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1. Introduction. Before the prime number theorem was proved for the
rational integers, the true order of magnitude of the prime-counting function
π(x) was established for the first time by P. L. Chebyshev as

(1.1) x/log x� π(x)� x/log x.

Here we shall study corresponding relations for Beurling generalized primes
(henceforth, g-primes). Surveys of g-numbers are given in [BD1] and [MV].
As in the classical case, we call the analogues of (1.1) for g-primes lower and
upper Chebyshev bounds.

Several conditions have been given for such g-prime bounds (e.g. [Di],
[Zh]). It was conjectured by the first author that if the counting function
N(x) of integers of a g-number system N satisfies the integral condition

(1.2)

∞�

1

|N(x)−Ax|x−2 dx <∞

for some positive number A, then Chebyshev bounds held, but this guess
was disproved by an example of J.-P. Kahane ([Ka]).

J. Vindas ([Vn1]) showed that if one augmented (1.2) with the pointwise
condition N(x) − Ax = o(x/log x), then Chebyshev bounds hold. We have
found that Vindas’ condition can be replaced by the weaker bound

(1.3) N(x)−Ax = O(x/log x)

(with a specific O-constant needed for the lower Chebyshev bound). More-
over, as we show in [DZ], the last condition is optimal in the class of pointwise
bounds, because Chebyshev bounds can fail to hold if the right side of (1.3)
is replaced by O(f(x)x/log x) for an (arbitrarily slowly growing) unbounded
function f(x).
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Added in proof. In a recent article [Vn2], J. Vindas has also shown how
(1.2) and (1.3) yield Chebyshev upper bounds.

Here we show that Chebyshev bounds can also be established by using
the slightly weaker mean-value conditions (1.4) and (1.5) (below) in place
of (1.3) or Vindas’ o-condition. As in the classical case, these bounds can be
expressed equivalently in terms of the Chebyshev weighted prime-counting
function

ψ(x) :=
∑
pα≤x

log p,

namely, as
x� ψ(x)� x.

Main Theorem 1.1. Suppose that the counting function N(x) of the
integers of a Beurling generalized number system N satisfies both (1.2) and

(1.4) lim sup
x→∞

(
x−1

x�

1

u−1|N(u)−Au| log u du
)
<∞

with some positive constant A. Then the Chebyshev function ψ of N satisfies
ψ(x)� x. Moreover, if

(1.5) lim inf
x→∞

(
x−1N(x) log x− x−1

x�

1

u−1N(u) log u du
)
> 0

also holds, then ψ(x)� x for all sufficiently large x.

Remark. The inequality (1.4) is an average form of (1.3). Also, (1.5)
has an equivalent form

(1.6) lim inf
x→∞

(
x−1(N(x)−Ax) log x−x−1

x�

1

u−1(N(u)−Au) log u du
)
>−A.

Theorem 1.1 has a direct consequence.

Corollary 1.2. If (1.2) and

(1.7) lim sup
x→∞

(x−1|N(x)−Ax| log x) < A/2

are satisfied, or if (1.2) and

x−1(N(x)−Ax) log x = o(1)

hold, then x� ψ(x)� x for sufficiently large x.

Hence Theorem 1.1 covers the results of [Di], [Vn1], [Vn2], and [Zh].
We use an analytic argument based on Bochner’s proof of the Wiener–

Ikehara theorem. Our key additional ingredients are a concrete version of
Wiener’s division theorem and uniform estimates of derivatives of the Fejér
kernel on R.
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2. Set-up. As a preliminary, we note that an easy estimate based on
(1.2) shows that N(x)� x, and hence

ψ(x) =
∑
pα≤x

log p ≤ N(x) log x� x log x,

since every power pα of a g-prime p is a g-integer. This ensures the conver-
gence of Mellin integrals involving ψ in the half-plane {s = σ + it : σ > 1}.

