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1. Introduction. Erdős and Selfridge [7] proved that a product of
consecutive integers can never be a perfect power. That is, the equation
x(x+ 1) . . . (x+ (m− 1)) = yn has no solutions in positive integers x, y, m,
n with m,n > 1. A natural problem is to study the equation

x(x+ 1)(x+ 2) . . . (x+ (m− 1)) + r = yn(1)

with a non-zero integral (or rational) parameter r. M. J. Cohen [6] proved
that (1) has finitely many solutions with m = n, and Yuan Ping-zhi [13] used
the classical theorems of Baker and Schinzel–Tijdeman to show that, with
some obvious exceptions, there are at most finitely many solutions with a
fixed m. (See Theorem 1.2 below.) Some special cases were completely solved
by Abe [1] and Alemu [2].

In this paper we prove that (1) has finitely many solutions (x, y,m, n)
when r is not a perfect power.

Theorem 1.1. Let r be a non-zero rational number which is not a per-
fect power in Q. Then (1) has at most finitely many solutions (x, y,m, n)
satisfying

x,m, n ∈ Z, y ∈ Q, m, n > 1.(2)

Moreover , all the solutions can be explicitly determined.

We deduce Theorem 1.1 from three more particular results, one of which
is the above-mentioned result of Yuan. First of all, let us display two infinite
series of solutions which occur for two special values of r. For r = 1/4 we
have the solutions

x ∈ Z, y = ±(x+ 1/2), m = n = 2.(3)
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For r = 1 we have infinitely many solutions

x ∈ Z, y = ±(x2 + 3x+ 1), m = 4, n = 2.(4)

In the following theorem m is fixed, and we solve (1) in x, y, n.

Theorem 1.2 (Yuan). Let r be a non-zero rational number and m > 1
an integer.

1. Assume that (m, r) 6∈ {(2, 1/4), (4, 1)}. Then (1) has at most finitely
many solutions (x, y, n) satisfying

x, n ∈ Z, y ∈ Q, n > 1,(5)

and all the solutions can be explicitly determined.
2. Assume that (m, r) = (2, 1/4) or (m, r) = (4, 1). Then, besides the so-

lutions from (3), respectively (4), equation (1) has at most finitely many
solutions (x, y, n) satisfying (5), and all these solutions can be explicitly de-
termined.

Yuan formulates his result in a slightly different (and non-equivalent)
form, and his proof is about three pages long. For the convenience of the
reader, we give in Section 2 a concise proof of Theorem 1.2, following Yuan’s
argument with some changes.

Theorem 1.2 implies that n is bounded in terms of m and r. It turns out
that, when r 6= ±1, it is bounded in terms of r only.

Theorem 1.3. Let r be a rational number distinct from 0 and ±1. Then
there exists an effective constant C(r) with the following property. If
(x, y,m, n) is a solution of (1) satisfying (2) then n ≤ C(r).

Now change the roles: n is fixed, m is variable.

Theorem 1.4. Let r be a non-zero rational number and n > 1 an inte-
ger. Assume that r is not an nth power in Q. Then (1) has at most finitely
many solutions (x, y,m) satisfying

x,m ∈ Z, y ∈ Q, m > 1,(6)

and all the solutions can be explicitly determined.

In [8] this theorem is extended (non-effectively) to the equation x(x+ 1)
. . . (x+ (m− 1)) = g(y), where g(y) is an arbitrary irreducible polynomial.

Theorem 1.1 is an immediate consequence of Theorems 1.3 and 1.4. In-
deed, assume that r is not a perfect power. Theorem 1.3 implies that n is
effectively bounded in terms of r. In particular, we have finitely many pos-
sible n. Theorem 1.4 implies that for each n there are at most finitely many
possibilities of (x, y,m). This proves Theorem 1.1.

Remark 1.5. It is interesting to compare (1) with the classical equa-
tion of Catalan xm − yn = 1. This equation has been effectively solved by
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Tijdeman [12], and recently Mihăilescu [9] (see also [5]) solved it completely.
However, much less is known about the equation xm − yn = r for r 6= ±1.
In contrast, for equation (1) the case r = ±1 seems to be the most difficult.

