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Note on a paper by Joung Min Song

by

Gérald Tenenbaum (Nancy)

In [3], Joung Min Song established fairly precise estimates for weighted
sums of the form ∑

n¬x
P (n)¬y

h(n)
n

,

where P (n) denotes the largest prime factor of an integer n with the con-
vention that P (1) = 1, and h is a non-negative multiplicative arithmetic
function satisfying the conditions

∑

p¬z
{h(p)− κ} log p

p
� (log z)1−δ (z ­ 2),(Ω1)

∑

p, ν­2

h(pν) log pν

pν
<∞,(Ω2)

with suitable constants κ > 0, δ ∈ ]0, 1[.
Song’s proof, which rests on an elegant theorem of Halberstam corres-

ponding to the case y ­ x, is a nice development of Wirsing’s ideas in [5].
A handy feature of this result is that, apart from positivity, only a mild
average assumption is made upon the values h(p).

A natural alternative approach to this problem is to first establish the
result for some special arithmetic function satisfying h(p) = κ for all p,
for which much more information is available, and then derive the general
statement from a suitable comparison result.

The main purpose of this note is to show that such a strategy is indeed
successful. For fixed positive κ, we let τκ(n) be the coefficient of 1/ns in
the Dirichlet series expansion of ζ(s)κ, where ζ(s) denotes the Riemann
zeta function. We shall select n 7→ τκ(n) to play the rôle of the special
function mentioned above. As we shall see, Smida’s results in [2] almost
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354 G. Tenenbaum

readily provide the required estimates, and so we shall mainly be concerned
with the comparison result.

Put
Vh(y) :=

∏

p¬y

∑

ν­0

h(pν)/pν .

Furthermore, define, as in [3], the function jκ as the continuous solution to
the differential-difference equation

uj′κ(u)− κjκ(u) + κjκ(u− 1) = 0 (u > 1)

with initial conditions jκ(u) := 0 (u < 0) and jκ(u) := e−γκuκ/Γ (κ + 1)
(0 ¬ u ¬ 1), where γ is Euler’s constant. We prove the following result.

Theorem. Let h be a non-negative multiplicative arithmetic function.
Under assumptions (Ω1) and (Ω2), we have

(1)
∑

n¬x
P (n)¬y

h(n)
n

= Vh(y)jκ(u)
{

1 +O

(
1

(log y)δ

)}

uniformly for x ­ y ­ 2 and with u := (logx)/log y. Furthermore, the same
formula holds for all complex multiplicative functions h satisfying

∑

p¬z

|h(p)− κ| log p
p

� (log z)1−δ (z ­ 2),(Ω∗1)

∑

p, ν­2

|h(pν)| log pν

pν
<∞,(Ω∗2)

∑

ν­0

h(pν)
pν

6= 0 (p ­ 2),(Ω∗3)

for suitable constants κ > 0, δ ∈ ]0, 1[.

As described above, this result is essentially proved by first showing that
it holds for h = τκ and then extending the formula to the stated hypotheses.
However, it should be stressed that Halberstam’s theorem mentioned above
is crucial for the initial step x ¬ y. Without this, using for instance Wirsing’s
theorem [5], the method would require slightly stronger hypotheses upon h,
e.g. Wirsing’s conditions h(pν) ¬ γ1γ

ν
2 with γ1 > 0, 0 < γ2 < 2, and the size

of the error term would be regulated by available effective forms of Wirsing’s
theorem. (1)

(1) For instance the effective form of Karamata’s theorem given in [4], Theorem II.7.9,
would give an error factor 1 +O(1/log2 2y). This is much weaker than desired, but Kara-
mata’s theorem is “too” general a tool for this application: it deals with Dirichlet se-
ries whose coefficients need not be multiplicative. Following Wirsing, Halberstam’s proof
strongly exploits multiplicativity and the calculations required to obtain the sharp effective
estimate are comparatively simple.
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Formula (1) is slightly more precise than Song’s. Since jκ(u) tends very
quickly towards 1, it is significant only in a restricted range for y, certainly
included in the domain u ¬ log2 y. (2) This is to be expected because the
information on h is roughly equivalent to one regarding the corresponding
Dirichlet series in a small neighbourhood (of size depending on y) of the
point s = 1 and, as shown by saddle point analysis, a larger range would
involve information in the half-plane Re s < 1 outside this neighbourhood.
In turn, such assumptions essentially amount to controlling averages of the
form

∑
p¬z h(p)/pα with some α < 1. When, for instance, 1− α is bounded

away from 0, this is equivalent to controlling
∑
p¬z h(p).

