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1. Introduction. A theorem of Laurent [2] tells us that polynomial-
exponential equations of a fairly general type have only finitely many solu-
tions in integers. It would be desirable to have a version of this theorem with
bounds on the number of solutions, which do not depend on the coefficients
of the equation. This has been achieved for purely exponential equations [3],
and for equations in one variable [4]. In the present paper we will indicate
such bounds for certain solutions of the equation of the title.

More precisely, we will deal with equations

(1.1) E(x) = P(x)

inx = (x1,...,2,) € Z", where P is a polynomial and E is exponential of
the type

(1.2) E(x)=FEi(z1)+ ...+ Ey(z,) + ¢,

where c is a complex number, and

(1.3) Ei(r) =anaf) +... +agary, (=1,...,n)

with &; > 0 and a;; € C, aq; € C*, where no «y; is a root of unity (1 <1 < n,
1 <i < k). A solution of (1.1) will be called degenerate if

(1.4)) Y Ei(x) =0
lex

for some nonempty subset A of {1,...,n}. As will be pointed out in Section 2,
it is an easy consequence of Laurent’s theorem that there are only finitely
many nondegenerate solutions.
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The notation A < B will mean that A < ¢, B with an effective constant
¢, depending only on

(1.5) N = Zkl and d := total degree of P.
=1
Observe that n < N.

THEOREM. Suppose P has rational coefficients. Then all but < 1 solu-
tions of (1.1) are degenerate.

On the other hand it is easy to give examples of equations with infinitely
many degenerate solutions.

A number « is a radical of § if a* = 3 for some v € N. When P has
rational coefficients, the equation (1.1) yields the relation

(1.6) E(x) € Q.

In Theorem 1 of [5] it was shown that if no «;; is a radical of an algebraic
number of degree < N, then all but < 1 solutions of (1.6) are degenerate,
so that our present Theorem holds in this case. But observe that we now
have the weaker hypothesis that no «y; is a root of unity. The proof of our
Theorem will depend on [5], and on some assertions in [3], [4].

EXAMPLE. Let a, 8 in C* be multiplicatively independent, and consider
the equation

(1.7) a®® — -’ 4 BT — 35T = g 4 x5 — 1 — 4.

The left hand side is as E(x) in (1.2), (1.3), with ¢ = 0, n = 4, and each
k; = 1. When X is a nonempty subset of {1,2,3,4}, let S(A) be the set of
solutions which have (1.4)), but not (1.4)\") for any nonempty set A" & A.
By the Theorem, all but < 1 solutions of (1.7) are in S(A) for some .
When X\ = {1,2}, so that (1.4\) becomes a?** — a - a3*2 = 0, we obtain
2x1 = 14 3xo, therefore 1 = 3y+2, xo = 2y+ 1 with y € Z. After insertion
into (1.7) we have

(1.8) %8 — 35 = g — x4 —y — 1.

The Theorem does not apply to this last equation since the variable y does
not occur in the exponential function on the left hand side. As is easily seen,
the only solutions are with 3% — 3°%4 = 0, unless 3 is an algebraic integer.
When g € Z we obtain a 2-parameter family of solutions parametrized
by x3,z4. On the other hand suppose ( is not a radical of a rational or
a quadratic. Then all but < 1 solutions of (1.8) have 3% — (3% = ( by
Theorem 1 of [5], so that x3 = x4 and 4x4—y—1 = 0, giving a 1-parameter
family of solutions parametrized by x4. As will be shown in Section 3, this
conclusion holds under the weaker assumption that (3 is not a radical of
a rational, or a quadratic of norm 1. The assumption cannot be entirely



Diophantine equations E(x) = P(x) 353

dispensed with. For instance, if 5 is a quadratic unit of norm —1 (so that it
is a radical of a unit of norm 1), the conjugate 3’ of 5 equals —1/43, and

/875$4 _ /85a:4 — _615w4 _ 55w4 c 7,

when x4 is odd. We then have the family of solutions with x3 = —5zy4,
T4 = 2t + 1 where t € Z.

