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Parabolic, hyperbolic and elliptic Poincaré series

by

Özlem Imamoḡlu (Zürich) and Cormac O’Sullivan (New York)

1. Introduction. Let Γ ⊆ PSL2(R) be a Fuchsian group of the first
kind acting on the upper half-plane H. We write x + iy = z ∈ H and set
dµz to be the SL2(R)-invariant hyperbolic volume form dxdy/y2. Assume
the volume of the quotient space Γ\H is equal to V <∞. Let Sk(Γ ) be the
space of holomorphic weight k cusp forms for Γ . This is the vector space of
holomorphic functions f on H which decay rapidly in each cusp of Γ and
satisfy the transformation property

(1.1)
f(γz)
j(γ, z)k

− f(z) = 0 for all γ ∈ Γ,

with j
((

a b
c d

)
, z
)

= cz+d for γ =
(
a b
c d

)
. We do not assume that Γ has cusps.

If there are none then we may ignore the rapid decay condition for Sk. We
assume throughout that the multiplier system is trivial and that, unless oth-
erwise stated, 4 ≤ k ∈ 2Z. Using the notation (f |kγ)(z) := f(γz)/j(γ, z)k,
extended to all C[PSL2(R)] or C[SL2(R)] by linearity, (1.1) can be written
more simply as f |k(γ − 1) = 0.

The automorphy property (1.1) may be modified to obtain different fami-
lies of objects: for example mixed cusp forms [21] or vector-valued cusp forms
[18]. In this article we generalize (1.1) to define higher-order automorphic
forms. These have arisen independently in different contexts (see for example
[7, 8, 17]). They are also an interesting special case of the vector-valued cusp
forms of Knopp and Mason [18, 22] corresponding to unipotent representa-
tions of Γ . See [14, Theorem 2.1] for an explicit example of this connection in
the context of higher-order non-holomorphic Eisenstein series. The first his-
torical appearance of second-order forms appears to be in a paper by Eichler
[6, Section 4] where he defines the second-order parabolic Poincaré series in
connection with his work on automorphic integrals and their periods; see
Section 8.2 below.
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Let N be the natural numbers {1, 2, 3, . . . } and N0 = N ∪ {0}.
Definition 1. For n ∈ N0, the C-vector space Snk (Γ ) is defined recur-

sively as follows. Let S0
k(Γ ) consist only of the function H → 0. For n ≥ 1,

let Snk (Γ ) contain all holomorphic functions f : H→ C that satisfy

(1.2) f |k(γ − 1) ∈ Sn−1
k (Γ ) for all γ ∈ Γ.

For all parabolic elements π of Γ we also require

(1.3) f |k(π − 1) = 0.

Finally, f must decay rapidly in each cusp (this is explained in Section 2.1).

We call Snk (Γ ) the space of order n, weight k holomorphic cusp forms
for Γ . Usually, we just write Snk . Clearly, S1

k and Sk are synonymous. In-
duction, as in [14, Lemma 3.1], shows Sn1

k ⊆ Sn2
k for any two integers

0 ≤ n1 ≤ n2. Therefore Sk ⊆ Snk and higher-order forms are a general-
ization of the usual cusp forms.

The identity in Γ is I = ±
(

1 0
0 1

)
. The remaining elements may be parti-

tioned into three sets: the parabolic, hyperbolic and elliptic elements. These
correspond to translations, dilations and rotations, respectively, in H. As is
well-known, the relation (1.1) for parabolic elements leads to a Fourier ex-
pansion of f associated to each cusp of Γ . The parabolic Fourier coefficients
that arise often contain a great deal of number-theoretic information. A fam-
ily of corresponding parabolic Poincaré series can be constructed whose inner
products with f produce these Fourier coefficients.

Much less well-known are Petersson’s hyperbolic and elliptic Fourier ex-
pansions, introduced in [24]. In the first half of this paper we start by giving
an exposition of Petersson’s work. For the benefit of the reader we develop
all three expansions and their associated Poincaré series in Sections 2–4. We
give a unified treatment with notation that emphasizes the similarities of
the three cases.

The series we construct in Sections 2–4 are all examples of relative
Poincaré series.

Theorem 1. Let Γ0 be a subgroup of Γ and φ a holomorphic function
on H satisfying φ|kγ = φ for all γ in Γ0 and

(1.4)
�

Γ0\H
|φ(z)|yk/2 dµz <∞.

Then the relative Poincaré series

(1.5) P [φ](z) :=
∑

γ∈Γ0\Γ
(φ|kγ)(z)

converges absolutely and uniformly on compact subsets of H to an element
of Sk.
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This theorem is stated in [15] and proved in [20, Chapter 1, §7], for
example. Variations of it also appear explicitly and implicitly in many other
works. The proof given in Section 5 simply involves showing that the series
(1.5) is bounded by the integral (1.4).