Our starting point is the Mellin formula
∞�

0

e−suψ(eu) du = − ζ
′(s)

sζ(s)
=

1

s− 1
− 1

s
− 1

s

d

ds
log{(s− 1)ζ(s)},

valid for σ > 1, where ζ(s) is the zeta function associated with the g-number
system N . Let λ be a positive number to be chosen later. Following the
Wiener–Ikehara method (see e.g. [BD1] or [MV]), multiply both sides of the
last formula by

∆λ(t) :=
1

2

(
1− |t|

2λ

)+

and by eity. Then integrate over −2λ < t < 2λ and exchange the order of
integrations. We find

(2.1)

∞�

0

e−σuψ(eu)kλ(y − u) du

=

∞�

0

e−(σ−1)ukλ(y − u) du−
∞�

0

e−σukλ(y − u) du

−
2λ�

−2λ
∆λ(t)

eity

s

d

ds
log{(s− 1)ζ(s)} dt,

where

kλ(x) :=

2λ�

−2λ
∆λ(t)eitx dt = λ

(
sinλx

λx

)2

is the Fejér kernel for R (see §6 for a discussion of its properties). Let

Iσ(y) :=

2λ�

−2λ
∆λ(t)

eity

s

d

ds
log{(s− 1)ζ(s)} dt, σ > 1.

Now let σ → 1+. Since kλ > 0, by the monotone convergence theorem,
the integral on the left-hand side of (2.1) has a limit for each y. (But it is not
guaranteed at the moment to be finite!) Also, from (6.1),

	∞
0 kλ(y−u) du < π,

so the first two integrals on the right-hand side of (2.1) have finite limits.
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Hence Iσ(y) has a limit as well. It follows that

(2.2)

∞�

0

e−uψ(eu)kλ(y − u) du

=

∞�

0

kλ(y − u) du−
∞�

0

e−ukλ(y − u) du− lim
σ→1+

Iσ(y).

It is easy to treat the first two integrals on the right side of (2.2) by
making a change of variable and using familiar properties of the Fejér kernel.
The first integral becomes

y�

−∞
kλ(v) dv → π

as y →∞. The second integral can be rewritten as

y/2�

−∞
ev−ykλ(v) dv +

y�

y/2

ev−ykλ(v) dv < λ

y/2�

−∞
ev−y dv +

y�

y/2

kλ(v) dv → 0

as y →∞. Thus we have

(2.3)

∞�

0

e−uψ(eu)kλ(y − u) du = π + o(1)− lim
σ→1+

Iσ(y),

where o(1) denotes a function tending to 0 as y →∞.

We shall deduce Chebyshev bounds from (2.3) by the following steps.
Since

1

π

∞�

−∞
kλ(v) dv = 1,

the left side of (2.3) is an average of ψ(eu)/eu. Our main job will be to show
that limσ→1+ |Iσ(y)| is “sufficiently small” for all large values of y. This
calculation is more delicate than that in the classical Wiener–Ikehara proof
of the prime number theorem. The main reason is that, here, the function
(d/ds) log{(s − 1)ζ(s)} does not have a continuous extension to the closed
half-plane σ ≥ 1. A version of Wiener’s division theorem and derivatives of
the Fejér kernel will play key roles in our argument.

3. A decomposition. We show first that |(s−1)ζ(s)−A| is small for s
near 1. Let

E(x) := x−1(N(x)−Ax) and g(s) :=
1

A

∞�

1

x−sE(x) dx, σ ≥ 1.
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Then, by (1.2),

(3.1) H :=

∞�

1

x−1|E(x)| dx =

∞�

0

|E(eu)| du <∞

and, by (1.4),

(3.2) x−1
x�

1

|E(u)| log u du ≤ B, 1 ≤ x <∞,

for some constant B. Since

(3.3) (s− 1)ζ(s) = As+ (s− 1)s

∞�

1

x−sE(x) dx = A{s+ (s− 1)sg(s)},

we see that condition (1.2) guarantees a continuous extension of (s− 1)ζ(s)
to the closed half-plane {s : σ ≥ 1}. It follows that

(s− 1)ζ(s)

A
→ 1 as s→ 1, σ ≥ 1,

and thus ∣∣∣∣(s− 1)ζ(s)

A
− 1

∣∣∣∣ ≤ 1

2
, |s− 1| ≤ η1, σ ≥ 1,

with some constant η1 > 0. Letting

f(s) := 1− (s− 1)ζ(s)

A
,

we now have

(s− 1)ζ(s) = A(1− f(s)), |f(s)| ≤ 1/2, |s− 1| ≤ η1, σ ≥ 1.