We finally note that hypothesis (Ω∗3) is only necessary to fit the specific
formulation given in (1). Indeed, without this assumption we obtain

(2)
∑

n¬x
P (n)¬y

h(n)
n

= Vh(y)jκ(u) +O((log y)κ−δ).

Let zκ denote the unique solution of the differential-difference equation

(3)




uz′κ(u) + κzκ(u− 1) = 0 (u > 1),
zκ(u) = 1 (0 ¬ u ¬ 1),
zκ(u) = 0 (u < 0),

which is continuous on [0,∞[. Then a simple calculation shows that, for all
real numbers u, we have

(4)
1

Γ (κ)

u�

0

vκ−1zκ(u− v) dv = eγκjκ(u) =
u�

0

%κ(v) dv,

where %κ is the κth fractional convolution power of the Dickman function
precisely defined in Smida’s paper [2]. Writing

Sκ(x) :=
∑

n¬x
τκ(n),

Smida showed in [2] that, for any fixed ε > 0,

Sκ(x, y) :=
∑

n¬x
P (n)¬y

τκ(n)(5)

=
{

1 +O

(
1

Lε(y)

)}
x

∞�

0−
zκ(u− v) d

(
Sκ(yv)
yv

)

holds uniformly, with u := (log x)/log y, Lε(y) := e(log y)3/5−ε
, in the domain

(6) x ­ 3, e(log x)2/5+ε ¬ y ¬ x.

(2) Here and throughout the paper, we let logk denote the k-fold iterated logarithm.
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She also proved that, for fixed κ > 0, ε > 0,

(7) Sκ(x, y) = x(log y)κ−1%κ(u)
{

1 +O

(
log(u+ 1)

log y
+

1
(log y)κ

)}

uniformly for x ­ 3, e(log2 x)5/3+ε ¬ y ¬ x.
We shall deduce our theorem mainly from (5) and (7).
To prove (1), we first investigate the case h = τκ. For notational simpli-

city, we write Vκ(y) instead of Vτκ(y). We shall show that the estimate

(8) Vκ(x, y) :=
∑

n¬x
P (n)¬y

τκ(n)
n

= Vκ(y)jκ(u)
{

1 +O

(
log3 8y
log y

)}

holds uniformly for x ­ y ­ 2, with

(9) Vκ(y) :=
∏

p¬y

(
1− 1

p

)−κ
=
{

1 +O

(
1

Lε(y)

)}
eγκ(log y)κ.

We may assume that (6) holds, and indeed that u ¬ log2 y, since otherwise
jκ(u) = 1 + O(1/log y) and the left-hand side of (8) is a non-decreasing
function of u. By partial summation

(10)
∑

n¬x
P (n)¬y

τκ(n)
n

=
x�

1

Sκ(t, y)
t2

dt+
Sκ(x, y)

x
.

By (7), the second term on the right is� (log y)κ−1, and so may be absorbed
by the error term in (8). To estimate the first term, we consider two cases,
according as κ ­ 1 or not.

When κ ­ 1, we have from (7), in the considered range,
x�

1

Sκ(t, y)
t2

dt =
{

1 +O

(
log3 8y
log y

)}
(log y)κ

u�

0

%κ(v) dv,

which implies (8) by (4) and (9).
When 0 < κ < 1, we apply (5) and reverse the order of summations. We

obtain
x�

1

Sκ(t, y)
t2

dt =
{

1 +O

(
1

Lε(y)

)}
Jκ(x, y)

with

Jκ(x, y) :=
∞�

0−
d
(
Sκ(yv)
yv

) x�

1

zκ

(
log t
log y

− v
)

dt
t
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= (log y)
∞�

0−
d
(
Sκ(yv)
yv

) u�

0

zκ(w − v) dw = (log y)
u�

0

zκ(u− v)
Sκ(yv)
yv

dv.