In the second half of the paper we show how these ideas extend naturally
to the second-order space S2

k . In Section 8 we prove the analog of Theorem 1.
Let Hom0(Γ,C) be the homomorphisms from Γ to C that are 0 on the
parabolic elements of Γ . The following relative Poincaré series, twisted by
such a homomorphism, are second-order forms.

Theorem 2. Let Γ0 be a subgroup of Γ and φ a holomorphic function
on H satisfying φ|kγ = φ for all γ in Γ0. Let L ∈ Hom0(Γ,C) with L(γ) = 0
for all γ in Γ0. If

(1.6)
�

Γ0\H
(1 + |Λ+

L (z)|+ |Λ−L (z)|)|φ(z)|yk/2 dµz <∞

then
P [φ,L](z) :=

∑
γ∈Γ0\Γ

L(γ)(φ|kγ)(z)

converges absolutely and uniformly on compact subsets of H to an element
of S2

k.

The functions Λ+
L (z) and Λ−L (z) above satisfy

L(γ) = Λ+
L (γz)− Λ+

L (z) + Λ−L (γz)− Λ−L (z)

for all γ ∈ Γ and all z ∈ C. See (8.4) for their definition.
Theorem 2 allows us to construct parabolic, hyperbolic and elliptic sec-

ond-order Poincaré series. In Section 9 we show that, whenever they exist,
these Poincaré series of order 1 and 2 always span their respective cusp
form spaces. In the final section we speculate on the situation for third- and
higher-order forms.

2. Parabolic expansions

2.1. All the properties of Fuchsian groups used in this paper are ex-
plained in [16], [25, Chapter 1] and [12, Chapter 2]. We say that γ is a
parabolic element of Γ if its trace, tr(γ), has absolute value 2. Then γ fixes
one point in R ∪ {∞}. These parabolic fixed points are the cusps of Γ . If
a is a cusp of Γ then the subgroup, Γa, of all elements in Γ that fix a is
isomorphic to Z. Thus Γa = 〈γa〉 for a parabolic generator γa ∈ Γ . There
exists a scaling matrix σa ∈ SL2(R) so that σa∞ = a and

(2.1) σ−1
a Γaσa =

{
±
(

1 m

0 1

)
: m ∈ Z

}
.
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The matrix σa is unique up to multiplication on the right by any
(

1 x
0 1

)
with

x ∈ R. We label the group (2.1) as Γ∞. A natural fundamental domain for
Γ∞\H is the set F∞ of all z ∈ H with 0 ≤ Re(z) < 1. The image of this set
under σa will be a fundamental domain for Γa\H as shown in Figure 1.

σa

0 1

H

F∞

H

σa(F∞)

R
a

Fig. 1. The parabolic scaling map

We next define an operator A that converts functions with a particular
parabolic invariance into functions with invariance as z 7→ z + 1. Similar,
though slightly more elaborate, operators will do the same for functions with
hyperbolic and elliptic invariance in Sections 3, 4.

Lemma 3. For any function f with f |kγa = f , define

Aaf := (f |kσa).

Then (Aaf)(z + 1) = (Aaf)(z).

Proof. We have

(Aaf)(z + 1) = (f |kσa)
((

1 1
0 1

)
z
)

=
((
f |kσa

(
1 1
0 1

)
σ−1

a

)
|kσa

)
(z)

= ((f |kγa)|kσa)(z) = (Aaf)(z).

It follows that f in Sk or Snk implies (Aaf)(z) has period 1 and is holo-
morphic on H. It consequently has a Fourier expansion

(2.2) (Aaf)(z) =
∑
m∈Z

ba(m)e2πimz.

The rapid decay condition at the cusp a in the definitions of Sk and Snk is
then

(2.3) (Aaf)(z) = (f |kσa)(z)�a e
−cy

as y → ∞ uniformly in x for some constant c > 0. This must hold at each
of the cusps a. It is equivalent to f |kσa only having terms with m ≥ 1 in the
expansion (2.2). We make the following definition, valid for all f ∈ Snk .
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Definition 2. For f ∈ Snk , the parabolic expansion of f at a is

(2.4) (f |kσa)(z) =
∑
m∈N

ba(m)e2πimz.