For s in this semidisc, we can write

log{(s− 1)ζ(s)} = logA+ log(1− f(s)).

It follows that

(3.4)
d

ds
log{(s− 1)ζ(s)} = − f ′(s)

1− f(s)
, |s− 1| < η1, σ > 1.

Again, from (3.3) and the definition of f(s),

(3.5) f(s) = −(s− 1){1 + sg(s)}
and hence

(3.6) f ′(s) = −{1 + (2s− 1)g(s) + s(s− 1)g′(s)}.

Substitution of (3.6) into (3.4) yields

d

ds
log{(s−1)ζ(s)} =

1 + (2s− 1)g(s)

1− f(s)
+
s(s− 1)g′(s)

1− f(s)
, |s−1| < η1, σ > 1.
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Therefore, for 0 < λ ≤ η1/4, 1 < σ ≤ 1 + η1/2,

Iσ(y) =

2λ�

−2λ
∆λ(t)

eity

s

1+(2s−1)g(s)

1− f(s)
dt+

2λ�

−2λ
∆λ(t)

eity(s−1)g′(s)

1− f(s)
dt(3.7)

= I1,σ(y) + I2,σ(y),

say. The integrand of I1,σ(y) is continuous on the closed semidisc; it follows
that

(3.8) I1(y) := lim
σ→1+

I1,σ(y) =

2λ�

−2λ
∆λ(t)

eity

1 + it

1 + (1 + 2it) g(1 + it)

1− f(1 + it)
dt

exists and is finite. The last integral tends to zero as y → ∞, by the
Riemann–Lebesgue lemma. Since I1,σ(y) has a limit as σ → 1+ as does
Iσ(y), it follows that the limit of the third function in (3.7), I2(y) :=
limσ→1+ I2,σ(y), also exists; it remains to study this function.

4. Further analysis of I2,σ(y). Using (3.5), write part of the integrand
of I2,σ(y) as

s− 1

1− f(s)
=

s− 1

1 + (s− 1){1 + sg(s)}
.

We note that as s = 1 + ε+ it→ 1 + it,

s− 1

1 + (s− 1){1 + sg(s)}
− it

(1 + it){1 + itg(s)}
→ 0.

After some algebra, we find that the difference satisfies

(4.1)
s− 1

1 + (s− 1){1 + sg(s)}
− it

(1 + it){1 + itg(s)}

=
(σ − 1) {1− it(s− 1) g(s)}

s(1 + it)(1 + it g(s)){1 + (s− 1)g(s)}
:= (σ − 1)R(s).

By the definition of g(s) and (3.1) we have |g(s)| ≤ H/A, so

|itg(s)| ≤ |(s− 1)g(s)| ≤ 1/2, |s− 1| ≤ η2, σ ≥ 1,

for some constant η2 > 0. Without loss of generality, we henceforth assume
also that 0 < η2 ≤ min{η1, 1} and write D = {s : σ ≥ 1, |s − 1| ≤ η2}.
The denominator of R(s) is bounded away from 0 on D, so the function is
continuous there.

We now insert the relation (4.1) into the integrand of I2,σ(y). For 0 <
λ ≤ η2/4 and 1 < σ ≤ 1 + η2/2, we find
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I2,σ(y) =

2λ�

−2λ
∆λ(t)

eityg′(s)it dt

(1 + it)(1 + itg(s))
(4.2)

+

2λ�

−2λ
∆λ(t)eityg′(s)(σ − 1)R(s) dt =: I3,σ(y) + I4,σ(y),

say. Since R(s) is continuous on the compact semidisc D, it is bounded there
by some constant R, say. Therefore,

|I4,σ(y)| ≤ R
2λ�

−2λ
∆λ(t)(σ − 1)|g′(s)| dt.