Using the classical estimate

(log y)
u�

0

Sκ(yv)
yv

dv =
∑

n¬x

τκ(n)
n
− 1
x

∑

n¬x
τκ(n)

=
(u log y)κ

Γ (κ+ 1)
+O

(
(u log y)κ

1 + u log y

)
,

valid uniformly for y ­ 2, u ­ 0, we derive from the above and (4) the
formula

Jκ(x, y) =
(log y)κ

Γ (κ)

u�

0

vκ−1zκ(u− v) dv +R(11)

= jκ(u)eγκ(log y)κ +R

with

R =
u�

0

zκ(u− v) d
{
O

(
(v log y)κ

1 + v log y

)}
.

This quantity may be estimated by partial summation, admitting for the
moment that, still for 0 < κ < 1,

(12) z′κ(v) ¬ 0 (v > 0, v 6= 1).

Indeed, we obtain, conditionally to (12), for u ­ 1,

R� (log y)κ−1 − (log y)κ−1
u�

0

z′κ(u− v)vκ−1 dv � (log y)κ−1,

where the last integral has been estimated by differentiating (4).
It remains to establish (12). We first note that (3) implies

{uκzκ(u)}′ = κuκ−1{zκ(u)− zκ(u− 1)} (u > 0, u 6= 1)

and so, for all u ­ 1,

uκzκ(u) = κ

u−1�

0

{vκ−1 − (v + 1)κ−1}zκ(v) dv + κ

u�

u−1

vκ−1zκ(v) dv.

This plainly implies that zκ(u) ­ 0 for all u and (12) follows in view of (3).
This completes the proof of (8).
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We now prove the first assertion of our theorem. Let Vh(x, y) denote the
sum on the left-hand side of (1). As in Song’s paper, we introduce

Th(x, y) :=
x�

1

Vh(t, y)
dt
t

=
∑

n¬x
P (n)¬y

h(n)
n

log
(
x

n

)
.

Wirsing’s functional equation for Vh(x, y) stated and proved in Lemma 2
of [3] readily provides (see equation (4.12) of [3])

(13) Vh(x, y) logx = (κ+ 1)Th(x, y)− κTh(x/y, y) +O((log y)κ+1−δ).

We consider y as fixed and introduce

λh(u) := Th(x, y)/(log y)κ+1 = Th(yu, y)/(log y)κ+1.

This function of u is differentiable except perhaps when yu ∈ N. At these
points, we define λ′h(u) by right continuity, so that λ′h(u)=Vh(yu, y)/(log y)κ

for all u. Then (13) can be rewritten as

uλ′h(u) = (κ+ 1)λh(u)− κλh(u− 1) +O

(
1

(log y)δ

)
(u ­ 1).

We apply this for both functions h and τk, multiply the second equation by

Cκ(h) :=
∏

p

(
1− 1

p

)κ∑

ν­0

h(pν)
pν

,

and subtract. Writing µ(u) := λh(u)− Cκ(h)λτκ(u), we get

(14) uµ′(u) = (κ+ 1)µ(u)− κµ(u− 1) +O

(
1

(log y)δ

)
(u ­ 1),

which can be rewritten as
d

du

{
µ(u)
uκ+1

}
= −κµ(u− 1)

uκ+2 +O

(
1

uκ+2(log y)δ

)
(u ­ 1),

from which we infer that, for 1 ¬ u ¬ v ¬ u+ 1,

(15)
|µ(v)|
vκ+1 ¬

|µ(u)|
uκ+1 + κ

v�

u

|µ(w − 1)|
wκ+2 dw +O

(
1

vκ+2(log y)δ

)
.

