
ACTA ARITHMETICA

XCVII.4 (2001)

Supplements to the theory of quartic residues

by

Zhi-Hong Sun (Huaiyin)

1. Introduction. Let Z be the set of integers, i =
√
−1 and Z[i] =

{a + bi | a, b ∈ Z}. For π = a + bi ∈ Z[i] the norm of π is given by
Nπ = ππ = a2 + b2. Here π means the complex conjugate of π. When b ≡ 0
(mod 2) and a+ b ≡ 1 (mod 4) we say that π is primary .

If π or −π is primary in Z[i], then we may write π = ±π1 . . . πr, where
π1, . . . , πr are primary primes. For α ∈ Z[i] the quartic Jacobi symbol

(
α
π

)
4

is defined by (
α

π

)

4
=
(
α

π1

)

4
. . .

(
α

πr

)

4
,

where
(
α
πs

)
4 is the quartic residue character of α modulo πs which is given

by (
α

πs

)

4
=
{

0 if πs |α,
ir if α(Nπs−1)/4 ≡ ir (modπs).

According to [IR, pp. 122–123, 311] and [BEW, pp. 242–243, 247] the
quartic Jacobi symbol has the following properties:

(1.1) If a+ bi is primary in Z[i], then
(

i

a+ bi

)

4
= i(a

2+b2−1)/4 and
(

1 + i

a+ bi

)

4
= i(a−b−b

2−1)/4.

(1.2) If α and π are relatively prime primary elements of Z[i], then
(
α

π

)

4
=
(
α

π

)−1

4
=
(
α

π

)

4
.

(1.3) If a + bi and c + di are relatively prime primary elements of Z[i],
then (

a+ bi

c+ di

)

4
= (−1)

a−1
2 · c−1

2

(
c+ di

a+ bi

)

4
.
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The assertion (1.3) is now called the general law of biquadratic reci-
procity , which was proposed by Gauss and later proved by Jacobi and Eisen-
stein.

Let
(
a
p

)
be the Legendre symbol. In the nineteenth century Dirichlet (see

[V]) showed

Theorem 1.1. Let p and q be distinct primes, p ≡ 1 (mod 4), p =
a2 + b2, 2 | b and q∗ = (−1)(q−1)/2q. Then q∗ is a quartic residue of p if and
only if there is an integer m such that m2 ≡ p (mod q) and

(m(m+b)
q

)
= 1.

In 1969, K. Burde [B] discovered the following rational quartic reciprocity
law.

Theorem 1.2. Let p and q be distinct primes of the form 4n + 1, p =
a2 + b2 (2 - a), q = c2 + d2 (2 - c) and

(
q
p

)
= 1. If

(
ad−bc
q

)
= (−1)(q−1)/4 then

q is a quartic residue (mod p) if and only if p is a quartic residue (mod q).
If
(
ad−bc
q

)
= −(−1)(q−1)/4 then q is a quartic residue (mod p) if and only if

p is a quartic nonresidue (mod q).

In 1979 H. von Lienen [Li] extended Burde’s reciprocity law to quartic
nonresidues. For further papers along this line one may consult [L1], [L2],
[Le1], [Le2], [W], [Y] and [S1].

Let p > 0 be an odd number, and let Sp denote the set of those rational
numbers whose denominator is prime to p. Inspired by [S2] we introduce the
sets Qr(p) (r = 0, 1, 2, 3) as follows:

Qr(p) =
{
k

∣∣∣∣
(
k + i

p

)

4
= ir, k ∈ Sp

}
(r = 0, 1, 2, 3).

In Section 2 we mainly study the properties of Qr(p) (r = 0, 1, 2, 3)
and the connections between Qr(p) (r = 0, 1, 2, 3) and quartic reciprocity
laws. We also establish a rational quartic reciprocity law which is similar to
Theorem 1.2, and give a simple criterion for quartic residuacity.

In Section 3 we concentrate our attention on the structure of Qr(p)
(r = 0, 1, 2, 3). For any odd prime p and k ∈ Sp set

[k]p = {x | x ≡ k (mod p), x ∈ Sp}, [∞]p = {n/m | m,n ∈ Z, p |m, p -n},
Q′0(p) = {[k]p | k ∈ Q0(p)} ∪ {[∞]p}, Q′r(p) = {[k] | k ∈ Qr(p)}

(r = 1, 2, 3).

It is proved that
⋃3
r=0Q

′
r(p) forms a cyclic group of order p −

(−1
p

)
and

Q′0(p) is a subgroup of order
(
p−

(−1
p

))
/4.

The main result of Section 4 is the isomorphism between the group Q′(p)
and those primitive binary quadratic forms of discriminant −16p2, where
Q′(p) =

⋃3
r=0Q

′
r(p). As an application we obtain a general criterion for

quartic residuacity in terms of binary quadratic forms.
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For later convenience we list the following notations:
Z—the set of integers, N—the set of natural numbers, Z[i]—the set

{a+bi | a, b ∈ Z}, Nπ—the norm of π, Sp—the set of those rational numbers
whose denominator is prime to p, [x]—the greatest integer not exceeding x,
[k]p—the set {x | x ≡ k (mod p), x ∈ Sp}, gcd(a1, . . . , ak)—the greatest
common divisor of a1, . . . , ak, m |n—m divides n, m -n—m does not divide
n,
(
a
p

)
—the Legendre symbol,

(
α
π

)
4—the quartic Jacobi symbol.

