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1. Introduction. For a prime p and an integer a € Z we denote by
N(p;a) the number of solutions to the congruence

(1) z¥=a (modp), 1<z<p-1.

Obviously only the case of ged(a,p) =1 is of interest.

We note that other than the results of Crocker [3] and Somer [10] show-
ing that there are at least |\/(p — 1)/2] and at most 3p/4 + O(p*/>+°(M)),
respectively, incongruent values of % (mod p) when 1 < z < p—1, little has
been known about the solutions to . The function z — z% (mod p) is also
used in some cryptographic protocols (see [9), Sections 11.70 and 11.71]), so
certainly deserves further investigation; see also [8] for various conjectures
concerning this function. We note that the function z* is periodic modulo
p with period p(p — 1), which is much larger than the range of x in the
congruence and which explains why it is so difficult to study.

Here we suggest several approaches to studying this congruence and
derive some upper bounds for N(p;a).

Our first bound is nontrivial if a is of small multiplicative order, which
in the particular case when a = 1, takes the form N(p;a) < p'/3+o(}) as
p — o0. The second bound is nontrivial if @ is of large multiplicative order,
which in the particular case when a is a primitive root modulo p, takes the
form N(p;a) < pt/12+e() a5 p — co.

Furthermore, both bounds combined imply that as p — oo, we have the
uniform estimate

(2) N(p;a) < pt¥/13+e),

2010 Mathematics Subject Classification: Primary 11B50.
Key words and phrases: congruences, sum-product problem.

DOI: 10.4064/aa148-1-7 [93] © Instytut Matematyczny PAN, 2011



94 A. Balog et al.

Finally, we estimate the number of solutions M (p) to the symmetric
congruence

(3) ¥ =y¥ (mod p), 1<wzy<p-—1,
which has been considered by Holden & Moree [§] in their study of short
cycles in the iterations of the discrete logarithm modulo p (see also [6, [7]).

However, no nontrivial estimate of M (p) has been known prior to this work.
Clearly

p—1
(4) M(p) =) N(p;a)®.
a=1

Thus using the bound and the identity

p—1
(5) > N(pja)=p-—1,
a=1

we immediately derive

(6) M(p) < p25/13+0(1).

However here we obtain a slightly stronger bound, namely
M(p) < p/H0,

Surprisingly enough, besides elementary number theory arguments, the
bounds derived here rely on some results and arguments from additive com-
binatorics, in particular on results of Garaev [4].

For an integer m > 1 we use Z,, to denote the residue ring modulo m
and we use Z, to denote the unit group of Z,,.

Note that without the condition 1 < z < p — 1 (needed in the crypto-
graphic application) there are always many solutions. Let g be a primitive
root modulo p. For any element a € Z; (and so for any integer a # 0 (mod p))
we use ind a for its discrete logarithm modulo p, that is, the unique residue
class v modulo p — 1 with

U

g’ = a (mod p).
Now, if for a primitive root g we have
z =pinda — (p—1)g (mod p(p — 1)),
then
2 = gpinda—(p—l)g = (gp)inda . (g—g)p—l =a (mod p)‘

2. Elements of small order. We need to recall some notions and
results from additive combinatorics.
For a prime p and a set A C Z, we define the sets

A+ A={a1+az:a1,a2 € A}, A-A={ajaz:a1,a2 € A}.
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Our bound on N(p;a) makes use of the following estimate of Garaev [4,
Theorem 1].

LEMMA 1. For any set A C Zj,

A 4
AL A) (A A) > min{p#A, (#p ) }
Let ord a denote the multiplicative order of a € Z,.
THEOREM 2. Uniformly over t|p— 1, we have, as p — o0,

Z N(p;a) < max{t, p"/?t"/*}p°M).

a€’Zy
ordalt

Proof. Fix a primitive root ¢ mod p. The union of the nonzero residue
classes x satisfying with ord a |t is precisely the set of solutions to

(7) =1 (modp), 1<z<p-1.
This congruence is equivalent to
trindz =0 (mod p — 1),

or if we put

to
zindz =0 (mod T),

or after fixing d|T and considering only the solutions to with

ged(z, T) =d,
they can be written as x = dy and seen to satisfy
(8) ind(dy) =0 (mod Ty), 1<y<D, ged(y, Ty =1,
where T .
p —_—
T, =— D=——.
T d

Let us denote by )Yy the set of integers y satisfying , and by W, the set
of residue classes modulo p represented by the elements of );. Obviously
#Vq = #Wy, and we have

(9) > Npia) =Y #Va=>_ #Wa.