Similar considerations apply when A = {3,4}. For all other nonempty
sets A we claim that |S(A)| < 1. For instance, take A = {1,2,3}. Accord-
ing to [1] (see also the formulations in Section 2 of [5]), the solutions in
S()N) fall into < 1 classes, and for solutions in a given class the triples
(a?¥1, —q- 372, 373) are proportional to a given triple, i.e., will have a?*1 =
y(—a - a32) = /3% for some v,v'. But these relations for fixed ~,~’ have
(by the multiplicative independence of «,3) at most one solution in in-
tegers 1,2, 3. Or take A = {1,3}, which gives a?** + 3% = 0, hence
xr1 = x3 = 0 by the multiplicative independence of «, 3, and we obtain
—a - a3%2 — 3574 = x5 — x4. By our Theorem, both sides vanish for all but
< 1 solutions, and then x4 = x4 = 0.

2. Laurent’s theorem. Let polynomials P;(x) = P;(z1,...,x,) and
exponential functions o = a7} ... (1 < i < ¢) with nonzero o;; be
given. The symbol P will denote a partition of {1,...,q}, also interpreted
as a partition of the set of functions P;(x)a (i = 1,...,q). The notation

A € P will mean that A is a subset determined by P. Further G(P) signifies
the group of points x € Z" having o = a7 for every pair 7, j of numbers
lying in the same set A € P.

THEOREM 2.1 (M. Laurent [2]). Let S(P) consist of solutions x € Z"™ of
the system of equations

(2.1P) Y P(x)af=0 (AeP),

ieA
which are not solutions of (2.1P") for any proper refinement P’ of P. Then
S(P) is finite if G(P)={0}.

We will derive the (qualitative) result that (1.1) has only finitely many
nondegenerate solutions. This equation may be written as

(2.2) Z a0 — P(x)a =0
Li

with g = (1,...,1). It is of polynomial-exponential type with ¢ = N + 1
summands. Each solution lies in a set S(P) (not necessarily uniquely deter-
mined) where P is a partition of the set of summands. It will be enough to
show that for any P, either S(P) is finite, or its elements are degenerate.
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Let P be given. Write 0 ~ 0, and for 1 <[ < n write [ ~ 0 (and also
0 ~ 1) if both —P(x)af and a;c)} lie in A for some A € P and some 1,
1 <i<k.When1<1I,m<n,write [ ~m if both a;;¢;] and amjafn*; lie
in A for some A € P and some i,j with 1 < i < k;, 1 < j < k. On the
other hand, for 0 <, m < n, write [ ~ m if there are l1,...,[, with I; =,
l,=mand ly ~ ;41 (1 <t <v). Then ~ is an equivalence relation on the
set {0,1,...,n}.

CASE A: There is just one equivalence class. We claim that G(P) = {0},

which by Laurent’s theorem implies the finiteness of S(P). We have [ ~ 0
for some [, 1 <1 < n. Then x € G(P) has ;! = af = 1 for some i, therefore
x; = 0 since ag; is not a root of unity. Say m ~ [ with 1 < m < n. Then
aﬁf; = o)} =1 for some i, j, hence z,, = 0. Continuing in this way we see
that 0 = x; = z,,, = ..., so that indeed G(P) = {0}.

CASE B: There is more than one equivalence class. Let A = {l1,...,1,}
be an equivalence class not containing 0. All the aj;o} withl e A\, 1 <i <k
belong to sets A € P which do not contain —P(x) = —P(x)af or any
amja, with m ¢ A. Let these sets be Ay, ..., As. For x € S(P), the sum
of the aliaﬁl with 1 <1 < k; and [ belonging to some A;, is zero. The union
of Ay,..., A, is the union of the aj;¢f) with 1 <i < k; and [ € . Therefore
(1.4)) holds, and x is degenerate. m

3. Rational values of ¥ — Y. Suppose (3 is not a radical of a ratio-
nal, or of a quadratic of norm 1. To prove a certain assertion made in the
Introduction it will be enough to show that the set of integer pairs (z,y)
with  # y and 6% — (Y rational has cardinality < 1.

