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Note on a paper by Joung Min Song
by

GERALD TENENBAUM (Nancy)

In [3], Joung Min Song established fairly precise estimates for weighted

sums of the form
y M
n b
n<r
P(n)<y

where P(n) denotes the largest prime factor of an integer n with the con-
vention that P(1) = 1, and h is a non-negative multiplicative arithmetic
function satisfying the conditions

1
() Z{h(p) — Kk} OgP < (log z)t7? (2 > 2),
p<z p
h(p”)1 v
(©2) S M ler”
p, V=2 p

with suitable constants x > 0, § € |0, 1].

Song’s proof, which rests on an elegant theorem of Halberstam corres-
ponding to the case y > z, is a nice development of Wirsing’s ideas in [5].
A handy feature of this result is that, apart from positivity, only a mild
average assumption is made upon the values h(p).

A natural alternative approach to this problem is to first establish the
result for some special arithmetic function satisfying h(p) = x for all p,
for which much more information is available, and then derive the general
statement from a suitable comparison result.

The main purpose of this note is to show that such a strategy is indeed
successful. For fixed positive k, we let 7,(n) be the coefficient of 1/n® in
the Dirichlet series expansion of ((s)”, where ((s) denotes the Riemann
zeta function. We shall select n — 7,(n) to play the role of the special
function mentioned above. As we shall see, Smida’s results in [2] almost
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readily provide the required estimates, and so we shall mainly be concerned
with the comparison result.
Put

)= 1T S neh) /v

p<y v=20
Furthermore, define, as in [3], the function j, as the continuous solution to
the differential-difference equation
u.];,<<u) - HjN(u) + Hjﬁ(u - 1) =0 (u > 1)
with initial conditions j.(u) := 0 (u < 0) and j.(u) == e ""u"/I'(k + 1)
(0 < u < 1), where v is Euler’s constant. We prove the following result.

THEOREM. Let h be a non-negative multiplicative arithmetic function.
Under assumptions (1) and (2), we have

Q) > M vmiw{i+o( 5]

n<x
P(n)<y

uniformly for x >y > 2 and with u := (logx)/logy. Furthermore, the same
formula holds for all comple:v multiplicative functions h satisfying

1
(€27) Z n{p) = x|logp FL| %P « (log2)'™%  (2>2),
p<z
h(p¥)|log p”

(©3) Z )l logp”

p,v=>2 p

" h(p”

() SHD so o),

v>0

for suitable constants k> 0, 6 € ]0, 1].

As described above, this result is essentially proved by first showing that
it holds for A = 7, and then extending the formula to the stated hypotheses.
However, it should be stressed that Halberstam’s theorem mentioned above
is crucial for the initial step x < y. Without this, using for instance Wirsing’s
theorem [5], the method would require slightly stronger hypotheses upon h,
e.g. Wirsing’s conditions h(p¥) < v1v4 with v3 > 0, 0 < 72 < 2, and the size
of the error term would be regulated by available effective forms of Wirsing’s
theorem. (1)

(1) For instance the effective form of Karamata’s theorem given in [4], Theorem I1.7.9,
would give an error factor 14 O(1/logy 2y). This is much weaker than desired, but Kara-
mata’s theorem is “too” general a tool for this application: it deals with Dirichlet se-
ries whose coefficients need not be multiplicative. Following Wirsing, Halberstam’s proof
strongly exploits multiplicativity and the calculations required to obtain the sharp effective
estimate are comparatively simple.
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Formula (1) is slightly more precise than Song’s. Since j,(u) tends very
quickly towards 1, it is significant only in a restricted range for y, certainly
included in the domain u < log,y. (?) This is to be expected because the
information on A is roughly equivalent to one regarding the corresponding
Dirichlet series in a small neighbourhood (of size depending on y) of the
point s = 1 and, as shown by saddle point analysis, a larger range would
involve information in the half-plane Re s < 1 outside this neighbourhood.
In turn, such assumptions essentially amount to controlling averages of the
form 3" h(p)/p* with some a < 1. When, for instance, 1 — « is bounded
away from 0, this is equivalent to controlling > _h(p).