We now observe that Halberstam’s theorem stated and proved in [3] (The-
orem A), implies

(16) µ(u)� 1/(log y)δ

for 0 ¬ u ¬ 1. Thus, by a routine induction, (15) yields that (16) remains
true for bounded u. Let q : ]0,∞[→ R be the solution defined in [1] to the
adjoint equation corresponding to (14), namely

(17) uq′(u) + (κ+ 2)q(u)− κq(u+ 1) = 0 (u > 0).



Note on a paper by Joung Min Song 359

Then q(u) ∼ 1/u2 as u→∞. Moreover, from (14) and (17) we get

d
du

{
uµ(u)q(u)− κ

u�

u−1

µ(v)q(v + 1) dv
}
� q(u)

(log y)δ
(u ­ 1).

We integrate this over the range [1, u] and use (16) for 0 ¬ u ¬ 1. We obtain

uµ(u)q(u) = κ

u�

u−1

µ(v)q(v + 1) dv +O

(
1

(log y)δ

)
(u ­ 1).

We use this formula in the form that, for a suitable constant A > 0, we have

(18) u|µ(u)q(u)| ¬ κ
u�

u−1

|µ(v)q(v + 1)|dv +
A

(log y)δ
(u ­ 1).

We are now in a position to conclude the argument. Let u0 > 8κ+ 1 be
such that 1

2 ¬ q(u)u2 ¬ 2 for u ­ u0, and let B denote a constant exceeding
4A and such that

|µ(u)| ¬ Bu/(log y)δ (1 ¬ u ¬ u0).

Define u1 as the greatest lower bound of values of u with |µ(u)|>Bu/(log y)δ.
Then, trivially, u1 ­ u0. Moreover, if u1 is finite, then by (18) we have

1
2B ¬ 2κB/u1 + A.

This in turn implies 1
2−2κ/u1 ¬ A/B ¬ 1

4 , whence u1 ¬ 8κ, a contradiction.
Thus, u1 is not finite and we have

|µ(u)| ¬ Bu/(log y)δ (u ­ 1).

Inserting back in (14), using (8) and the fact that

Cκ(h) =
∏

p¬y

(
1− 1

p

)κ∑

ν­0

h(pν)
pν

{
1 +O

(
1

(log y)δ

)}
,

which easily follows from (Ω1) and (Ω2), we obtain (1).

We now prove the second part of our theorem. A standard convolution
argument yields (1) from (8) under assumptions (Ω∗j ) (1 ¬ j ¬ 3). Indeed,
writing h = τκ ∗ g, we deduce in turn from (Ω∗1) and (Ω∗2) that

∑

p, ν­2

|g(pν)|/pν <∞,
∑

m­1

|g(m)|/m <∞

and that
∑

P (n)¬y

|g(n)| logn
n

¬
∑

P (m)¬y

|g(m)|
m

∑

p¬y, ν­1

|g(pν)|
pν

log pν(19)

� (log y)1−δ.
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Now ∑

n¬x
P (n)¬y

h(n)
n

=
∑

d¬x
P (d)¬y

g(d)
d
Vκ(x/d, y)

and, using the fact that jκ(u) = jκ(1)uκ for 0 ¬ u ¬ 1, we deduce from (8)
and classical estimates for Vκ(y, y) that

Vκ(x/d, y) = jκ(u)Vκ(y)
{

1 +O

(
log3 8y + log d

log y

)}

uniformly for x ­ y ­ 2, d ­ 1. Taking (19) into account, we thus obtain
∑

n¬x
P (n)¬y

h(n)
n

= Vκ(y)
∑

d¬x
P (d)¬y

g(d)
d
jκ(u)

{
1 +O

(
log3 8y + log d

log y

)}

= Vκ(y)jκ(u)
{ ∑

P (d)¬y

g(d)
d

+O

( ∑

P (d)¬d

|g(d)|(log3 8y + log d)
d log y

)}

= Vh(y)jκ(u)
{

1 +O

(
1

(log y)δ

)}
.

This completes the proof of (1).
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