In view of Theorem 1 of [5] we may assume 3 to be algebraic. Say (3 is of

degree D, with conjugates 81 = 3,5, ... 3(P). Suppose at first that for
some o, 1 < o < D, the numbers 3, 3(°) are multiplicatively independent.
The rationality of 5% — (Y implies the equation
(3.1) BT — Y = p 4 g = 0.
When P is a partition of the set of the four summands on the left hand
side, define S(P) as in the preceding section. If Ag = {47, —0Y} is a set
of P, then 5* — BY = 0, hence x = y. We will show that for any partition P
not containing Ay, |S(P)| < 1. When P is no proper partition, so that for
(z,y) € S(P) no proper subsum of (3.1) vanishes, then by [1], the solutions in
S(P) fall into < 1 classes, with solutions in a given class having 5% = v, 8Y =
12 B9)% = ~33(9)Y with fixed 41, 72,73. By the multiplicative independence
of 8, 3(), there can be at most one such pair (z, y). On the other hand, if P
consists of A; = {8%, —3(@)*} and Ay = {—Y, 59}, then again z =y =0
for (z,y) € S(P); and the same holds if A3 = {3%, 3(7)¥} € P.
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We are left with the case when 3, 3(?) are multiplicatively dependent for
each ¢. Say for some ¢ we have % = $(?)? with (u,v) # (0,0). Extend o to
an element of the Galois group of the normal closure N of Q(3). We obtain
ﬂu2 — (ﬁu)(a)v — /6(0’2)’[12’ then 5u3 — ﬁ(a3)v3’ o 75uE — ﬂ(aE)vE — ﬁvE7
where E = deg N. Since 3 is not a root of unity this gives u” = v, therefore
u = +v. Introducing the equivalence relation ~ on C* with o ~ o if o/o
is a root of unity, we may conclude that for each o, either § ~ £(?) or
8~ 1/80).

Suppose at first that 5 ~ 3(°) for each 0. Then g% = v = .. = gD
for some u € N, so that §* is a rational, and § among its radicals. Otherwise,
if 3% (), hence § ~ l/ﬁ(”) for some o, it is easily seen that this holds for
exactly half of the embeddings o. So D is even, and after suitable numbering,
there is a u € N with

g =pRn = = pgP/2u — 1/5((D/2)+1)u - = 1/5(D)u_

Therefore 8" is quadratic with conjugate 1/5%, so that its norm is 1. And
0 is among its radicals. m

4. An auxiliary lemma. We now begin with the proof of our Theorem.
When a = (ay,...,a,) € (C*)", define a* as in Section 2. We will deal
with functions

m
(4.1) F(x) =Y P(x)af
i=1
with polynomials P; and distinct elements au, ..., a,, of (C*)™. Say

Pi(x)zicijMij(X) (Zzl,,m)

where M;1,..., M, ., are distinct monomials, and ¢;1,...,¢; ., are nonzero.
We will write F* < F'if F™* is a function like F', with the same o, ..., am
and the same monomials M;;, but arbitrary coefficients c; (1 <i<m,
1 < j <), some of which may be zero.

For B = (B1,...,0,) € Q?1\{0}, where Q is the algebraic closure of Q,
write h(B) for its absolute logarithmic height, as defined, e.g., in [3, §2].
Our former notation h(f3) then becomes h(3,1). When 8; = (81, -, Bi.q:)
(Z = 1, ,S), set h(,@l,. . .,BS) = h(ﬁlla-- . ,ﬁqu,. . '7/6817-'-aﬁs,q3)- The

following is similar to Lemma 3.3 in [3].

LEMMA 4.1. Suppose F(x) is as above, with the coefficients c;;, and the
components of each a; in Q*. Setc; = (ci1,...,¢Cie;) (i=1,...,m) and ¢ =
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e1+...+em, and let d(F') be the mazimal total degree of the monomials M;;.
Let ho be a positive real. Then solutions x € Z"™ of

(4.2) F(x)=0
with x1...x, # 0,
(4.3) hafer,...,ak cm) > holx|

and mazimum norm |x| > x(he, q,d(F)) lie in < ¢(q) classes, and solutions
i a given class C satisfy

FZ(x)=0
where FF < F, but Fj is not a constant multiple of F'.

Proof. The equation (4.2) may be written as

(ct1Mi1(x) + ...+ 16, Mie, (x))af + ...
+ (leMml (X) +...+ C’m,em vaeWL (X))afn =0.

Introduce vectors X,Y with ¢ components:

X = (c110f, ...,C1e,0F, ..., CmiO, ..., Cme,, ),
Y = (My1(x),..., My, (x),..., Mp1(x),..., My, (X)).
Set Z=XxY :=(X1Y,...,X,Y,). Then (4.2) becomes
(4.4) Zi+...+Z,=0.