We finally note that hypothesis (£23) is only necessary to fit the specific
formulation given in (1). Indeed, without this assumption we obtain

2 > M v tsetw) + 0oy ).

n<
P(n)<y

Let 2, denote the unique solution of the differential-difference equation
uzl (u) + kze(u—1)=0 (u>1),
(3) Ze(u) =1 (0<u<1),
ze(u) =0 (u<0),
which is continuous on [0, co[. Then a simple calculation shows that, for all
real numbers u, we have

() ﬁ év”—lzﬁ(u —v)dv = " (u) = é@m(v) dv,

where g, is the sth fractional convolution power of the Dickman function
precisely defined in Smida’s paper [2]. Writing

Se(w) =Y 7(n),

n<x

Smida showed in [2] that, for any fixed € > 0,

(5) Sn(wvy) = Z Tn(n)

n<x
P(n)<y

{reo(z) S wema(%)

holds uniformly, with u := (log z)/logy, L. (y) := e(l°% 9)3/5_6, in the domain

(6) x>3, ellos?

2/54¢
) <y<rT

(%) Here and throughout the paper, we let log), denote the k-fold iterated logarithm.
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She also proved that, for fixed x > 0, ¢ > 0,

0 See) = alogu~asti {1+ 0( P 4 o))

uniformly for x > 3, o(logy z)°/*+ <y <.
We shall deduce our theorem mainly from (5) and (7).

To prove (1), we first investigate the case h = 7. For notational simpli-
city, we write Vi (y) instead of V,_(y). We shall show that the estimate

8 Vilmy) = Tnf(ln):V“(y)j“(“){HO(logSSy)}

logy

n<x
P(n)<y

holds uniformly for x > y > 2, with

(9) Vo) =] (1 - %)K = {1 + O<L51(y)> }e”“(logy)"”.

Py

We may assume that (6) holds, and indeed that u < log, y, since otherwise
Jr(u) = 14+ O(1/logy) and the left-hand side of (8) is a non-decreasing
function of u. By partial summation

T.(n S, t,y Se(x,y
(10) > Sl g Seley)
n<x 1
P(n)<y

By (7), the second term on the right is < (logy)*~!, and so may be absorbed
by the error term in (8). To estimate the first term, we consider two cases,
according as k > 1 or not.

When k > 1, we have from (7), in the considered range,

x i 1 R
Y logy 0

which implies (8) by (4) and (9).
When 0 < k < 1, we apply (5) and reverse the order of summations. We

obtain
BT

Jo(z,y) = OSOd(SH(yv)> ggzK(logt _v> %

with

logy
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NVERUIAN R Sk(y")
= (logy) \ d - ze(w —v)dw = (logy) | 24 (u — v)———=dv.
gy OS_ < >§] gy (S) ;

Using the classical estimate

(10gy)s Sﬁ(yv) dv = Z Tﬁ(n) _ l Z T,Q(n)
0

Lz n<x

_ (ulogy)™ o ( (ulogy)”
1+ulogy

valid uniformly for y > 2, u > 0, we derive from the above and (4) the
formula

I€

log y

(11) Ju(z,y) = Sv“l u—v)dv+ R
0

—JH( ) 7" (logy)" +

R={au- oo {500

0

with

[

This quantity may be estimated by partial summation, admitting for the
moment that, still for 0 < k < 1,

(12) 21(v) <0 (v>0, v#1).

K

Indeed, we obtain, conditionally to (12), for u > 1,

u

R < (logy)"~" — (logy)** | 2/.(u — v)o" " dv < (logy)" ",

0
where the last integral has been estimated by differentiating (4).
It remains to establish (12). We first note that (3) implies
{u ze(u)} = ku" Yz (u) — zo(u— 1)} (>0, u#l)
and so, for all u > 1,

uz.(u) = kK § "t — (v + 1Dz (v)dv + & S v 2, (v) do.
0 u—1

This plainly implies that z,(u) > 0 for all v and (12) follows in view of (3).
This completes the proof of (8).
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We now prove the first assertion of our theorem. Let V},(z,y) denote the
sum on the left-hand side of (1). As in Song’s paper, we introduce

€T

dt h(n) x
)= = 3 F P (1)
P(n)<y
Wirsing’s functional equation for Vj(x,y) stated and proved in Lemma 2
of [3] readily provides (see equation (4.12) of [3])
(13)  Valw,y)logz = (k + D)Ti(z,y) — kTi(z/y,y) + O((logy) "+ ~°).