Suppose b = γa is another cusp Γ -equivalent to a. Then

Γb = Γγa = γΓaγ
−1

and σb = σγa = γσa. We have

(f |kσb)(z) = j(γσa, z)−kf(γσaz) = j(σa, z)−k(f |kγ)(σaz)
= j(σa, z)−k(f(σaz) + f∗(σaz))
= (f |kσa)(z) + (f∗|kσa)(z)

for f |k(γ−1) = f∗. Thus, if f ∈ Sk then f∗ = 0 and its parabolic expansions
at Γ -equivalent cusps are identical. If f ∈ Snk , its parabolic expansions at
Γ -equivalent cusps are the same up to addition of the parabolic expansion
of an element of Sn−1

k . Therefore, when testing whether f ∈ Snk , if f satisfies
condition (1.2) in the definition of Snk then the rapid decay condition need
only be verified at the finite number of Γ -inequivalent cusps of Γ .

2.2. It is easy to see that the reasoning in Lemma 3 may be reversed. If
g(z) has period 1 then

(2.5) A−1
a g := g|k(σ−1

a )

satisfies (A−1
a g)|kγa = A−1

a g. Therefore (A−1
a g)|kγ = A−1

a g for all γ ∈ Γa. If
we have a holomorphic function g on H with period 1 then setting φ = A−1

a g
and Γ0 = Γa in Theorem 1 gives us a natural candidate for a relative Poincaré
series. The obvious periodic functions to use are the ones appearing on the
right of (2.4): e2πimz. So, recalling definition (1.5), we set

ΦPar(z,m, a) := P [A−1
a e2πim·](z)(2.6)

=
∑

γ∈Γa\Γ
((A−1

a e2πim·)|kγ)(z) =
∑

γ∈Γa\Γ

e2πim(σ−1
a γz)

j(σ−1
a γ, z)k

.

The next proposition is also proved in [12, Sections 3.1, 3.2], for example.

Proposition 4. For 4 ≤ k ∈ 2Z and m ∈ N we have ΦPar(z,m, a) ∈ Sk.
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Proof. With Theorem 1 and the discussion leading to (2.6) we need only
confirm that (1.4) holds for Γ0 = Γa and φ = A−1

a e2πim·. We have�

Γa\H
|φ(z)|yk/2 dµz =

�

Γ∞\H
|φ(σaz)| Im(σaz)k/2 dµz(2.7)

=
∞�

0

1�

0

∣∣∣∣ e2πimz

j(σ−1
a , σaz)k

∣∣∣∣ yk/2

|j(σa, z)|k
dµz

=
∞�

0

e−2πmyyk/2−2 dy

and (2.7) is bounded for m ≥ 1 and k > 2.

The vector space Sk is equipped with a natural inner product, due to
Petersson in [23],

(2.8) 〈f1, f2〉 :=
�

Γ\H
f1(z)f2(z)yk dµz.

The following well-known result is demonstrated in [12, Section 3.3], for
example, using the unfolding technique. We give the hyperbolic and elliptic
versions in the next sections.

Proposition 5. For 4 ≤ k ∈ 2Z, m ∈ N and f ∈ Sk satisfying (2.4),

〈f, ΦPar(·,m, a)〉 = ba(m)
[

(k − 2)!
(4πm)k−1

]
.

3. Hyperbolic expansions

3.1. This material is based on Petersson’s work in [24], see also [10]. An
element γ of Γ is hyperbolic if |tr(γ)| > 2. Denote the set of all such elements
by Hyp(Γ ). Let η = {η1, η2} be a hyperbolic pair of points in R∪{∞} for Γ .
By this we mean that there exists one element of Hyp(Γ ) that fixes each
of η1, η2. The set of all such γ is a group which we label Γη. As in the
parabolic case this group is isomorphic to Z (see [16, Theorem 2.3.5] for the
proof), and Γη = 〈γη〉. There exists a scaling matrix ση ∈ SL2(R) such that
ση0 = η1, ση∞ = η2 and

(3.1) σ−1
η γηση = ±

(
ξ

ξ−1

)
for ξ ∈ R. This scaling matrix ση is unique up to multiplication on the right
by any

(
x 0
0 x−1

)
with x ∈ R. Replacing the generator γη by γ−1

η if necessary
we may assume ξ2 > 1. Let

Fη := {z ∈ H : 1 ≤ |z| < ξ2}.
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Then it is easy to see that ση(Fη) is a fundamental domain for Γη\H. See
Figure 2.

ση

H H

−1 ξ2−ξ2 1
b R

Fη ση(Fη)

b b

η1 η20

Fig. 2. The hyperbolic scaling map

Lemma 6. For any function f with f |kγη = f , let

(Aηf)(z) := ξkz(f |kση)(ξ2z).
Then (Aηf)(z + 1) = (Aηf)(z).