€z} d|T d|T
ordalt
First note that
(10) HWa+Wa) < #(Va+ Vi) <2D

from the second condition in .
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Furthermore, the product set of Wy is contained in

{weZ,: ind(d*w) = 0 (mod Ty)},

and so
p—1
(11) H#Wq-Wy) < = dt.
Ta
Hence, applying Lemma 1| and using the bounds and we see
that
. W)
mln{p#Wd, (#pd)} < pt.
Therefore
(12) #Wy < max{t, p'/?t/1}.
Recalling the bound on the divisor function 7(k) given by
(13) (k) =) 1=kW
d|k

(see [0, Theorem 315]), and using in (9), we conclude the proof. m

COROLLARY 3. Uniformly over t|p — 1 and all integers a with ged(a, p)
=1 of multiplicative order ord a = t, we have, as p — 00,

N(p;a) < max{t,p'/?t*/4}p°1).

Next we show that if ¢ is very small then the bound of Theorem [2| can
be improved. For example, this applies to the most interesting special case
of the congruence , namely the case a = 1.

THEOREM 4. Uniformly over t|p — 1, we have, as p — 00,
5 N < 0

a€Zy
ord alt

Proof. We follow the proof of Theorem [2[up to ([L1f), but finish the ar-
gument in a different way to derive a new bound for #);. Let us define
s(b) = #{(y1,v2) : y1,y2 € V4, y1y2 = b (mod p)}.
First note that s(b) > 0 only when b € Wy - Wy, and so
(14) (#Ya)? = > s(b) < #(Wa- Wa) max s(b).
beZy belp

If (y1,y2) is counted in s(b) then on the one hand y1y2 = b (mod p), on
the other hand 1 < y1y2 < D? (where as before D = (p — 1)/d), therefore
y1y2 = b+ kp, where 0 < k < p/d?. Thus the product yiy» can take at
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most p/d? + 1 possible values y1y2 = z and once z is fixed, there are 7(z) =
2°() = po() possibilities for the pair (y1,12) (see (13)). Thus
s(b) < (p/d® + 1)p°,
which after inserting in and recalling yields
(15) #Va < ((pt/d)'? + (td)?)p°0).
For d < pl/ 34=1/3 we use #Y4 < dt from the first condition of and for

d > p2/ 3t=1/3 we use #Y; < D from the second condition of . Therefore
we obtain

#Y, < p323 and  #Y,; < p'/P3,
respectively.
Finally, for pl/3t=13 < q < p2/3t71/3 we use to derive
4y, < (p1/3t2/3 +p1/3t1/3)po(1) _ p1/3+o(1)t2/3_
Using these bounds with in @ we conclude the proof. =

COROLLARY 5. Uniformly over t|p — 1 and all integers a with ged(a,p)
=1 of multiplicative order ord a = t, we have, as p — oo,

N(p; CL) < p1/3+0(1)t2/3.

3. Elements of large order. Here we use a different argument, which
is similar to the one used in [I], and a bound of [2], on the number of
solutions of an exponential congruence, plays the crucial role. However, this
approach is effective only for values of a of sufficiently large order.

We recall the following estimate, given in |2 Lemma 7], on the number
of zeros of sparse polynomials over a finite field I, of ¢ elements.

LEMMA 6. For n > 2 given elements ai,...,a, € Fy and integers
ki,...,kn in Z let us denote by @ the number of solutions of the equation

n
Y aiXxb =0, XeF;.
i=1

Then
Q< 2q1—1/(n—1)A1/(n—1) + O(ql—Q/(n—l)AQ/(n—l))’

where

A= min r;lglxgcd(kj —ki,qg—1).

We are now ready to prove the main result of this section.