2. The properties of Qr(p). Let p ≥ 1 be an odd number. For a, b ∈ Sp
it is clear that there are unique integers a0, b0 ∈ {0, 1, . . . , p − 1} satisfying
a ≡ a0 (mod p) and b ≡ b0 (mod p). From this we may define

gcd(a, p) = gcd(a0, p) and
(
a+ bi

p

)

4
=
(
a0 + b0i

p

)

4
for p > 1.

When p = 1 define gcd(a, p) = 1 and
(
a+bi
p

)
4 = 1.

One can easily verify the following facts:

(2.1) If a, b, c, d ∈ Sp, then
(
a+ bi

p

)

4

(
c+ di

p

)

4
=
(

(a+ bi)(c+ di)
p

)

4
.

(2.2) If n ∈ Sp and gcd(p, n) = 1, then
(
n
p

)
4 = 1.

(2.3) If p1, p2 are positive odd numbers and a, b ∈ Sp1p2 , then
(
a+ bi

p1p2

)

4
=
(
a+ bi

p1

)

4

(
a+ bi

p2

)

4
.

Definition 2.1. Suppose p ∈ N and p ≡ 1 (mod 2). For r = 0, 1, 2, 3
define

Qr(p) =
{
k

∣∣∣∣
(
k + i

p

)

4
= ir, k ∈ Sp

}
.

From the above definition it is easy to prove the following results:

(2.4)
⋃3
r=0Qr(p) = {k | gcd(k2 + 1, p) = 1, k ∈ Sp}.

(2.5) If r ∈ {0, 1} then k ∈ Q2r(p) if and only if −k ∈ Q2r(p).
(2.6) k ∈ Q1(p) if and only if −k ∈ Q3(p).

Example 2.1. Let p be an odd prime. For r = 0, 1, 2 set

Q∗r(p) = {k | k ∈ Qr(p) ∩ {0,±1, . . . ,±(p− 1)/2}}.
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Then
Q∗0(3) = ∅, Q∗1(3) = {−1}, Q∗2(3) = {0};
Q∗0(5) = ∅, Q∗1(5) = {1}, Q∗2(5) = {0};
Q∗0(7) = {0}, Q∗1(7) = {2, 3}, Q∗2(7) = {−1, 1};
Q∗0(11) = {±2}, Q∗1(11) = {1, 3, 4}, Q∗2(11) = {0,±5};
Q∗0(13) = {±3}, Q∗1(13) = {−1,−2, 6}, Q∗2(13) = {0,±4};
Q∗0(17) = {0,±1}, Q∗1(17) = {−2, 3,−6,−8}, Q∗2(17) = {±5,±7};
Q∗0(19) = {±4,±9}, Q∗1(19) = {−1, 3,−6, 7,−8}, Q∗2(19) = {0,±2,±5}.

Theorem 2.1 (The reciprocity law of Qr(p)). Let p1 and p2 be positive
odd numbers, m,n ∈ Z, gcd(p1p2, n) = 1 and r ∈ {0, 1, 2, 3}. If p1 ≡ ±p2

(mod 8(m2 + n2)), then m/n ∈ Qr(p1) if and only if m/n ∈ Qr(p2).

Proof. Write m+ni = ij(1+i)kπ, p1 =
(−1
p1

)
p∗1 and p2 =

(−1
p2

)
p∗2, where

π is primary in Z[i]. Since p1 ≡ ±p2 (mod 8(m2 + n2)) we see that
(

2
p1

)
=
(

2
p2

)
and p∗1 ≡ p∗2 (modm2 + n2).

If m 6≡ n (mod 2) then k = 0. By (1.1) and (1.3),
(
m+ ni

p1

)

4
=
(
i

p1

)j

4

(
π

p1

)

4
= (−1)(p2

1−1)j/8
(
π

p∗1

)

4

=
(

2
p1

)j(
p∗1
π

)

4
=
(

2
p2

)j(
p∗2
π

)

4
=
(
m+ ni

p2

)

4
.

If m ≡ n (mod 2) then p∗1 ≡ p∗2 (mod 16) and p∗1 ≡ p∗2 (modm2 + n2);
using (1.1) and (1.3) we see that
(
m+ ni

p1

)

4
=
(
i

p1

)j

4

(
1 + i

p1

)k

4

(
π

p1

)

4
= (−1)(p2

1−1)j/8i(p
∗
1−1)k/4

(
p∗1
π

)

4

= (−1)(p2
2−1)j/8i(p

∗
2−1)k/4

(
p∗2
π

)

4
=
(
m+ ni

p2

)

4
.

So the result follows from Definition 2.1 and (2.2).