We have

g′(s) = − 1

A

∞�

1

x−sE(x) log x dx

and hence

(σ − 1)|g′(s)| ≤ 1

A

∞�

1

x−σ(σ − 1)(log x)|E(x)| dx.

Note that

x−σ(σ − 1)(log x)|E(x)| ≤ x−1|E(x)|
and

x−(σ−1)(σ − 1) log x→ 0 as σ → 1+

for each point x ≥ 1. By the dominated convergence theorem,
∞�

1

x−σ(σ − 1)(log x)|E(x)| dx→ 0 as σ → 1 +.

Therefore

(σ − 1)|g′(s)| → 0 as σ → 1+

uniformly for all t ∈ R. It follows that

(4.3) I4(y) := lim
σ→1+

I4,σ(y) = 0.

It remains to study I3(y) := limσ→1+ I3,σ(y). This exists since I2,σ(y)
and I4,σ(y) have limits as σ → 1+. Since |itg(s)| ≤ 1/2 on D, we can write

it

(1 + it)(1 + itg(s))
=

it

1 + it

∑
ν≥0

(−1)ν(it)νg(s)ν .

Thus

I3,σ(y) =
∑
ν≥0

(−1)νJν,σ(y),



150 H. G. Diamond and W.-B. Zhang

where

(4.4) Jν,σ(y) =

2λ�

−2λ
∆λ(t)eityg′(s)

(it)ν+1g(s)ν

1 + it
dt.

5. Jν,σ as a convolution. We represent Jν,σ as an additive convo-
lution of L1 functions by using two familiar Fourier relations. Suppose
f ∈ L1[0, ∞), h ∈ L1(−∞, ∞),

f̂(x) :=

∞�

0

f(t)e−ixt dt, f̌(x) := f̂(−x),

and f ? h(x) =
	∞
0 h(x − t)f(t) dt. We have (by changing the integration

order)

(5.1) f̂(t)ĥ(t) = (f ? h)̂ (t)

with f ? h ∈ L1 and also

(5.2)

∞�

−∞
h(t)eityf̂(t) dt = (ȟ ? f)(y).

Recall (4.4), which we rewrite as

Jν,σ(y) =

∞�

−∞
h(t)eityFσ(t) dt, σ > 1, ν = 0, 1, 2, . . . ,

with

h(t) = hν(t) := ∆λ(t)(it)ν+1 and Fσ(t) = Fν,σ(t) := g′(s)g(s)ν/(1 + it).

We shall express Jν,σ as a convolution as in (5.2). Note first that

(5.3) ȟ(y) =

2λ�

−2λ
∆λ(t)(it)ν+1eity dt = k

(ν+1)
λ (y).

It remains to show that Fσ(t) can be expressed as the Fourier transform of
an L1 function fσ. For σ > 1 and u > 0, set

Gσ(u) := A−1e−(σ−1)uE(eu), Gdσ(u) := −uGσ(u), Z(u) := e−u.
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The factors of Fσ(t) have the Fourier representations

g(s) =
1

A

∞�

0

e−itue−(σ−1)uE(eu) du =: (Gσ )̂ (t),

g′(s) = − 1

A

∞�

0

e−itue−(σ−1)uuE(eu) du =: (Gdσ )̂ (t),

1

1 + it
=

∞�

0

e−itue−u du =: Ẑ(t).

It follows from (5.1) and the preceding formulas that Fσ(t) = f̂σ(t), with

fσ(u) = (Gdσ ? G
?ν
σ ? Z)(u),

the convolution of ν+2 functions, each in L1[0,∞). (In order to have Gdσ(u)
in L1[0,∞), we have assumed σ > 1.)

We combine the formulas of the last two paragraphs with (5.2) to get

(5.4) Jν,σ(y) =

∞�

−∞
h(t)eityf̂σ(t) dt = (k

(ν+1)
λ ? Gdσ ? G

?ν
σ ? Z)(y).