THEOREM 7. Uniformly overt|p—1 and all integers a with ged(a,p) =1
of multiplicative order ord a = t, we have, as p — 0,

N(p; CL) < p1+o(1)t71/12‘
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Proof. Let a be a nonzero residue class modulo p of multiplicative order
t|p— 1. As before, we put
-1
r=2"-°
t

Clearly, there is a primitive root g modulo p with a = g7 (mod p). Using
the discrete logarithm to base g, the congruence is equivalent to

zindz =T (mod p — 1).

Note the condition ged(z,p — 1) |T. After fixing d|T and considering only
the solutions to with ged(z,p — 1) = d, they can be written as x = dy
and satisfy

yind(dy) =Ty (mod D), 1<y<D, gcd(y,D)=1,

where, as before,
T p—1
Ty = 7 D= T

Note that ¢ | D. The congruence yz = 1 (mod D) defines a one-to-one
correspondence between the integers {1 < y < D : ged(y,D) = 1} and
z € 1y.

Furthermore, the relation yz = 1 (mod D) defines a one-to-M, cor-
respondence between the set {1 <y < D : ged(y, D) = 1} and 2z € Zy_,
where My is the number of residue classes in Z;,_; of the form z+kD. These
residue classes are automatically coprime to D, but we have to ensure that
they are coprime to d as well (and thus belong to Z;_;). Thus using p(k) to
denote the Mébius function, by [5, Theorem 263] (which is essentially the
inclusion-exclusion principle) we obtain

d d
M= Y = %}m S
d

F=1 flged(z+kD.d) +ED20 (mod f)

I
N
=
kﬁ
Ta
|
5
2

fld
ged(f,D)=1
where (k) is the Euler function and m is the product of primes ¢ with ¢ |d
and ¢ 1 D, see [5, equation (16.3.1)]. In particular m < d < p and recalling
the well-known estimate on the Euler function (see [5, Theorem 328]) we
obtain

My = dp°W.

From now on the integer 1 < y < D and the residue class z € Z;;_l with
or without subscripts are always connected by yz = 1 (mod D), even if this
is not explicitly stated.
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Let us define
Zg={2€Z, ;:ind(dy) = Dz/t (mod D), 1 <y < D}
(we recall our convention that we always have yz =1 (mod D)). We have
(16) N(pia) =) ]\Z#Zd <p'y é#zd.
T dT
The congruence ind(dy) = Dz/t (mod D) is equivalent to

Dz/t (

dy = pg mod p)

for some p € Z;, with p? =1 (mod p). Thus we split Z; into subsets 24,
getting

(17) HZ, = Z #Z4,,
p¢=1 (mod p)
where
Z4p,=1{2€Z; | :dy = pg”*/" (mod p), 1 <y < D}

(and again we recall our convention that yz =1 (mod D)).
Clearly,

(#24,)* = #{21,22 € Zy 1 2 dy; = pg”5/" (mod p), j =1,2}.
We deduce by adding the two congruences that
(#Z2a4p)? < #{z1,22 € Z) 1 d(y1 +12) = p(gP?/" + gP#/") (mod p)}
= #{z,2 € Ly 1 d(yr + y2) = v, plgP* /" + gP/Y)
VEZ

= v (mod p)}.

The sum over v € Z is empty unless v = dw, where 2 < w < 2D and we
find by the Cauchy—Schwarz inequality that

(#Za,0)" < 2D#{21, 22, 23,24 € Zy_ = d(y1 + y2) = d(y3 + ya)
= p(gP?/t + gP=2/t) = p(gP=/t + gP#4/1) (mod p)}.
Clearly, when z1, 29, 23,24 € Z;‘,_l are fixed, the condition

d(yr +y2) = d(ys +ya) = p(gP/" + gP22/") = p(gP*/! + gP2/!) (mod p)
defines p uniquely. Hence
Z (#24,)"* < 2D##{21, 20, 23,24 € Zp 1 :y1+y2 = y3 + ya,

p¢=1 (mod p)
gPa /b gP=2/t = gD2a/t 4 gDza/t (;mod p)}.
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Relaxing the condition y1 + y2 = y3 + y4 to y1 + y2 = y3 + ya (mod D)
only increases the number of solutions (but allows us to think about y; as a
residue class modulo D defined by y;z; =1 (mod D), j = 1,2,3,4). Thus

> (#Z4,)" <2DT

p¢=1 (mod p)

where

T = #{21,20,23,24 € Ly 1 y1 + y2 = y3 + ya (mod D),
Pl gPalt = P P o ).