2. Proof of Theorem 1.2. In this section m > 1 is an integer and
fm(x) = x(x+ 1) . . . (x+m− 1).

Proposition 2.1. Let λ be a complex number. Then the polynomial
fm(x)− λ has at least two simple roots if

(m,λ) 6∈
{(

2,−1
4

)
,

(
3,
±2

3
√

3

)
, (4,−1)

}
.

It has at least three simple roots if m > 2 and

(m,λ) 6∈
{(

3,
±2

3
√

3

)
, (4,−1),

(
4,

9
16

)
,

(
6,

16(10± 7
√

7)
27

)}
.

Proof. By the theorem of Rolle, f ′m(x) has m− 1 distinct real roots.
Hence fm(x)− λ may have roots of order at most 2. Beukers, Shorey and
Tijdeman [4, Proposition 3.4] proved that for even m at most two double
roots are possible, and for odd m only one double root may occur. It follows
that for m 6∈ {2, 3, 4, 6} the polynomial f(x)− λ has at least three simple
roots.

We are left with m ∈ {2, 3, 4, 6}. Since the polynomial f(x)− λ has mul-
tiple roots if and only if λ is a stationary value of f(x) (that is, λ = f(α)
where α is a root of f ′(x)), it remains to determine the stationary values of
each of the polynomials f2, f3, f4, f6 and count the simple roots of corre-
sponding translates. The details are routine and we omit them.

Corollary 2.2. Let r be a non-zero rational number. The polynomial
fm(x) + r has at least two simple roots if (m, r) 6∈ {(2, 1/4), (4, 1)}. It has
at least three simple roots if m > 2 and (m, r) 6∈ {(4, 1), (4,−9/16)}.

We shall use the classical results of Baker [3] and of Schinzel–Tijdeman
[10] on the superelliptic equation

f(x) = yn.(7)

In Baker’s theorem n ∈ Z is fixed.

Theorem 2.3 (A. Baker). Assume that f(x) ∈ Q[x] has at least three
simple roots and n > 1, or f(x) has at least two simple roots and n > 2.
Then (7) has only finitely many solutions in x ∈ Z and y ∈ Q, and the so-
lutions can be effectively computed.

(A non-effective version of this theorem goes back to Siegel [11].)

In the theorem of Schinzel and Tijdeman n becomes a variable.
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Theorem 2.4 (Schinzel and Tijdeman). Let f(x) ∈ Q[x] be a polynom-
ial having at least two distinct roots. Then there exists an effective constant
N(f) such that any solution of (7) in x, n ∈ Z, y ∈ Q satisfies n ≤ N(f).

Corollary 2.5. Let f(x) ∈ Q[x] be a polynomial having at least three
simple roots. Then (7) has at most finitely many solutions in x, n ∈ Z, y ∈ Q
satisfying n > 1. If f(x) has two simple roots then (7) has only finitely many
solutions with n > 2. In both cases the solutions can be explicitly deter-
mined.

Proof of Theorem 1.2. Corollaries 2.2 and 2.5 imply that the theorem
is true if m > 2 and (m, r) 6∈ {(4, 1), (4,−9/16)}. It remains to consider the
cases m = 2, (m, r) = (4, 1) and (m, r) = (4,−9/16).

Case 1: m = 2, r 6= 1/4. In this case f2(x) + r has two simple roots,
and Corollary 2.5 implies that f2(x) + r = yn has at most finitely many solu-
tions with n > 2 (and these solutions can be explicitly determined). We are
left with the equation x(x+ 1) + r = y2, which is equivalent to the equation
(x+ 1/2 + y)(x+ 1/2− y) = 1/4− r, having finitely many solutions.

