

=
t∑

n=1

t∑∗

m=1

ep
( r∑
j=1

aj(x(nP⊕mP⊕Wj)−x(mP⊕Wj))
)
et(F (n+m)−F (m))

=
t∑

n=1

t∑∗

m=1

ep
( r∑
j=1

aj(x(nP ⊕mP ⊕Wj)− x(mP ⊕Wj))
)
et(Gn(m)),

where Gn(X) = F (X + n)− F (X) ∈ Z[X], n = 1, . . . , t.
We note that Gn, n = 1, . . . , t, is a polynomial of degree d− 1, and thus,

in the case when the points

(18) nP ⊕W1, . . . , nP ⊕Wr,W1, . . . ,Wr

are pairwise distinct, the induction hypothesis applies and gives the bound
O(t2−1/2d−2

p1/2d−1
) on the inner sum over m.

Clearly, since Wi 6= Wj , 1 ≤ i < j ≤ r, the points (18) are pairwise
distinct for all but at most r2 values of n = 1, . . . , t for which nP = Wi−Wj .
In this case we use the trivial bound t for the sum over m. Putting everything
together, we get

|Sr(a,W, F )|2 � t2−1/2d−2
p1/2d−1

+ t� t2−1/2d−2
p1/2d−1

,

from which the desired result follows.

We remark that although for polynomials of high degree the bounds of
Theorems 6 and 7 are stronger, for polynomials of small degree Theorem 9
is sharper.
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3.3. Exponential sums twisted by real polynomials. As before,
to estimate the sums T (a, f ;N) with f ∈ R[X] we use the inductive argu-
ment on the degree of f . For this we define and estimate the more general
exponential sum

Tr(a,W, f,N) =
N∑∗

n=1

ep
( r∑
j=1

ajx(nP ⊕Wj)
)
e(f(n)),

that can be of independent interest, where a = (a1, . . . , ar) ∈ Frp, W =
(W1, . . . ,Wr) ∈ Er with Wi 6= Wj for i 6= j, and, as before,

∑∗ means that
the poles of the function in the exponent are excluded from the summation.

We have the following estimate for the sums Tr(a,W, f,N):

Theorem 10. Let f ∈ R[X] be a polynomial of degree d ≥ 1. Then for
any vector W = (W1, . . . ,Wr) ∈ Er with Wi 6= Wj, 1 ≤ i < j ≤ r, for any
nonzero vector a = (a1, . . . , ar) ∈ Frp and for any positive integer N < t, we
have

Tr(a,W, f,N)� N1−1/2d
p1/2d+1

.

Proof. As in the proof of Theorem 9, we use induction on the degree d
of the polynomial f .

When d = 1, we use the bound (4) as the basis of our induction.
We assume that d ≥ 2 and that the result holds for polynomials of degree

d− 1, d ≥ 1, and we prove it for d. For any integer k ≥ 0, we see that

Tr(a,W, f,N) =
N∑∗

n=1

ep
( r∑
j=1

ajx((n+ k)P ⊕Wj)
)
e(f(n+ k)) +O(k).

Therefore, for any integer K ≥ 1, we have

Tr(a,W, f,N) =
1
K
W +O(K),

where

W =
K−1∑
k=0

N∑∗

n=1

ep
( r∑
j=1

ajx((n+ k)P ⊕Wj)
)
e(f(n+ k)).

Changing the order of summation and using the Cauchy inequality, we derive

|W |2 ≤ N
K−1∑
k,m=0

N∑∗

n=1

ep
( r∑
j=1

aj(x((n+ k)P ⊕Wj)− x((n+m)P ⊕Wj))
)

× e(f(n+ k)− f(n+m)).

In the case when the points

(19) kP ⊕W1, . . . , kP ⊕Wr,mP ⊕W1, . . . ,mP ⊕Wr
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are pairwise distinct for any i, j, we apply the induction hypothesis and get
the bound O(K2N2−1/2d−1

p1/2d
) on the inner sum over n.

Clearly, since Wi 6= Wj , 1 ≤ i ≤ j < r, the points (19) are pairwise
distinct for all but at most Kr2 pairs (k,m) with k,m = 0, . . . ,K − 1 for
which kP = mP ⊕Wi	Wj . In this case we use the trivial bound N for the
sum over n. Putting everything together, we have

(20) Tr(a,W, f,N)� N1−1/2d
p1/2d+1

+K−1/2N +K.

Taking K = dN2/3e and noting that then the first term in (20) always
dominates, we get the desired result.

4. Comments. The method of this paper applies to several other sums
of similar flavour such as

V (a,H) =
∑
n∈Zt

ep(agn)et(H(n)),

V ∗(a,H) =
∑
n∈Z∗t

ep(agn)et(H(n))

with g ∈ F∗p of multiplicative order t and a polynomial or rational function
H of the type (1). It also applies to the sums

U(a, f,N) =
∑
n∈Zt

ep(agn)e(f(n))

with a real polynomial f(X) ∈ R[X], just generalizing some estimates
of [6, 21, 22]. In particular, using the Weil bound (see [13, bound (12.23)]),
instead of Lemma 1, for the sums V (a,H) and V ∗(a,H), one can obtain full
analogies of Theorems 6, 7 and 8 with

α̃k,l =
1

4(2k + l)
instead of αk,l and the same values of βd,k,l, γd,k,l and δd,k,l. The sums
U(a, f,N) can also be estimated using the inductive argument of the proofs
of Theorems 9 and 10.

Our approach also applies to the sums∑
n∈Z∗t

ep(ax(nP ))χ(n) and
∑
n∈Z∗t

ep(ax(nP ))em(bgn),

where χ is a multiplicative character modulo t and g is an element of order
t modulo some integer m ≥ 1. It should also be possible to replace the
x(Q) with more general functions from the function field of E. However,
extensions to arbitrary finite fields may take more effort; in particular, one
needs an appropriate analogue of Lemma 3 for the trace of La,W(Q) (see [12,
Section 4] for a discussion of this issue).
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Furthermore, estimating the sums S(a,H) with an arbitrary rational
function H(X) ∈ Z(X) and also sums of the form∑

n∈Zt
F (n) 6≡0 (mod t)

ep(ax(F (n)P )) and
∑
n∈Z∗t

ep(ax(n−1P ))em(bgn),

where F (X) ∈ Z[X] and g is an element of order t modulo an integer m ≥ 1,
is certainly of interest but seems to require some new ideas.
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