We consider y as fixed and introduce

An(u) = Th(z,y)/(logy)**' = Th(y",y)/(logy)" .

This function of u is differentiable except perhaps when y* € N. At these
points, we define A} (u) by right continuity, so that A} (v) =V, (y",vy)/(logy)”
for all u. Then (13) can be rewritten as

1
uN, (w) = (k + DAp(u) — Xy (v —1 +O(7> u>1).
n(w) = (k4 1)An(u) (u—1) Togy)? (u>1)
We apply this for both functions ~ and 7, multiply the second equation by
1\" h(p”
e =TI (1-5) S22,
p p V>0 p
and subtract. Writing pu(u) := A\p(u) — Cx(h)As, (u), we get

() ) = (e D) = k- )+ 0( o) (s 1),

which can be rewritten as

Y T TP

from which we infer that, for 1 <u <v <u+1,

v

[p@)] _ [p(w)] [p(w —1)] 1
(15) 7),'erl < un+1 +/€S w/<a+2 dw+0 Uﬁa+2(logy)6 :

We now observe that Halberstam’s theorem stated and proved in [3] (The-
orem A), implies
(16) p() < 1/(logy)®

for 0 < w < 1. Thus, by a routine induction, (15) yields that (16) remains
true for bounded u. Let ¢ : |0, 00[ — R be the solution defined in [1] to the
adjoint equation corresponding to (14), namely

(17) uq' (u) + (k +2)q(u) — kg(u+1) =0 (u > 0).
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Then g(u) ~ 1/u? as u — oo. Moreover, from (14) and (17) we get

d ¢ q(u)
qutuea) =5 | pal+1)do} < G20

> 1).
T (u>1)

u—1

We integrate this over the range [1, u] and use (16) for 0 < u < 1. We obtain

wlwa(w) = | o+ Do+ 0 (o) (w1

u—1

We use this formula in the form that, for a suitable constant A > 0, we have

u

(18)  wlp(wq) < | [n@)g(v+ 1)|dv+

u—1

A
oz (u>1).

We are now in a position to conclude the argument. Let ug > 8x + 1 be
such that % < q(u)u? < 2 for u > ug, and let B denote a constant exceeding
4A and such that

|u(u)| < Bu/(logy)® (1< u < up).

Define u; as the greatest lower bound of values of u with |u(u)| > Bu/(log y)°.
Then, trivially, u; > ug. Moreover, if u; is finite, then by (18) we have

%B < 26B/uy + A.

This in turn implies § —2x/u; < A/B < %, whence u; < 8k, a contradiction.
Thus, w1 is not finite and we have

|u(u)| < Bu/(logy)®  (u>1).
Inserting back in (14), using (8) and the fact that

T () R o)

Py v=0
which easily follows from (£2;) and (£23), we obtain (1).

We now prove the second part of our theorem. A standard convolution
argument yields (1) from (8) under assumptions (27) (1 < j < 3). Indeed,

*

writing h = 7,; * g, we deduce in turn from (Q7) and (25) that

S g/ < oo, S lg(m)]/m < oo

p,v=2 m21
and that
l9(n)[logn lg(m)] lg(p¥)|
19 _— < N /1 ICACERAN v
P(n)<y P(m)<y p<y, vl

< (logy)'~°.
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Now

> M s Sy aay)

n<x d<z
P(n)<y P(d)<y

and, using the fact that j.(u) = j.(1)u” for 0 < u < 1, we deduce from (8)
and classical estimates for Vi (y,y) that
logs 8y + log d> }

Vi(z/d,y) :jﬁ(u)Vn(y){1+O< logy

uniformly for z > y > 2, d > 1. Taking (19) into account, we thus obtain

T @zvﬁ(y) > %l)j”(“){“r()(w)}

n<x d<z lOgy
P(n)<y P(d)<y
B , g9(d) |9(d)|(logs 8y + log d)
V{3 o Y Wl
P(d)<y P(d)<d

= Viin{1+0( s )

This completes the proof of (1).
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