Now we point out the connections between Qr(p) (r ∈ {0, 1, 2, 3}) and
quartic residues.

Theorem 2.2. Let p be a prime of the form 4m+ 1, p = a2 + b2 (a, b ∈
Z), 2 | b, a + b ≡ 1 (mod 4), q ∈ N, 2 - q, p - q, gcd

(
b, q

gcd(b,q)

)
= 1, q∗ =

(−1)(q−1)/2q and r ∈ {0, 1, 2, 3}. Then

(q∗)(p−1)/4 ≡ (b/a)r (mod p) if and only if a/b ∈ Qr
(

q

gcd(b, q)

)
.
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Proof. Set π = a+ bi. Then p = ππ. Since π is primary it is clear that

(q∗)(p−1)/4 ≡ (b/a)r (mod p) ⇔ (q∗)(p−1)/4 ≡ (b/a)r ≡ ir (modπ)

⇔
(
q∗

π

)

4
= ir ⇔

(
π

q

)

4
=
(
π

q∗

)

4
= ir.

But (
π

q

)

4
=
(

a+ bi

q/gcd(b, q)

)

4

(
a+ bi

gcd(b, q)

)

4
=
(

a/b+ i

q/gcd(b, q)

)

4
.

So the result follows immediately.

Theorem 2.3. Let p be an odd prime, r ∈ {0, 1, 2, 3} and k ∈ Sp for
which k2 + 1 6≡ 0 (mod p).

(i) If p ≡ 1 (mod 4) and t2 ≡ −1 (mod p) then k ∈ Qr(p) if and only if
(
k + t

k − t

)(p−1)/4

≡ tr (mod p).

(ii) If p ≡ 3 (mod 4) then k ∈ Qr(p) if and only if
(
k − i
k + i

)(p+1)/4

≡ ir (mod p).

Proof. Suppose p ≡ 1 (mod 4), p = a2 + b2, 2 | b and π = a + bi. Then
b/a ≡ i (modπ). If a ≡ 1− b (mod 4) then π is primary. So we have

(
k + i

p

)

4
=
(
k + i

π

)

4

(
k + i

π

)

4
=
(
k + i

π

)

4

(
k − i
π

)

4

=
(
k + i

π

)

4

(
k − i
π

)−1

4
≡
(
k + i

k − i

)(p−1)/4

≡
(
k + b/a

k − b/a

)(p−1)/4

(modπ).

From this it follows that

k ∈ Qr(p) ⇔
(
k + i

p

)

4
= ir

⇔
(
k + b/a

k − b/a

)(p−1)/4

≡ ir ≡
(
b

a

)r
(modπ)

⇔
(
k + b/a

k − b/a

)(p−1)/4

≡
(
b

a

)r
(mod p)

⇔
(
k − b/a
k + b/a

)(p−1)/4

≡
(
a

b

)r
≡
(
− b
a

)r
(mod p).

This together with the fact that t ≡ ±b/a (mod p) proves (i).
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Now consider the case p ≡ 3 (mod 4). Note that (k+ i)p ≡ kp+ ip ≡ k− i
(mod p). So we have

(
k + i

p

)

4
≡ (k + i)(p2−1)/4 =

(k + i)p(p+1)/4

(k + i)(p+1)/4
≡
(
k − i
k + i

)(p+1)/4

(mod p),

which implies that

k ∈ Qr(p) ⇔
(
k − i
k + i

)(p+1)/4

≡ ir (mod p).

This completes the proof.

Corollary 2.1. Let p ≡ 1 (mod 4) be a prime, t2 ≡ −1 (mod p), r ∈
{0, 1, 2, 3} and m ∈ Sp with m 6≡ 0, 1 (mod p). Then m(p−1)/4 ≡ tr (mod p)
if and only if m+1

m−1 t ∈ Qr(p).

Corollary 2.2. Let p and q be distinct primes, r ∈ {0, 1, 2, 3}, p ≡ 1
(mod 4) and p = a2 + b2 with 2 | b.

(i) If q ≡ 1 (mod 4) and q = c2 + d2 with 2 | d then q(p−1)/4 ≡
(
b
a

)r
(mod p) if and only if

p(q−1)/4 ≡
(
ac− bd

q

)(
d

c

)r
(mod q).

(ii) If q ≡ 3 (mod 4) then (−q)(p−1)/4 ≡
(
b
a

)r
(mod p) if and only if

(
a− bi
a+ bi

)(q+1)/4

≡ ir (mod q).

Proof. Let q∗ = (−1)(q−1)/2q. If q | b, it follows from Theorem 2.2 that
(q∗)(p−1)/4 ≡ 1 (mod p). From this it is easily seen that the result is true in
this case.