X lies in the multiplicative group I" C (C*)? of rank < n + 1 gener-

ated by the vectors (af,...,af,...,aX,...,a¥) with x € Z", and by
(€11, -3Clers-+-5sCmls -+ Cme,, ). Now (4.3) becomes
h(X) > ho|x|.

On the other hand, Y € QY, and since the z; are nonzero, in fact Y € (Q*)4
with
h(Y) < d(F)log|x| + logg.
Therefore
(4.5) h(Y) < (1/4¢*)h(X)

provided |x| is sufficiently large, say |x| > xo(ho, q,d(F)). By the Corollary
of Lemma 3.1 in [3], solutions x of (4.4) with (4.5) have Z = Z(x) in the
union of at most ¢(g) proper subspaces of the (¢—1)-dimensional space given
by (4.4). In such a subspace u1Z; + ...+ uqZ, = 0 where (uq, ..., uq) is not
proportional to (1,...,1). A subspace corresponds to some F* < F not
proportional to F', and any x with Z(x) in the subspace has F*(x) =0. m
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5. A proposition which implies our Theorem. We will consider
functions G, (x) in x € Z™ given by
Gr(x) =Y (gmniofi + ...+ gurofl) + Qr(x)  (r=1,...,p)
1=1
with polynomials @,., where all the data, i.e., the g,.;;, a;; and the coefficients
of the @, are algebraic. We will suppose that each «ay; # 0, and that

(5.1) hapn) >h>0 (I=1,...,n)

for some constant . The coefficients g,;; are not necessarily nonzero, but
write N for the number of those which are, and d for the maximal total

degree of Q1,...,Qp.

PROPOSITION 5.1. Suppose there is a partition of {1,...,n} into non-
empty sets Si,...,S, such that

(5.2) g1 70 forle S, (r=1,...,p).

Then the solutions x € Z™ of the system of equations
(5.3) G.(x)=0 (r=1,...,p)

lie in the union of at most c1(h, N,d) hyperplanes of the type x; = const,
and co(N,d) classes, with elements of a given class having

grmjafnw;‘ = ’79511‘01?? 7£ 0
for some pairs (m,j) # (1), some r, s, and some constant ~y.

Note that the coefficients of the polynomials @, are not required to be
rational. The proof of the proposition is postponed to the next section. Here
we will deduce our Theorem from the case p = 1, the general case of the
proposition being needed only for its proof.

In view of Theorem 1 of [5] we may assume the oy; (1 <1< n,1<i<Fk)
in the definition (1.2), (1.3) of E(x) to be algebraic. It is not hard to see
that we also may suppose the a;; to be algebraic: this may be done by a
specialization argument, or as follows.

Let A = (a11,---,Q1 k-3 0nls---s0nk,) € CN be the “coefficient vec-
tor” of E. We signify this by writing E(x) = E(A;x). We may write

A=A +GAs+ ...+ (A,

where each A; is in QV, and 1,(s,..., (. are linearly independent over Q.
Let £ be algebraic of degree r over the number field generated by the entries
of Ai,..., A, and set

A=A +EAy+...+E1A,.
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Since P has coefficients in Q C Q, the equation (1.1), i.e., E(A;x) = P(x),
is equivalent to the system E(A1;x) = P(x), E(A2;x)=...=FE(A,;x) =0,
which in turn is equivalent to E(K.7 x) = P(x). Similarly, (1.4)\), i.e.,
Y iex Ei(Aszp) = 0, is equivalent to ),y Ei(A;z;) = 0. Therefore it will
suffice to prove the Theorem for F (A, x). We may indeed assume the coef-
ficients a;; to be algebraic.

For a function of the type (1.2), (1.3), write n = n(E), and N = N(E)
with NV given by (1.5), and set d(P) for the total degree of a polynomial P.
For n < N let Rq(N,n) be the maximal number of nondegenerate solutions
of equation (1.1), over E, P as in the Theorem, with n(E) <n, N(E) < N,
d(P) < d, and with algebraic data. The Theorem will follow if we can show
that Ry(1,1) <1, R4(N,1) < R4(N —1,1) when N > 1, and R4(N,n) <
R4(N —1,n)+ R4(N,n — 1) when n > 1.