Case 2: m = 2, r = 1/4. In this case we have the equation (x+ 1/2)2

= yn. It has infinitely many solutions given by (3) and no other solutions.
Indeed, if (x, y, n) is a solution with n > 2 then x+ 1/2 is a perfect power,
which is impossible because its denominator is 2.

Case 3: m = 4, r = 1. In this case we have the equation (x2 + 3x+ 1)2

= yn. It has infinitely many solutions given by (4) and only finitely many
other solutions, all of which can be explicitly determined.

Indeed, let (x, y, n) be a solution with n > 2. If n is odd, then y is a
perfect square: y = z2 and x2 + 3x+ 1 = ±zn. Since x2 + 3x+ 1 has two
simple roots, the latter equation has, by Corollary 2.5, only finitely many
solutions with n ≥ 3.

If n = 2n1 is even then x2 + 3x+ 1 = ±yn1 , which has finitely many solu-
tions with n1 ≥ 3. We are left with n = 4, in which case x2 + 3x+ 1 = ±y2.
The equation x2 + 3x+ 1 = y2 is equivalent to (2x + 3 + 2y)(2x + 3 − 2y)
= 5, which has finitely many solutions. The equation x2 + 3x+ 1 = −y2 is
equivalent to (2x+ 3)2 + 4y2 = 5, which has finitely many solutions as well.

Case 4: m = 4, r = −9/16. In this case we have the equation (x+3/2)2

× (x2 + 3x − 1/4) = yn. Since its left-hand side has two simple roots, this
equation has, by Corollary 2.5, only finitely many solutions with n > 2. We
are left with the equation (x+ 3/2)2(x2 + 3x− 1/4) = y2, which is equiva-
lent to the equation 16(x2 + 3x+ 1− y)(x2 + 3x+ 1 + y) = 25, having only
finitely many solutions.

Theorem 1.2 is proved.
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3. Proof of Theorems 1.3 and 1.4. Let α be a non-zero rational
number and p a prime number. Recall that ordp(α) is the integer t such
that p−tα is a p-adic unit. The proofs of both theorems rely on the following
simple observation.

Proposition 3.1. Let p be a prime number and t = ordp(r). Then for
any solution (x, y,m, n) of (1), satisfying (2), one has either m < (t+ 1)p
or n | t.

Proof. Assume that m ≥ (t+ 1)p. Then

ordp(x(x+ 1)(x+ 2) . . . (x+ (m− 1))) ≥ t+ 1.

Hence
ordp(x(x+ 1)(x+ 2) . . . (x+ (m− 1)) + r) = t,

that is, ordp(yn) = t, which implies that n | t.
Proof of Theorem 1.3. Since r 6= ±1, there exists a prime number p such

that t = ordp(r) 6= 0. Theorem 1.2 implies that for every m > 1 there exists
an effective constant N(m) such that for any solution of (1) satisfying (2)
we have n ≤ N(m). Put C ′(r) = max{N(m) : 2 ≤ m < (t + 1)p} if t > 0
and C ′(r) = 0 if t < 0. Then n ≤ C ′(r) when m < (t + 1)p, and n ≤ |t|
by Proposition 3.1 when m ≥ (t + 1)p. Thus, in any case n ≤ C(r) :=
max{C ′(r), |t|}.

Proof of Theorem 1.4. The proof splits into two cases.

Case 1: there is a prime p such that n does not divide t = ordp(r). In
this case Proposition 3.1 implies that m ≤ (t+ 1)p. Also, (n, r) 6∈ {(2, 1/4),
(4, 1)}, because in both these cases r is an nth power. Now Theorem 1.2
implies that we may have only finitely many solutions.

Case 2: n is even and r = −rn1 , where r1 ∈ Q. Write z = (y/r1)n/2.
Let p be prime number congruent to 3 mod 4 and such that ordp(r) = 0. If
m ≥ p then

ordp(1 + z2) = ordp(r−1x(x+ 1) . . . (x+m− 1)) > 0,

which implies that −1 is a quadratic residue mod p, a contradiction. Thus,
m < p and Theorem 1.2 again implies that we may have only finitely many
solutions.
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