Now assume q - b. From Theorems 2.2 and 2.3 we know that

(q∗)(p−1)/4 ≡ (b/a)r (mod p) ⇔ a/b ∈ Qr(q)

⇔





(
ac+ bd

ac− bd

)(q−1)/4

≡
( a
b + d

c
a
b − d

c

)(q−1)/4

≡
(
d

c

)r
(mod q)

if q ≡ 1 (mod 4),
(
a− bi
a+ bi

)(q+1)/4

≡
( a
b − i
a
b + i

)(q+1)/4

≡ ir (mod q)

if q ≡ 3 (mod 4).
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To complete the proof, we note that
(
ac+ bd

ac− bd

)(q−1)/4

=
(a2c2 − b2d2)(q−1)/4

(ac− bd)(q−1)/2

≡ (a2c2 + b2c2)(q−1)/4
(
ac− bd

q

)

≡ p(q−1)/4
(
c

q

)(
ac− bd

q

)

= p(q−1)/4
(
ac− bd

q

)
q.

(Observe that
(
c
q

)
=
( |c|
q

)
=
(
q
|c|
)

=
(
d2

|c|
)

= 1.)

Remark 2.1. Corollary 2.2(i) is equivalent to the rational quartic reci-
procity law given by K. Burde [B] and H. von Lienen [Li].

Lemma 2.1. Let p ∈ N be odd , m,n ∈ Z and gcd(m2 + n2, p) = 1. Then
(
m+ ni

p

)2

4
=
(
m2 + n2

p

)
.

Proof. By (2.3), it is sufficient to prove the result for odd primes. Now
assume that p is an odd prime. If p ≡ 1 (mod 4) then p = ππ, where π is
primary in Z[i]. It is clear that

(
m+ ni

p

)2

4
=
(
m+ ni

π

)2

4

(
m+ ni

π

)2

4

=
(
m+ ni

π

)2

4

(
m− ni
π

)−2

4
≡
(
m+ ni

m− ni

)(p−1)/2

=
(m+ ni)p−1

(m2 + n2)(p−1)/2
≡
(
m2 + n2

p

)
(modπ).

Thus,
(
m+ni
p

)2
4 =

(
m2+n2

p

)
.

If p ≡ 3 (mod 4), then
(
m+ ni

p

)2

4
≡ (m+ ni)(p2−1)/2 =

(
(m+ ni)p

m+ ni

)(p+1)/2

≡
(
m− ni
m+ ni

)(p+1)/2

=
(m2 + n2)(p+1)/2

(m+ ni)p+1

≡ (m2 + n2)(p+1)/2

(m+ ni)(m− ni) ≡
(
m2 + n2

p

)
(mod p).

Hence again
(
m+ni
p

)2
4 =

(
m2+n2

p

)
.

Combining the above we get the assertion.
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Theorem 2.4. Let p be an odd prime and k ∈ Sp. Then k ∈ Q0(p) if and
only if there is an integer n such that n2 ≡ k2 +1 (mod p) and

(
n
p

)
=
(
n+1
p

)
.

Proof. Since
(
i
p

)
4 = i(p

2−1)/4 =
(

2
p

)
the result holds for k ≡ 0 (mod p).

So we may assume k(k2 + 1) 6≡ 0 (mod p). If p ≡ 1 (mod 4), it follows from
Theorem 2.3(i) that

k ∈ Q0(p) ⇔
(

(k + t)2

k2 − t2
)(p−1)/4

=
(
k + t

k − t

)(p−1)/4

≡ 1 (mod p)

⇔ (k + t)(p−1)/2 ≡ (k2 + 1)(p−1)/4 (mod p)

⇔ there is an integer n such that

n2 ≡ k2 + 1 (mod p) and
(
k + t

p

)
=
(
n

p

)
.

When n2 ≡ k2 + 1 ≡ k2 − t2 (mod p) we have

(k + t+ n)2 ≡ 2(k + n)(k + t) (mod p),

(k + n+ 1)2 ≡ 2(k + n)(n+ 1) (mod p)

and so (
k + t

p

)
=
(
n+ 1
p

)
.

Hence, by the above, the result is true in the case p ≡ 1 (mod 4).

Now assume p ≡ 3 (mod 4). If k ∈ Q0(p) then
(
k2+1
p

)
= 1 by Lemma

2.1. Let n be an integer such that n2 ≡ k2 + 1 (mod p). It is easily seen that

(k + i) · 2(k + n) ≡ (k + n+ i)2 (mod p).

So we have
(
k + i

p

)

4
≡ (k + i)(p2−1)/4 ≡ (k + n+ i)(p2−1)/2

(2(k + n))(p+1)(p−1)/4

≡
(
k + n+ i

p

)2

4
(by using Fermat’s Little Theorem)

=
(

(k + n)2 + 1
p

)
(by Lemma 2.1)

=
(
n

p

)(
2(k + n)

p

)
(mod p).

Observing that (k + n+ 1)2 ≡ 2(k + n)(n+ 1) (mod p) we get
(

2(k + n)
p

)
=
(
n+ 1
p

)
.
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Hence, (
k + i

p

)

4
=
(
n

p

)(
n+ 1
p

)
.

This yields the result.

3. The structure of Q′r(p). In this section we introduce the sets Q′r(p)
(r = 0, 1, 2, 3) and study their group structure.