A function E given by (1.2), (1.3) will be called proper if each «y; is
algebraic, we have a;; # 1, and absolute logarithmic heights

h(ajp) > Dob(N) (I=1,...,n)

where Dob(N) = 1/(4N(log™ N)?) with log™ N = max(1,log N). By Theo-
rem 2 of [5], there are maps 17, ...,:T with ¢t < to(N), say ;T : Z™ — Z"
with 0 < m; < n, such that every nondegenerate solution x of (1.6), i.e., of
E(x) € Q, is of the form

(5.4) x =Ty
for some j and some y € Z™i. Furthermore, for each j with m; > 0 the
function ;E(y) := E(;Ty) is again of the general type (1.2), (1.3), and is
proper.

Observe that for j with m; = 0 there is just one x coming from (5.4),

and these together lead to at most £o(N) < 1 solutions. We are therefore
reduced to studying equations

iE(y) = P(iTy)
where m; > 0. The maps ;T described in [5] are linear (not necessarily
homogeneous) with integer coefficients, so that P(;Ty) again has rational

coefficients. They further have the property that when x = ;Ty is a non-
degenerate solution of F(x) € Q, then y is a nondegenerate solution of

jE (y) € Q. We thus may restrict ourselves to proper functions E(x).

We now apply the proposition with 7 = Dob(N), p = 1, G1(x) =
E(x) — P(x). Some of the solutions of (1.1), i.e., of G;(x) = 0, lie in the
union of < 1 hyperplanes x; = const. When n = 1, these simply give < 1
solutions, and when n > 1, then Ej(z;) may be absorbed into the constant
in (1.2), so that we get < R4(NN,n — 1) nondegenerate solutions. The re-
maining solutions of (1.1) lie in < 1 classes, with elements of a given class
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having
Ty T
(5.5) Amj Qs = Yap o

for some (1,7) # (m, j) and some 7. There clearly can be no such class unless
N > 1.

When m = [, the summands a;c); and ajja;; in (1.3) can be combined
to (14 7y)ai;}, so that k; can be reduced, or we even have Ej(x;) = 0, so
that x is degenerate. Thus the number of nondegenerate solutions in our
class is at most Rg(N — 1,n). Or, when n > 1, we may also have m # [
in (5.5). For x,x’ in the same class, (5.5) yields afﬁ";_z:“ = afil_m;, and since
Qij, 0y are not roots of unity, this either determines x;,x,, uniquely, or
x; = uz+x), T, = wz+x,, with fixed nonzero u, w, and z € Z. Substitution
into E(x) — P(x) gives a function in at most n — 1 variables, so that the
number of nondegenerate solutions in our class is < Rg(N,n —1). m

6. Proof of Proposition 5.1. Order the monomials in x as M; = 1,
Ms, M3, ... such that the total degrees do not decrease. When @ is a nonzero
polynomial, write o(Q) for the maximum number p such that M, occurs in
@ with nonzero coefficient. Call Q normalized if this coefficient is 1. Set
0(Q) =0 when @ = 0.

We will do downward induction from p=nton—1,n—2,...,1. Given

a function
n

G(x) = (gnofi + ...+ gnajl) + Q(x)
=1
with the ay; # 0 and @ a polynomial, write N(G) for the number of nonzero
coefficients g;;. Now set

p p
N:ZN(GT)7 Q:ZQ(QT)a /L:N_FQ-
r=1 r=1

Given p, Proposition 5.1 will be proved by induction on p. Observe that
n< N < pu.

CASE A: Some @, =0, say Q1 = 0. We will then deal with the equation
G1(x) = 0 of purely exponential type. For a partition P of the set of nonzero
summands of G (this set is nonempty by the hypothesis), we have S(P) = ()
if P contains a singleton, i.e., a one-element set. We thus may suppose that
for some set A € P, two summands g1j;a;; and gimjogs with (1,4) # (m, j)
and nonzero g1;;, gim; belong to A. Invoking [1] we see that solutions in S(A)
fall into < 1 classes, and gim a7 = yguicy; with fixed v for solutions x

in a given class.