Proof. First note that

f
(( ξ

ξ−1

)
z
)

= ξ−k
(
f |k
( ξ

ξ−1

))
(z)

and with a calculation,

(Aηf)(z + 1) = ξk(z+1)(f |kση)(ξ2(z+1)) = ξkξkz(f |kση)
(( ξ

ξ−1

)
ξ2z
)

= ξkz
((
f |kση

( ξ
ξ−1

)
σ−1
η

)∣∣
k
ση
)
(ξ2z) = ξkz((f |kγη)|kση)(ξ2z)

= ξkz(f |kση)(ξ2z) = (Aηf)(z).

If f ∈ Sk then Aηf has period 1 and hence a Fourier expansion

(3.2) (Aηf)(z) =
∑
m∈Z

bη(m)e2πimz.

Put w = ξ2z so that e2πiz = wπi/log ξ. Then (3.2) implies that f ∈ Sk must
have the following expansion:

Definition 3. The hyperbolic expansion of f ∈ Sk at η is

(3.3) (f |kση)(w) =
∑
m∈Z

bη(m)w−k/2+πim/log ξ.

Petersson introduced this expansion in [24]. It is also valid for f ∈ Snk
provided f |k(γ − 1) = 0 for all γ ∈ Γη.
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3.2. Reversing Lemma 6 we see that if g(z + 1) = g(z) then the inverse
operator to Aη acts as follows:

(3.4) A−1
η g := (Bηg)|k(σ−1

η ) for (Bηg)(z) := z−k/2g
(

log z
2 log ξ

)
and

(A−1
η g)|kγη = A−1

η g.

Set

(3.5) ΦHyp(z,m, η) := P [A−1
η e2πim·](z)

=
∑

γ∈Γη\Γ
((A−1

η e2πim·)|kγ)(z) =
∑

γ∈Γη\Γ

(σ−1
η γz)−k/2+πim/log ξ

j(σ−1
η γ, z)k

.

Proposition 7. For 4 ≤ k ∈ 2Z and m ∈ Z we have ΦHyp(z,m, η) ∈ Sk.

Proof. To apply Theorem 1 we must verify (1.4). We have

�

Γη\H

∣∣∣∣(σ−1
η z)−k/2+πim/log ξ

j(σ−1
η , z)k

∣∣∣∣yk/2 dµz =
�

Fη

|w−k/2+πim/log ξ|Im(w)k/2 dµw

=
ξ2�

1

π�

0

r−k/2e−πmθ/log ξ(r sin θ)k/2−2r dθ dr

= 2 log ξ
π�

0

e−πmθ/log ξ(sin θ)k/2−2 dθ.

This is bounded for all m ∈ Z and k > 2 as required.

Proposition 8. For 4 ≤ k ∈ 2Z, m ∈ Z and f ∈ Sk satisfying (3.3),

〈f, ΦHyp(·,m, η)〉 = bη(m)
[
2 log ξ

π�

0

e−2πmθ/log ξ(sin θ)k−2 dθ
]

(3.6)

=


bη(m) · 2 log ξ

(2i)k−1
(e−2π2m/log ξ − 1)

Γ
(
πim
log ξ − k

2 + 1
)
Γ (k − 1)

Γ
(
πm
log ξ + k

2

) if m 6= 0,

bη(0) · 2π log ξ
2k−2

(
k − 2
k/2− 1

)
if m = 0.

(3.7)
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Proof. Unfold the inner product:

〈f, ΦHyp(·,m, η)〉 =
�

Γ\H
ykf(z)ΦHyp(z,m, η) dµz

=
�

Γ\H
ykf(z)

∑
γ∈Γη\Γ

((A−1
η e2πim·)|kγ)(z) dµz

=
�

Γ\H

∑
γ∈Γη\Γ

Im(γz)kf(γz)(A−1
η e2πim·)(γz) dµz

=
�

Γη\H
f(z)(A−1

η e2πim·)(z)yk dµz

=
�

Γη\H

(∑
l∈Z bη(l)(σ

−1
η z)−k/2+πil/log ξ

j(σ−1
η , z)k

)
(σ−1
η z)−k/2+πim/log ξ

j(σ−1
η , z)

k
yk dµz

=
∑
l∈Z

bη(l)
�

Γη\H
(σ−1
η z)−k/2+πil/log ξ (σ−1

η z)−k/2+πim/log ξ Im(σ−1
η z)k dµz.