6. Derivatives of the Fejér kernel. The last expression contains
derivatives of the Fejér kernel. Recall that the Fejér kernel is defined on R,
for each positive real number λ, by

kλ(x) :=
1

2

2λ�

−2λ

(
1− |t|

2λ

)
eixt dt.

Integration shows that

kλ(x) = λ

(
sinλx

λx

)2

,

and we have the familiar relations
∞�

−∞
kλ(u) du = π,(6.1)

�

|u|>δ

kλ(u) du ≤ 2/(λδ),(6.2)

the latter for any δ > 0.
Here we establish L1 estimates for derivatives of kλ on R.

Lemma 6.1. Let 0 < λ ≤ 1/2. Then for ν = 1, 2, . . . ,

(6.3)

∞�

−∞
|k(ν)λ (x)| dx ≤ 8(2λ)ν

ν + 1
.
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Proof. We begin with an absolute bound for k
(ν)
λ (x), to be used for |x|

small. Start with (5.3) and get the simple inequality

(6.4) |k(ν)λ (x)| ≤
2λ�

0

(
1− t

2λ

)
tν dt =

(2λ)ν+1

(ν + 1)(ν + 2)
, x ∈ R.

For application to larger |x|, we shall show that

(6.5) |k(ν)λ (x)| ≤ 8(2λ)ν−1

3x2
.

Starting from the relation

kλ(x) =

2λ�

0

(
1− t

2λ

)
cosxt dt

and making ν differentiations, we get

k
(ν)
λ (x) =

2λ�

0

(
1− t

2λ

)
tνT (xt) dt,

where T = ± sin or ± cos, depending on ν (mod 4). Integrate by parts twice,
with T1 :=

	
T and T2 :=

	
T1. We find

k
(ν)
λ (x) =

T2(2λx)

x2
(2λ)ν−1 +

2λ�

0

T2(xt)

x2
νtν−2

{
ν − 1− ν + 1

2λ
t

}
dt,

so

|k(ν)λ (x)| ≤ (2λ)ν−1

x2
+

2λ�

0

νtν−2

x2

∣∣∣∣ν − 1− ν + 1

2λ
t

∣∣∣∣ dt.
To treat the last integral, set t∗ = 2λ(ν − 1)/(ν + 1) and note that

ν − 1− (ν + 1)t

2λ

{
> 0, 0 ≤ t < t∗,

< 0, t∗ < t ≤ 2λ.

Thus

|k(ν)λ (x)| ≤ (2λ)ν−1

x2
+

1

x2

t∗�

0

νtν−2
{
ν − 1− ν + 1

2λ
t

}
dt

− 1

x2

2λ�

t∗

νtν−2
{
ν − 1− ν + 1

2λ
t

}
dt

= 2(2λ)ν−1x−2
{

1 +

(
ν − 1

ν + 1

)ν−1}
(= 2/x2 if ν = 1).

Now (
ν − 1

ν + 1

)ν−1
≤ 1

3
, ν = 2, 3, . . . ,
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because
d

dν
log

{(
ν + 1

ν − 1

)ν−1}
< 0.

Thus (6.5) holds for all non-zero x and positive integers ν.
The estimates of (6.4) and (6.5) change relative size at

X =

√
8(ν + 1)(ν + 2)/3

2λ
.

Using the symmetry of |k(ν)λ (x)| and estimate (6.4) on (0, X) and (6.5) on
(X,∞), we see that
∞�

−∞
|k(ν)λ (x)| dx ≤ 2(2λ)ν+1X

(ν + 1)(ν + 2)
+

16(2λ)ν−1

3X
= 8(2λ)ν

{
2/3

(ν + 1)(ν + 2)

}1/2
.

With a trivial estimate of the square root, we get (6.3).

Remark. By using (6.4) for |x| < 3 and (6.5) for |x| ≥ 3, we find the
pointwise bound

(6.6) |k(ν)λ (x)| < 3(2λ)ν−1

1 + x2

for all x ∈ R, 0 < λ ≤ 1/2 and ν = 1, 2, . . . .