Definition 3.1. Let p be an odd prime and k ∈ Sp. Define

[k]p = {x | x ≡ k (mod p), x ∈ Sp},
[∞]p = {n/m | m,n ∈ Z, p |m, p -n},
Q′0(p) = {[k]p | k ∈ Q0(p)} ∪ {[∞]p},
Q′r(p) = {[k]p | k ∈ Qr(p)} (r = 1, 2, 3)

and

Q′(p) =
3⋃

r=0

Q′r(p) = {[∞]p} ∪ {[k]p | p - (k2 + 1), k ∈ {0, 1, . . . , p− 1}}.

For example, we have

Q′0(5) = {[∞]5}, Q′1(5) = {[1]5}, Q′2(5) = {[0]5}, Q′3(5) = {[−1]5}.
Let p be an odd prime, let

Dp =
{
Z/pZ if p ≡ 1 (mod 4),
Z[i]/pZ[i] if p ≡ 3 (mod 4)

be the residue class ring modulo p, and Up the multiplicative group of Dp.

It is well known that Up is a cyclic group of order p(3−(−1
p ))/2 − 1. Denote

the unique subgroup of order p− (−1
p ) of Up by Gp. Then Gp is also a cyclic

group. So

S(p) =





{g | gp−1 ≡ 1 (mod p), gn 6≡ 1 (mod p)
(n = 1, 2, . . . , p− 2), g ∈ Z} if p ≡ 1 (mod 4),

{g | gp+1 ≡ 1 (mod p), gn 6≡ 1 (mod p)
(n = 1, 2, . . . , p), g ∈ Z[i]} if p ≡ 3 (mod 4)

6= ∅.
We are now ready to give

Theorem 3.1. Let p be an odd prime and g ∈ S(p). For r = 0, 1, 2, 3 we
have

|Q′r(p)| =
p− (−1

p )

4
.(i)

Q′r(p) =
{[(−1

p

)
g(p−(−1

p ))/4 g
4s+r + 1
g4s+r − 1

]

p

∣∣∣∣ s = 0, 1, . . . ,
p− (−1

p )

4
− 1
}
.(ii)
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Proof. Suppose k ∈ Sp with k2 + 1 6≡ 0 (mod p). If p ≡ 1 (mod 4), then
(g(p−1)/4)2 ≡

(
g
p

)
= −1 (mod p). For r ∈ {0, 1, 2, 3} it follows from Theorem

2.3(i) that

k ∈ Qr(p) ⇔
(
k + g(p−1)/4

k − g(p−1)/4

)(p−1)/4

≡ g(p−1)r/4 (mod p)

⇔ k + g(p−1)/4

k − g(p−1)/4
≡ g4s+r (mod p) for some s ∈ {0, 1, . . . , (p− 1)/4− 1}

⇔ k ≡ g(p−1)/4 g
4s+r + 1
g4s+r − 1

(mod p) for some s ∈ {0, 1, . . . , (p− 1)/4− 1}.

If p ≡ 3 (mod 4), it is evident that g(p+1)/4 ≡ ±i (mod p). For r ∈
{0, 1, 2, 3} it follows from Theorem 2.3(ii) that

k ∈ Qr(p)⇔
(
k − g(p+1)/4

k + g(p+1)/4

)(p+1)/4

≡ g(p+1)r/4 (mod p)

⇔ k − g(p+1)/4

k + g(p+1)/4
≡ g4s+r (mod p) for some s ∈ {0, 1, . . . , (p+ 1)/4− 1}

⇔ k ≡ −g(p+1)/4 g
4s+r + 1
g4s+r − 1

(mod p) for some s ∈ {0, 1, . . . , (p+ 1)/4− 1}.

To conclude the proof, we note that
[(−1

p

)
g(p−(−1

p ))/4 g
4·0+0 + 1
g4·0+0 − 1

]

p

= [∞]p

and
g4s1+r + 1
g4s1+r − 1

= 1 +
2

g4s1+r − 1
6≡ 1 +

2
g4s2+r − 1

=
g4s2+r + 1
g4s2+r − 1

(mod p)

provided s1 6≡ s2
(
mod

(
p−

(−1
p

))
/4
)
.

Corollary 3.1. Let p be an odd prime, and let Rp be a complete set of
residues modulo p. Then

∑

k∈Q1(p)∩Rp
k ≡ −1

4
(mod p).

Proof. Let g ∈ S(p) and m =
(
p−

(−1
p

))
/4. It follows from Theorem

3.1 that
∑

k∈Q1(p)∩Rp
k ≡

(−1
p

)
gm

m−1∑

s=0

g4s+1 + 1
g4s+1 − 1

=
(−1
p

)
gm
(
m+

m−1∑

s=0

2
g4s+1 − 1

)
(mod p).
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Since
m−1∑

s=0

1
g4s+1 − 1

=
m−1∑

s=0

1
(g4s+1)m − 1

m−1∑

t=0

(g4s+1)t

≡
m−1∑

s=0

1
gm − 1

m−1∑

t=0

gt · g4st =
1

gm − 1

m−1∑

t=0

gt
m−1∑

s=0

g4st

=
1

gm − 1

(
m+

m−1∑

t=1

gt
1− g4mt

1− g4t

)
≡ m

gm − 1
(mod p),

we find
∑

k∈Q1(p)∩Rp
k ≡

(−1
p

)
gm
(
m+

2m
gm − 1

)
=
(−1
p

)
m
gm + g2m

gm − 1

≡
(−1
p

)
m
gm − 1
gm − 1

≡ −1
4

(mod p).