The integral is
�

Fη

w−k/2+πil/log ξ w−k/2+πim/log ξ Im(w)k dµw

=
ξ2�

1

π�

0

(rei/θ)−k/2+πil/log ξ (rei/θ)−k/2+πim/log ξ (r sin θ)k−2r dθ dr

=
π�

0

e−θπ(l+m)/log ξ(sin θ)k−2 dθ

ξ2�

1

rπi(l−m)/log ξ dr

r

and letting u = log r/log ξ we see that the last integral over r is

log ξ
2�

0

euπi(l−m) du =
{

2 log ξ if l = m,
0 if l 6= m.

Reassemble to complete the proof of (3.6). To evaluate (3.6) let

Ia,b :=
π�

0

eaθ sinb θ dθ for a ∈ C, b ∈ 2N0.

For all b ∈ 2N0 we have

I0,b =
π�

0

(
eiθ − e−iθ

2i

)b
dθ =

π

2b

(
b

b/2

)
using the binomial theorem. The m = 0 case of (3.7) follows. For a 6= 0,
we easily have Ia,0 = (eπa − 1)/a. Using integration by parts twice we find,
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for b ≥ 2,
Ia,b
b!

=
1

a2 + b2
Ia,b−2

(b− 2)!
.

Hence
Ia,b =

Ia,0 · b!
(a2 + b2)(a2 + (b− 2)2) · · · (a2 + 22)

=
Ia,0 · a · b!

(2i)b+1
(
a
2i + b

2

)(
a
2i + b

2 − 1
)
· · ·
(
a
2i − b

2

)
=
Ia,0 · a · Γ (b+ 1)Γ

(
a
2i − b

2

)
(2i)b+1Γ

(
a
2i + b

2 + 1
)

and the m 6= 0 case of (3.7) is proved.

3.3. Various types of hyperbolic series have appeared in the literature.
Associated to a hyperbolic element γη =

(
a b
c d

)
in Γ we have the quadratic

form
Qγη(z) := cz2 + (d− a)z − b

of discriminant D = (a+d)2−4 > 0 and with zeros η = {η1, η2} at the fixed
points of γη. We assume that γη generates the subgroup of elements fixing η,
that is, Γη = 〈γη〉. Also, since Qγη depends on the sign of the matrix entries,
in this section we take Γ ⊂ SL2(R) instead of PSL2(R). Following Katok in
[15], we define the series

(3.8) θk,γη(z) :=
∑

γ∈Γη\Γ

1
Qγη(γz)k/2j(γ, z)k

.

For 4 ≤ k ∈ 2Z it is shown in [15] that θk,γη ∈ Sk and, moreover, that Sk
is spanned by θk,γ as γ ranges over all hyperbolic elements of Γ . In [9] it is
further shown that only those γ that are words in the group generators of
length at most 2k−1 − 1 are required for a spanning set.

Katok uses the series θk,γη to define a hyperbolic rational structure on Sk,
analogous to the (parabolic) rational structure associated to the periods of
cusp forms, as in [19]. For example, with Γ = SL2(Z),

Ck,γη · 〈f, θk,γη〉 = rk(f, γη)

for any f ∈ Sk where the right side is the hyperbolic period of f associated
to γη, defined as

rk(f, γη) :=
γηw�

w

f(z)Qγη(z)k/2−1 dz

and independent of w ∈ H. On the left we have the normalization constant

Ck,γη := D(k−1)/2 −sgn(tr(γη))
π

(
k − 2
k/2− 1

)−1

2k/2−2.

See [15] and [19] for further details.
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In [27], Zagier encounters the series

(3.9) Fk,D(z) :=
∑

b2−4ac=D

1
(az2 + bz + c)k/2

for D ∈ N where the sum is over all (a, b, c) ∈ Z3 with gcd(a, b, c) = 1. (We
include the gcd condition for simplicity.) It is essentially the Dth Fourier
coefficient of the holomorphic kernel function for the Shimura–Shintani cor-
respondence between forms of integral and half-integral weight. We can ex-
press the quadratic form appearing in (3.9) as

Q(z) = az2 + bz + c = MQ

[
z

1

]
:=
(
z

1

)t
MQ

(
z

1

)

for the matrix MQ :=
( a b/2
b/2 c

)
. We say two quadratic forms Q, Q′ are

equivalent if MQ′ = γtMQγ for some γ ∈ Γ = SL2(Z). We denote by [Q]
the equivalence class of Q. The class number h(D) < ∞ is the number of
equivalence classes of forms of discriminant D. For a quadratic form Q of
discriminant D > 0 put

(3.10) Fk,D,[Q](z) =
∑
Q′∈[Q]

1
Q′(z)k/2

.

Thus we may break up Fk,D into h(D) pieces Fk,D,[Q].

Proposition 9. For Γ = SL2(Z) we have Fk,D,[Qγη ] = θk,γη .