Finally, after the substitution z; — wz; for w € Zj_, (and thus y; —
w_lyj), j =1,2,3,4, where w™"! is defined modulo D, we deduce that any
solution is counted with multiplicity ¢(p — 1), that is,

(18) > (#Zap)' < TT

p%=1 (mod p)

where

T = #{z1, 22,23, 24,w € Z}, 1 : y1 + Y2 = Y3 + ya (mod D),
(gw)Dzl/t + (gw>Dz2/t = (gw)DZ3/t + <gw)DZ4/t (mod p>}

Writing X = ¢" (mod p) and k; = Dz;/t = (p — 1)z;/dt = Tyz;, after
fixing z1, 292, 23, 24, the number of w € ZZ)A satisfying the congruence in
is bounded by the number of solutions to the congruence X% + X*2 =
XFks 4+ X*4 (mod p), and this is bounded in Lemma @, applied with n = 4,
by O(p*/®A/3), where
A = mi Tz — 2. -1
oin max ged(Ta(zi - 2;),p — 1)
J#i
=T, mi 2 db).
12 g el 2 )
J#i
For every fixed i # j, 1 <i,7 < 4 and 6 | dt there are (p — 1)?/4 choices
for (2, ;) with

ged(z; — zj,dt) = 0.

When z; and z; are fixed the congruence y; + y2 = y3 + y4 (mod D) im-
plies that there are dp*t°(!) choices for the remaining two variables. (Recall
that each y determines My = dp°) different choices of z.) Thus, putting
everything together in and recalling , we obtain
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2D —1)?
Z (#Zd,p)‘l < ( _ 1) Zp2/3(Td6)1/3 (p 5 ) dlerO(l)
p%=1 (mod p) wip o|dt
_ de8/3+o(1)le/3 25—2/3 _ p11/3+o(1)le/3
8|dt
p4—|—0(1)
o (dt)l/?,'

Putting this into , by the Holder inequality we get

1/4 p1+0(1)
3/4 4 2/3
#2a<d( Y #2a)') " < Bd
p¢=1 (mod p)
Finally (16]) and (13]) give
1+o0(1) 14+0(1)

p p
N(p;a) < Z A/1241/3 < 1112
d|(p—1)/t

and we conclude the proof. =

4. Symmetric congruence. We now improve the bound @ on the
number of solutions to the symmetric congruence .

THEOREM 8. We have, as p — oo,

M(p) < p48/25+o(1).

Proof. From we obtain

M(p)< > > Npa)

tlp—1 a€Zy
ord a=t

We fix some parameter ¢ and for ¢t < 1 we use Theorem [2| to estimate
2
> N(pa)* < ( > N(p;a)>

aGZ;f7 aGZ;‘,
ord a=t ord a=t

< max{t2p°W), plte()y1/2)
< max{ﬁon(l),p1+0(1)191/2}.

For t > 9 we use Theorem (7| together with to estimate

Z N(p;a)? < p1+o(1)t71/12 Z N(p;a) < p2+o(1)1971/12‘

aEZ;7 aEZ;‘,
ord a=t ord a=t
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Taking ¥ = p?#/25 to balance the above estimates, we obtain the bound
Z N(p; a)Z < p48/25+0(1),

a€Zy
ord a=t

and using , we conclude the proof. m

5. Concluding remarks. Clearly Theorem [2| is nontrivial provided
that t < p'=¢ for some & > 0, while Theorem [7| is nontrivial provided
t > p® for an arbitrary € > 0 and a sufficiently large p. In particular, using
Corollary [3| for t < p'2/13 and Theorem [7 for ¢ > p'2/13, we derive .

It is also easy to see that all but o(p) elements a € Z; are of multiplicative

1+0(1)

order t = p . Thus for almost all a € Z;, we have

N(p;a) < p't/12+e)

by Theorem

Similar results can also be established for several other congruences. For
example, the same arguments as those used in the proof of Theorem [4] imply
that the congruence

2 '=1(modp), 1<z<p-—1,

has O(p'/3+°(M)) solutions. This means that the function z — z* (mod p)
has O(p'/3+t°()) fixed points in the interval 1 <z < p — 1.
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