We are done.

Theorem 3.2. Let p be an odd prime. For [k]p, [k′]p ∈ Q′(p) define

[k]p[k′]p =
[
kk′ − 1
k + k′

]

p

([k]p[∞]p = [∞]p[k]p = [k]p).

Then Q′(p) forms a cyclic group of order p−
(−1
p

)
, the union Q′0(p)∪Q′2(p)

is a subgroup of order
(
p −

(−1
p

))/
2, and Q′0(p) is a subgroup of order(

p−
(−1
p

))/
4. Moreover , Q′0(p), Q′1(p), Q′2(p) and Q′3(p) are the four dis-

tinct cosets of Q′0(p).

Proof. Suppose g ∈ S(p). From Theorem 3.1 we know that

Q′(p) =
{

[kr]p

∣∣∣∣ r = 0, 1, . . . , p−
(−1
p

)
− 1
}
,

where

[kr]p =
[(−1

p

)
g(p−(−1

p ))/4 g
r + 1
gr − 1

]

p

.

Since
[
kikj − 1
ki + kj

]

p

=
[((−1

p

)
g(p−(−1

p ))/4)2 · gi+1
gi−1 ·

gj+1
gj−1 − 1

(−1
p

)
g(p−(−1

p ))/4( gi+1
gi−1 + gj+1

gj−1

)
]

p

=
[(−1

p

)
g(p−(−1

p ))/4 (gi + 1)(gj + 1) + (gi − 1)(gj − 1)
(gi + 1)(gj − 1) + (gi − 1)(gj + 1)

]

p

=
[(−1

p

)
g(p−(−1

p ))/4 g
i+j + 1
gi+j − 1

]

p

,
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we see that

[ki]p[kj ]p =
[
kikj − 1
ki + kj

]

p

= [k〈i+j〉]p,

where 〈x〉 denotes the least nonnegative residue of x to modulus p−
(−1
p

)
.

By the above, Q′(p) is a cyclic group generated by [k1]p. Applying The-
orem 3.1 we see that Q′0(p) ∪ Q′2(p) is a cyclic group generated by [k2]p,
Q′0(p) is a cyclic group generated by [k4]p, and that Q′0(p), Q′1(p), Q′2(p)
and Q′3(p) are the four cosets of Q′0(p). The proof is now complete.

Corollary 3.2. Let p be an odd prime, and k ∈ Sp. Then k ∈ Q0(p)
if and only if k ≡ (x4 − 6x2 + 1)/(4x3 − 4x) (mod p) for some integer x
satisfying x2 6≡ −1 (mod p).

Proof. It follows from Theorem 3.2 that

[k]p ∈ Q′0(p) ⇔ [k]p = [x]p[x]p[x]p[x]p for some [x]p ∈ Q′(p)

⇔ [k]p =
[
x2 − 1

2x

]

p

[
x2 − 1

2x

]

p

=
[
x4 − 6x2 + 1

4x3 − 4x

]

p

for some integer x satisfying x2 + 1 6≡ 0 (mod p).

So the result follows.

Corollary 3.3. Let p be an odd prime, r ∈ {0, 1, 2, 3} and [kr]p ∈
Q′r(p). For [k]p ∈ Q′0(p) define

ϕ([k]p) =
[
kkr − 1
k + kr

]

p

(ϕ([∞]p) = [kr]p).

Then ϕ is a one-to-one correspondence from Q′0(p) to Q′r(p).

Proof. In view of Theorem 3.2,

Q′r(p) = [kr]pQ′0(p) = {ϕ([k]p) | [k]p ∈ Q′0(p)}.
So the result follows.

Remark 3.1. Corollaries 3.2 and 3.3 provide a simple method of calcu-
lating Q′0(p), Q′1(p), Q′2(p) and Q′3(p) for any odd prime p.

4. Connections with binary quadratic forms. For a, b, c ∈ Z let
(a, b, c) denote the binary quadratic form ax2 +bxy+cy2. We recall that the
discriminant of (a, b, c) is b2−4ac and (a, b, c) is primitive if gcd(a, b, c) = 1.

If a1, b1, c1, a2, b2, c2 are integers, and if there exist integers a, b, c, d such
that ad− bc = 1 and

a1(ax+ by)2 + b1(ax+ by)(cx+ dy) + c1(cx+ dy)2 = a2x
2 + b2xy + c2y

2,

we say that the two forms (a1, b1, c1) and (a2, b2, c2) are equivalent , and
write (a1, b1, c1) ∼ (a2, b2, c2).
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Let F (D) be the set of equivalence classes of primitive integral binary
quadratic forms of discriminant D, and h(D) = |F (D)|. Denote by [f ] the
equivalence class that contains the form f . In the nineteenth century, Gauss
introduced the product of two equivalence classes in F (D) by defining the
composition of two forms, and showed that F (D) forms a finite Abelian
group of order h(D).