Proof. A short computation shows

Qγη(z) =
((

0 1
−1 0

)
γη

)[
z

1

]
.

Therefore

[Qγη ] =
⋃
γ∈Γ

(
γt
((

0 1
−1 0

)
γη

)
γ

)[
z

1

]
.

To eliminate the repetition in the union, put

E :=
{
γ ∈ Γ : γt

(
0 1
−1 0

)
γηγ =

(
0 1
−1 0

)
γη

}
= {γ ∈ Γ : γ−1γηγ = γη}.
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Check that E is a subgroup of Γ and use (3.1) to show that E = Γη. Hence

Fk,D,[Qγη ](z) =
∑

γ∈Γη\Γ

((
γt
((

0 1
−1 0

)
γη

)
γ

)[
z

1

])−k/2

=
∑

γ∈Γη\Γ

(((
0 1
−1 0

)
γη

)[
γ

(
z

1

)])−k/2
=

∑
γ∈Γη\Γ

(Qγη(γz)j(γ, z)2)−k/2.

Now we recognize that the series (3.8), (3.9), (3.10) of Katok and Za-
gier are, up to normalization, the Petersson hyperbolic Poincaré series with
m = 0:

Proposition 10. We have θk,γη(z) = (ξ − ξ−1)−k/2ΦHyp(z, 0, η).

Proof. With (3.1) we find

Qγη(z) =
(

0 −ξ−1

ξ 0

)[
σ−1
η

(
z

1

)]
= (ξ − ξ−1)j(σ−1

η , z)2σ−1
η z.

Therefore

Qγη(γz) = (ξ − ξ−1)
j(σ−1

η γ, z)2

j(γ, z)2
σ−1
η γz

and putting this into (3.8) and comparing with (3.5) finishes the proof.

To end this section, we briefly note that Siegel in [26, Chapter II, §3]
found that the hyperbolic expansion coefficients of the non-holomorphic
parabolic Eisenstein series are essentially Hecke Grössencharakter L-func-
tions associated to a real quadratic field. For second-order non-holomorphic
Eisenstein series the same computation is carried out in [2], leading to Hecke
L-functions twisted by modular symbols.

4. Elliptic expansions

4.1. If z0 = α + iβ in H is fixed by a non-identity element of Γ , it
is called an elliptic point of Γ . Such group elements necessarily have traces
with absolute value less than 2 (and are called elliptic elements). Let Γz0 ⊂ Γ
be the subgroup of all elements fixing z0. As shown in [16, Theorem 2.3.5,
Corollary 2.4.2] it is a cyclic group of finite order N > 1. Let ε ∈ Γ be a
generator of Γz0 . There exists σz0 ∈ GL(2,C) so that σz00 = z0, σz0∞ = z0.
To be explicit, we take

σz0 =
1

2iβ

(−z0 z0

−1 1

)
, σ−1

z0 =
(

1 −z0
1 −z0

)
.
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Note that σ−1
z0 maps the upper half-plane H homeomorphically to the open

unit disc D1 ⊂ C centered at the origin. For any w ∈ H a calculation shows
(σ−1
z0 εσz0)w = ζ2w with ζ = j(ε, z0) and

σ−1
z0 εσz0 =

(
ζ

ζ−1

)
.

Hence ζ is a primitive 2Nth root of unity: ζ = e2πim/(2N) for some m
with (m, 2N) = 1. There exists m′ ∈ N so that m′m ≡ 1 mod 2N and
ζm
′

= eπi/N . So, replacing ε by εm
′

if necessary, we may assume ζ = eπi/N .
Let Fz0 equal the central sector covering 1/Nth of the disc and chosen with
angle θ satisfying −π/N ≤ θ − π ≤ π/N , for example, as in Figure 3. Then
σz0(Fz0) is a convenient fundamental domain for Γz0\H. Also note that there
exists C(z0, Γ ) > 0 such that

(4.1) |z| < C(z0, Γ ) for all z ∈ σz0(Fz0).

In other words, the fundamental domain we have chosen is contained in a
bounded region of H. We will need this in the proof of Theorem 20.

σz0

N = 5

2π
N

D1 H

b b−1 1b
0

R

Fz0 σz0(Fz0)

b

z0

Fig. 3. The elliptic scaling map

Since any f ∈ Sk(Γ ) is holomorphic at z = z0 we see that f(σz0w) is
holomorphic at w = 0 and has a Taylor series

∑
n az0(n)wn. Therefore we

get the simple expansion

(4.2) f(z) =
∑
n∈N0

az0(n)(σ−1
z0 z)

n.