7. Two inequalities for I3(y). Here we combine the convolution iden-
tities of (5.1) and (5.2) with estimates for E(eu) and derivatives of the Fejér
kernel. What we find will first justify letting σ → 1+ in Jν,σ and then give in-
equalities (7.4) and (7.8) for I3(y), which are key for proving the Chebyshev
bounds.

Let

mσ(u) := (Z ? Gdσ)(u) =
−1

A

u�

0

e−(u−v)e−(σ−1)vvE(ev) dv.

Changing the variables in (3.2) yields

(7.1) |mσ(u)| ≤ 1

A

u�

0

e−(u−v)v|E(ev)| dv ≤ B

A
for 0 ≤ u <∞.

By the dominated convergence theorem,

m(u) := lim
σ→1+

mσ(u)

exists for each u > 0 and also satisfies |m(u)| ≤ B/A.
Arguing inductively on ν, using the relation

	∞
0 |G1(u)| du = H/A from

(3.1), we see that

(G?νσ ? Z ? Gdσ)(u) = (G?νσ ? mσ)(u)→ (G?ν1 ? m)(u)
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as σ → 1+, again by dominated convergence, and

|(G?νσ ? Z ? Gdσ)(u)| < BHν

Aν+1
, |(G?ν1 ? m)(u)| < BHν

Aν+1
.

Combining the preceding bounds for G?νσ ? Z ? Gdσ with the L1 estimate
(6.3) for Fejér derivatives, we see that

Jν,σ(y) =

y�

−∞

(
Gdσ ? G

?ν
σ ? Z

)
(y − t)k(ν+1)

λ (t) dt

is absolutely integrable. By one last application of the dominated conver-
gence theorem, we conclude that Jν(y) = limσ→1+ Jν,σ(y) exists; moreover,

(7.2)
∣∣Jν(y)

∣∣ < 16λB

(ν + 2)A
(2λH/A)ν ≤ (4B/A) (2λH/A)ν , ν ≥ 0

(with the usual proviso that λ ≤ 1/2).

It now follows that I3(y), the limit of I3,σ(y), satisfies

(7.3) I3(y) = lim
σ→1+

∑
ν≥0

(−1)νJν,σ(y) =
∑
ν≥0

(−1)νJν(y),

if we further assume that λ is sufficiently small that 2λH/A < 1. In this
case,

∑
ν |Jν(y)| < ∞ and the last equation is justified by the Weierstrass

M-test. Therefore, we deduce from (7.3) and (7.2) that

(7.4) |I3(y)| < 4B/A

1− 2λH/A
≤ 8B

A
,

uniformly in y, provided (1.2) and (1.4) hold and 0 < λ ≤ min(η2, A/H)/4.

Now suppose that (1.5) also is satisfied. From the equivalent form (1.6),
we see that

(7.5) uE(eu)−
u�

0

e−(u−v)vE(ev) dv ≥ −A+ ε, u ≥ u0,

with some positive number ε and sufficiently large u0. We apply this in-
equality for another estimate of limσ→1+ J0,σ(y) to prove a lower Chebyshev
bound.

We start this calculation by noting that

itg′(s)

1 + it
=

(
1− 1

1 + it

)
g′(s) = − 1

A

∞�

0

e−itu{e−(σ−1)uuE(eu)−Amσ(u)} du.
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Hence

J0,σ(y) = − 1

A

∞�

0

kλ(y − u){e−(σ−1)uuE(eu)−Amσ(u)} du(7.6)

= − 1

A

∞�

0

kλ(y − u)e−(σ−1)u
{
uE(eu)−

u�

0

e−(u−v)vE(ev) dv
}
du

− 1

A

∞�

0

kλ(y − u)P (σ, u) du,

where

P (σ, u) :=

u�

0

{e−(σ−1)u − e−(σ−1)v}e−(u−v)vE(ev) dv.

By (7.5), the right-hand side of (7.6) is at most

A− ε
A

∞�

u0

kλ(y − u)e−(σ−1)u du

− 1

A

u0�

0

kλ(y − u)e−(σ−1)u
(
uE(eu)−

u�

0

e−(u−v)vE(ev) dv
)
du

− 1

A

∞�

0

kλ(y − u)P (σ, u) du.