CASE B: Fach @, # 0. After multiplying the G,’s (r = 1,...,p) by
suitable constants we may assume each (), to be normalized.
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Suppose | € Sy, so that (5.2) holds. Since h(aq1) > h by (5.1), there is,
e.g., by Lemma 6 of [5], an integer u; such that

1
h(our)|x| > 1 h|z;|

B~ =

h(grllalll ul) >

for x; € Z. Therefore h(grnoj]) > ih\xl + w| = holz; + wi| with
ho = Z h.
Setting gri; = griiy;; "', Tr = x; + w; we have g0 = @uofil (i=1,...,k)
and
h(Grnaf}) = holii|
for any x; € Z. We may express the functions G1,...,G), in terms of 7;

instead of x;. We carry this out for each [ € S, and then for each r,
1 < r < p. These substitutions will not affect the numbers N(G,), o(Q),
hence not N, ¢ or u. Each @, will still be normalized. Also, the truth of the
desired conclusion of the proposition will not be affected. We therefore may
suppose after suitable substitutions that

(6.1) h(grnneg)) > holzy] (1 <r<p,leS,).

When dealing with systems of equations (5.3) with given p and p which
satisfy (6.1), and with normalized nonzero polynomials @,., we will do in-
duction on ¢ = Y¥_, 0(Q,), where o(Q) denotes the number of nonzero
coefficients of a polynomial Q. We thus will have another layer of induction.

Without loss of generality we may restrict our attention to solutions x
of (5.3) with

x| = fa.

But 1 € S, for some r, and 1 € S; without loss of generality. Now (6.1)
yields h(gi11071) > holz1| = ho|x|, which is h(g111077,1) > ho|x| in other
notation. In view of this, and since ()1, being normalized, has some coef-
ficient 1, the vector whose components are the gi;;¢) and the coefficients
of @1, has height > ho|x|. Thus (4.3) holds, and Lemma 4.1 applies. Some
solutions of G1(x) = 0 may lie on a hyperplane x; = 0 for some [. Next,
there may be solutions with [x| < zs(ho,q,d(Q1)). In the present situa-
tion ¢ = N(G1) + 0(Q1) is bounded in terms of N,d,n, where n < N, so
that such solutions certainly lie in not more than c3(h, N,d) hyperplanes
x1 = const. In view of Lemma 4.1, the remaining solutions fall into at most
c(q) < ca(N,d) classes.
Solutions in a given class C have G}(x) = 0, hence

Gi(x) =Gi(x) =0
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where G < G1, but is not proportional to G1. Say
n
G = Z(gl*lafl’ +. o ghap)) +QF(x).
1=1
(An analogous notation will be used for functions G**, G°, G, G” introduced
below.) We will need the matrix M with the |S;| columns

g1
y (leSy).
(911) '

SUBCASE Bl: M has rank 1. Then in the pencil of G1,G{ there is a
nonzero G** with g;;* = 0 for each [ € S;. Suppose first that o(Q**) = 0(Q1),
so that M, with o0 = o(Q1) occurs in Q** with a coefficient § # 0. Then
G° = Gy — 071G** has

(6.2) g =91 #0 (l€5)

and 0(Q°) < o(Q1). We now replace G1,Go,...,G, by G°,Gs,...,G,, thus
replacing ¢ by a smaller number. Then also p is diminished. Since (5.2) still
holds with g;; in place of g1;1, induction on p may be applied. Now sup-
pose that o(Q**) < 0(Q1). Then after subtracting a suitable multiple of
G** from Gi, we obtain a function G° which again has (6.2), where M,
with 0 = o(Q1) appears in Q° with coefficient 1, but where there are fewer
summands, i.e., N(G°) < N(Gp) or 0(Q°) < o(Q1). Again we replace
G1,Gs,...,Gp by G°,Gs,...,G,. When N(G°) < N(Gp), then N and
hence p is diminished, and again induction on p applies. When N(G°) =
N(Gy), then p remains unchanged. But Q° is normalized, and (6.1) is true
with g7, in place of gq;1. Since 0(Q°) < 0(Q1), induction on o finishes the
argument.

SUBCASE B2: M has rank 2. (This can only happen when |S;| > 2, so
that p < n.) In this case there is a G** in the pencil of G, G§ with g{f; =0,
but ¢3}; # 0 for some [ € S;. Set

S' = {l € S1 with g}y = 0},
S" =S\ = {l € S with gij; # 0}.

Then S; = 5" U S” is a partition into two nonempty sets. Setting G’ = G,
G" = G** we have

gp #0 forle S, g} #0 forlesS”.
Now x is a common zero of the system
G'(x) =G"(x) = Ga(x) =... = Gp(x) = 0.

Since S’ US" U Sy U...US, is a partition of {1,...,n}, we may invoke the
case p + 1 of the proposition. =
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