More useful for our purposes is the slightly different elliptic expansion due
to Petersson. For f, g : H→ C define

(4.3)
(Az0f)(z) := ζkz(f |kσz0)(ζ2z),

A−1
z0 g := (Bz0g)|k(σ−1

z0 ), (Bz0g)(z) := z−k/2g
(
N log z

2πi

)
.
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A calculation identical to that of Lemma 6 and its reverse proves the fol-
lowing.

Lemma 11. We have Az0A
−1
z0 f = A−1

z0 Az0f = f and

(f |kε)(z) = f(z) ⇒ (Az0f)(z + 1) = (Az0f)(z),
g(z + 1) = g(z) ⇒ (A−1

z0 g)|kε = A−1
z0 g.

Note that the matrices σz0 and σ−1
z0 have determinants 1/(2iβ) and 2iβ

respectively. In this case it is convenient to normalize the stroke operator |
and define

(f |kγ)(z) :=
det(γ)k/2f(γz)

j(γ, z)k
.

Obviously, this agrees with our previous definition when γ ∈ SL2(R).
Let f ∈ Sk; then Az0f has period 1 and a Fourier expansion

(Az0f)(z) =
∑
m∈Z

bz0(m)e2πimz.

Put w = ζ2z = e2πiz/N so that e2πiz = wN and

(f |kσz0)(w) =
∑
m∈Z

bz0(m)wNm−k/2.

Since (f |kσz0)(w) is holomorphic at w = 0, we must have non-negative
powers of w in the above expansion. Thus any f ∈ Sk satisfies the following.

Definition 4. The elliptic expansion of f in Sk at z0 is

(4.4) (f |kσz0)(z) =
∑
m∈N

Nm−k/2≥0

bz0(m)zNm−k/2.

We show in Lemma 17 that f |kε = f for all f in Snk also. Thus higher-
order cusp forms also have the elliptic expansion (4.4). In some situations
the exponent Nm− k/2 is a little awkward and we write

(4.5) (f |kσz0)(z) =
∑
l∈N0

cz0(l)zl

instead, where

(4.6) cz0(l) =

{
bz0
( l+k/2

N

)
if l ≡ −k/2 mod N ,

0 if l 6≡ −k/2 mod N .
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4.2. Next define the elliptic Poincaré series

ΦEll(z,m, z0) := P [A−1
z0 e

2πim·](z) =
∑

γ∈Γz0\Γ
((A−1

z0 e
2πim·)|kγ)(z)(4.7)

= (2iβ)k/2
∑

γ∈Γz0\Γ

(σ−1
z0 γz)

Nm−k/2

j(σ−1
z0 γ, z)k

.

Proposition 12. For 4 ≤ k ∈ 2Z and k/(2N) ≤ m ∈ N we have
ΦEll(z,m, z0) ∈ Sk.

Proof. Recalling Theorem 1 we need to verify that

(4.8)
�

Γz0\H
|φ(z)|yk/2 dµz = (2β)k/2

�

Γz0\H

∣∣∣∣(σ−1
z0 z)

Nm−k/2

j(σ−1
z0 , z)k

∣∣∣∣yk/2 dµz
is bounded. Put w = u+ iv = σ−1

z0 z and recall that z0 = α+ iβ, z = x+ iy.
We calculate

(4.9)
|z − z0|−2 = |j(σ−1

z0 , σz0w)|−2 = |j(σz0 , w)|2 = (2β)−2|1− w|2,

y = β
1− |w|2
|1− w|2 ,

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ =
4β2

|1− w|4

and see that (4.8) equals

22−k/2
�

Fz0

|w|Nm−k/2
(
1− |w|2

)k/2−2
du dv

= 22−k/2
1�

0

π+π/N�

π−π/N
rNm−k/2+1(1− r2)k/2−2 dθ dr.

This is bounded for k > 2 and, by Theorem 1, ΦEll(z,m, z0) ∈ Sk.
As in the parabolic and hyperbolic cases, the elliptic Poincaré series can

be used to determine the elliptic expansion coefficients. We follow closely
the reasoning in [24] and first prove the following.

Lemma 13. For any integers a, b ≥ 0 and k ≥ 2,

(4.10)
�

H

(σ−1
z0 z)

a(σ−1
z0 z)b

|j(σ−1
z0 , z)|2k

yk dµz =


4π(k − 2)!a!

(4β)k(a+ k − 1)!
if a = b,

0 if a 6= b.

Proof. With w = σ−1
z0 z, the integral in (4.10) becomes

�

D1

wawb

|j(σ−1
z0 , σz0w)|2k

yk−2

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv.
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As in the proof of Proposition 12 this reduces to

(4.11)
4

(4β)k
�

D1

wawb(1− |w|2)k−2 du dv.