Lemma 4.1 ([C, p. 246]). Let (a1, b1, c1) and (a2, b2, c2) be two binary
quadratic forms of the same discriminant D. Set s = (b1 + b2)/2, n =
(b1 − b2)/2 and let u, v, w and d be integers such that ua1 + va2 +ws = d =
gcd(a1, a2, s), and let d0 = gcd(d, c1, c2, n). Then

[(a1, b1, c1)][(a2, b2, c2)] = [(a3, b3, c3)],

where

a3 = a1a2d0/d
2, b3 = b2 + 2a2(vn− wc2)/d, c3 = (b23 −D)/(4a3).

Using Lemma 4.1 we can prove

Theorem 4.1. Let p be an odd prime, and let F (−16p2) be the set
of equivalence classes of primitive binary quadratic forms of discriminant
−16p2. If f∞ = f∞(x, y) = x2 + 4p2y2 and fk = fk(x, y) = p2x2 + 4kpxy +
4(1 + k2)y2, then the mapping

ϕ : [fm]� [m]p (m ∈ {k | k2 6≡ −1 (mod p), 0 ≤ k ≤ p−1, k ∈ Z}∪{∞})
is a group isomorphism from F (−16p2) to Q′(p).

Proof. Suppose k ∈ Z, k2 +1 6≡ 0 (mod p), a, b, c, d ∈ Z and ad−bc = 1.
It is clear that f∞ and fk are primitive forms of the same discriminant
D = −16p2. Since ad− bc = 1 we have a2 + 4c2p2 6= p2. From this and the
fact that

f∞(ax+ by, cx+ dy) = (a2 + 4c2p2)x2 + (2ab+ 8cdp2)xy + (b2 + 4d2p2)y2

we see that f∞ is not equivalent to fk.
Now assume k′ ∈ Z and k′2 + 1 6≡ 0 (mod p). We claim that fk ∼ fk′

if and only if k ≡ k′ (mod p). If fk ∼ fk′ , then there are integers a, b, c, d
satisfying ad−bc = 1 and fk(ax+by, cx+dy) = p2x2 +4k′pxy+4(1+k′2)y2.
From this it follows that

(4.1) a2p2 + 4kacp+ 4(1 + k2)c2 = p2

and

(4.2) 2abp2 + 4k(ad+ bc)p+ 8(1 + k2)cd = 4k′p.

Since p - (k2 + 1), by (4.1) we must have c = c′p for some integer c′ and
(a+ 2kc′)2 + 4c′2 = 1. This means c = c′p = 0 and so ad+ bc = 2bc+ 1 = 1.
Hence 4k′p = 4kp+ 2abp2 by (4.2). This implies that k′ ≡ k (mod p).
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Conversely, if k′ ≡ k (mod p), we may take a = d = 1, b = 2(k′ − k)/p
and c = 0 so that

fk(ax+ by, cx+ dy) = fk(x+ 2(k′ − k)y/p, y) = fk′(x, y).

Hence fk ∼ fk′ and the claim is true.
From the above we see that [fk] 6= [f∞] and [fk] 6= [fk′ ] when k′ 6≡ k

(mod p). Since

|{k | k ∈ {0, 1, . . . , p− 1}, k2 + 1 6≡ 0 (mod p)}| = p− 1−
(−1
p

)

there are p−
(−1
p

)
distinct equivalence classes with the discriminant −16p2.

But, according to [Co, p. 217] or [C, p. 233] the class number h(−16p2) is
given by

h(−16p2) =
2
4
· 2p
(

1− 1
p

(−4
p

))
= p−

(−1
p

)
.

So we have

(4.3) F (−16p2) = {[fk] | k ∈ {0, 1, . . . , p− 1}, p - (k2 + 1)} ∪ {[f∞]}.
Now we prove that ϕ is an isomorphism from F (−16p2) to Q′(p). Since

|F (−16p2)| = |Q′(p)| = p−
(−1
p

)
, by the above ϕ is a one-to-one correspon-

dence. So it is sufficient to show that ϕ is a homomorphism.
By taking d = d0 = 1, n = 2kp, u = w = 0 and v = 1 in Lemma 4.1 we

find [fk][f∞] = [fk]. Also, taking d = d0 = 1, n = 0, u = 1 and v = w = 0
in Lemma 4.1 we see that [f∞][f∞] = [f∞]. If k + k′ ≡ 0 (mod p), taking
d = p2, d0 = 1, n = 2(k − k′)p, u = 0, v = 1 and w = 0 in Lemma 4.1 we
get [fk][fk′ ] = [(1, 4kp, 4(1 + k2)p2)]. Set x′ = x+ 2kpy and y′ = y. Then we
find x2 + 4kpxy + 4(1 + k2)p2y2 = x′2 + 4p2y′2. So

[fk][fk′ ] = [(1, 4kp, 4(1 + k2)p2)] = [(1, 0, 4p2)] = [f∞].