Let us consider the preceding three integrals. By (7.1), |P (σ, u)| ≤ B
for all σ ≥ 1 and u > 0; also P (σ, u) → 0 as σ → 1+. Thus, the last
integral tends to 0 as σ → 1+, by the dominated convergence theorem. The
integrand of the second integral is bounded for 0 < u < u0, so it too has a
limit as σ → 1+. Moreover, if

S := sup
0<u<u0

∣∣∣uE(eu)−
u�

0

e−(u−v)vE(ev) dv
∣∣∣,

then the second integral has absolute value at most

S

A

u0�

0

kλ(y − u) du =
S

A

y�

y−u0

kλ(v) dv → 0

as y →∞ by the Cauchy condition for convergent integrals. The monotone
convergence theorem applies to the first integral, and we find

lim
σ→1+

∞�

u0

kλ(y − u)e−(σ−1)u du =

y−u0�

−∞
kλ(v) dv = π + o(1)

as y →∞. It follows from these observations that

(7.7) lim
σ→1+

J0,σ(y) ≤
(

1− ε

A

)
π + o(1).
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The last formula, together with (7.2) for Jν(y) with ν ≥ 1, gives

(7.8) I3(y) ≤
(

1− ε

A

)
π +

16BHλ

A2
+ o(1)

as y →∞, assuming as before that 0 < λ ≤ min(η2, A/H)/4.

8. Proof of Theorem 1. Suppose first that conditions (1.2) and (1.4)
are satisfied and that we have 0 < λ ≤ min(η2, A/H)/4. Starting from the
basic relation (2.2) and using the decompositions (3.7) and (4.2), we showed
that I1(y) → 0 as y → ∞, I4(y) = 0, and |I3(y)| < 8B/A. Together, these
results give

(8.1)

∞�

0

e−uψ(eu)kλ(y − u) du ≤ π +
8B

A
+ o(1).

By the monotonicity of ψ(u) and eu and the Fejér kernel estimates (6.1)
and (6.2), the left-hand side of (8.1) is at least

e−y−δψ(ey−δ)

y+δ�

y−δ
kλ(y − u) du ≥ e−y−δψ(ey−δ)

(
π − 2

λδ

)
for 0 < δ < y. Fixing λ to satisfy the preceding conditions and choosing a
constant δ > 0 sufficiently large that λδ > 4, inequality (8.1) gives

lim sup
y→∞

e−y−δψ(ey−δ) ≤ 2

π

(
π +

8B

A

)
=: C

i.e.,
lim sup
x→∞

e−xψ(ex) ≤ Ce2δ.

This proves the Chebyshev upper bound. For use below, note that

(8.2) e−xψ(ex) ≤M

for all x ≥ 0 with some constant M .

Finally, suppose that (1.5) is also satisfied. By the set of relations used
for the upper bound, but this time with I3(y) estimated by (7.8), we get

(8.3)

∞�

0

e−uψ(eu)kλ(y − u) du ≥ π −
(

1− ε

A

)
π − 16BHλ

A2
+ o(1).

Using monotonicity again, along with the bound (8.2) and estimates of
	
kλ

and its tail, we see that the left-hand side of (8.3) is bounded above by

y+δ�

y−δ
e−uψ(eu)kλ(y − u) du+M

�

|u−y|≥δ

kλ(y − u) du ≤ πe−y+δψ(ey+δ) +
2M

λδ
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for 0 < δ < y. Choose λ satisfying 0 < λ < min{η2, A/H, εAπ/(8BH)}/4.
Then the inequality (8.3) yields

π lim inf
y→∞

e−y+δψ(ey+δ) +
2M

λδ
≥ π −

(
1− ε

A

)
π − 16BHλ

A2
≥ επ

2A
.

Fixing λ and choosing a constant δ large enough that λδ > 8AM/(επ), we
see that

lim inf
x→∞

e−xψ(ex) ≥ e−2δε/(4A) > 0.

This proves the Chebyshev lower bound.
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