If k + k′ 6≡ 0 (mod p), we may choose integers u and w such that up +
2(k+ k′)w = 1. By taking d = p, d0 = 1 and v = 0 in Lemma 4.1 we obtain
[fk][fk′ ] = [fk′′ ], where k′′ = k′− 2(1 + k′2)w. Since w ≡ 1

2(k+k′) (mod p) we
see that

k′′ ≡ k′ − 1 + k′2

k + k′
=
kk′ − 1
k + k′

(mod p).

So
ϕ([fk][fk′ ]) = ϕ([fk′′ ]) = [k′′]p = [k]p[k′]p = ϕ([fk])ϕ([fk′ ]).

This is the desired result.
By the above, ϕ is a homomorphism from F (−16p2) to Q′(p) and hence

the proof is complete.
From Theorems 4.1 and 3.2 we have the following two corollaries.
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Corollary 4.1. Let p be an odd prime. Then F (−16p2) is a cyclic
group of order p−

(−1
p

)
.

Corollary 4.2. Let p be an odd prime and k ∈ Z. Then k ∈ Q0(p)
if and only if the quadratic form p2x2 + 4kpxy + 4(1 + k2)y2 is the fourth
(composition) power of some primitive binary quadratic form of discrimi-
nant −16p2.

Lemma 4.2. Let p ≡ 1 (mod 4) be a prime, p = a2 + b2 (a, b ∈ Z), 2 | b,
q ∈ N and k ∈ Z. Then p is represented by the form q2x2+4kqxy+4(1+k2)y2

if and only if kb ≡ ±a (mod q).

Proof. If kb ≡ ±a (mod q), setting x = (±a− kb)/q and y = b/2 we find
x, y ∈ Z and

p = a2 + b2 = (qx+ k · 2y)2 + (2y)2 = q2x2 + 4kqxy + 4(1 + k2)y2.

So p is represented by the form (q2, 4kq, 4(1 + k2)).
Conversely, if p = q2x2 + 4kqxy+ 4(1 + k2)y2 for some integers x, y and

k, then p = (qx+ 2ky)2 + 4y2. So qx+ 2ky = ±a and 2y = ±b. This yields
kb ≡ ±a (mod q) and the proof is complete.

Now we can give a criterion for quartic residuacity in terms of binary
quadratic forms.

Theorem 4.2. Let p and q be two distinct odd primes and p ≡ 1 (mod 4).
Then (−1)(q−1)/2q is a quartic residue (mod p) if and only if p can be repre-
sented by one of the fourth (composition) powers of primitive binary quadra-
tic forms of discriminant −16q2.

Proof. Set q∗ = (−1)(q−1)/2q and p = a2 + b2 (a, b ∈ Z) with 2 | b. From
Theorem 2.2 we know that q∗ is a quartic residue (mod p) (i.e. (q∗)(p−1)/4 ≡
1 (mod p)) if and only if q | b or a/b ∈ Q0(q).

If q | b, then q∗ is a quartic residue (mod p) by the above. Also, p =
x2 + 4q2y2 for x = a and y = b/(2q). Since [(1, 0, 4q2)]4 = [(1, 0, 4q2)] by
Theorem 4.1, we see that p is represented by the fourth power of the form
(1, 0, 4q2). So the result holds when q | b.

Now assume q - b. Then clearly p cannot be represented by x2 + 4q2y2.
Let k ∈ Z be such that kb ≡ ±a (mod q). It follows from Lemma 4.2 that p
is represented by the form q2x2 + 4kqxy + 4(1 + k2)y2.

If q∗ is a quartic residue (mod p), then a/b ∈ Q0(q) and therefore k ∈
Q0(q). Hence, by the above and Corollary 4.2, p is represented by the fourth
power of some primitive binary quadratic form of discriminant −16q2.

Conversely, if p is represented by the fourth power of some primitive
binary quadratic form of discriminant −16q2, according to (4.3) we know
that p is represented by the fourth power of some form (q2, 4mq, 4(1+m2)),
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where m ∈ {0, 1, . . . , q−1} and m2 6≡ −1 (mod q). Since p is not represented
by x2 + 4q2y2, in view of (4.3) we see that

[(q2, 4mq, 4(1 +m2))]4 = [(q2, 4nq, 4(1 + n2))]

for some n ∈ {0, 1, . . . , q − 1} satisfying n2 6≡ −1 (mod q). Hence p is repre-
sented by the form (q2, 4nq, 4(1 + n2)). Applying Lemma 4.2 and Corollary
4.2 we find n ≡ ±a/b (mod q) and n ∈ Q0(q). Thus, a/b ∈ Q0(q) and hence
q∗ is a quartic residue (mod p).

Combining the above we prove the theorem.

Remark 4.1. Theorem 4.2 can also be proved using class field theory,
and the cubic analogue of Theorem 4.2 is already due to Dedekind [D] and
Takagi [T]. See also [SW].
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