Let w = reiθ and (4.11) becomes

4
(4β)k

1�

0

2π�

0

ra+b+1(1− r2)k−2eiθ(a−b) dθ dr.

Doing the integral over θ leaves a beta integral.

A similar proof (integrating over Fz0 instead of D1) shows

Lemma 14. For any integers Nl − k/2, Nm− k/2 ≥ 0 and k ≥ 2,

(4.12)
�

Γz0\H

(σ−1
z0 z)

Nl−k/2(σ−1
z0 z)Nm−k/2

|j(σ−1
z0 , z)|2k

yk dµz

=

 4π(k − 2)!(Nm− k/2)!
N(4β)k(Nm+ k/2− 1)!

if l = m,

0 if l 6= m.

Proposition 15. For f ∈ Sk satisfying (4.4) and Nm − k/2 ≥ 0 we
have

〈f, ΦEll(·,m, z0)〉 = bz0(m)
[
π(k − 2)!(Nm− k/2)!

2k−2N(Nm+ k/2− 1)!

]
.

Proof. Unfold the inner product as in Proposition 8:

〈f, ΦEll(·,m, z0)〉 =
�

Γ\H
ykf(z)ΦEll(z,m, z0) dµz

=
�

Γz0\H
f(z) (A−1

z0 e
2πim·)(z) yk dµz

= (2β)k
�

Γz0\H

(∑
l∈Z bz0(l)(σ−1

z0 z)
Nl−k/2

j(σ−1
z0 , z)k

)
(σ−1
z0 z)Nm−k/2

j(σ−1
z0 , z)

k
yk dµz

= (2β)k
∑
l∈Z

bz0(l)
�

Γz0\H

(σ−1
z0 z)

Nl−k/2(σ−1
z0 z)Nm−k/2

|j(σ−1
z0 , z)|2k

yk dµz

= bz0(m)
[
π(k − 2)!(Nm− k/2)!

2k−2N(Nm+ k/2− 1)!

]
.
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4.3. Petersson in [24] defined the elliptic Poincaré series slightly differ-
ently as, essentially,

Φ∗Ell(z, l, z0) := (2iβ)k/2
∑
γ∈Γ

(σ−1
z0 γz)

l

j(σ−1
z0 γ, z)k

for l ∈ N0. Notice that the sum is now over all elements of Γ . With the
results of Section 4.2 and recalling (4.5) we see that

〈f, Φ∗Ell(·, l, z0)〉 = cz0(l)
[

π(k − 2)!m!
2k−2(m+ k − 1)!

]
.

Thus (4.6) implies that Φ∗Ell(·, l, z0) is orthogonal to all of Sk, and hence
zero, unless l ≡ −k/2 mod N . For such l,

Φ∗Ell(z, l, z0) = (2iβ)k/2
∑

γ∈Γ\Γz0

∑
ε∈Γz0

(σ−1
z0 γεz)

l

j(σ−1
z0 γε, z)k

=
N−1∑
i=0

(ΦEll(·, l, z0)|kεi)(z) = NΦEll(z, l, z0).

For l ∈ N0 we have shown

Φ∗Ell(z, l, z0) =
{
NΦEll(z, (l + k/2)/N, z0) if l ≡ −k/2 mod N ,
0 if l 6≡ −k/2 mod N .

5. Relative Poincaré series. We now give the proof of Theorem 1, of
the relative Poincaré series construction.

Proof of Theorem 1. Define the open hyperbolic ball of center z0 and
radius r as

B(z0, r) := {z ∈ H : ρ(z, z0) < r}
with hyperbolic distance ρ(z, z0) = log((1 + |σ−1

z0 z|)/(1 − |σ−1
z0 z|)). Then

σ−1
z0 B(z0, r) = DR for

R =
er − 1
er + 1

< 1, DR = {z ∈ C : |z| < R}.

A proof very similar to that of Lemma 13 shows

(5.1)
�

B(z0,r)

(σ−1
z0 z)

n yk/2

|z − z0|k
dµz =

{
Cr,kβ

−k/2 if n = 0,
0 if n ∈ N,

for k ≥ 2, β = Im(z0) and

Cr,k = π2k−3(1− (1−R2)k/2−1)/(k − 2)
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for k > 2. When k = 2, Cr,k = −π log(1 − R2). Recall the expansion (4.2)
and note that az0(0) = f(z0). With (5.1) we find

az0(0)Cr,kβ−k/2 =
�

B(z0,r)

f(z)
yk/2

|z − z0|k
dµz

giving a type of hyperbolic holomorphic mean-value result (replace z by w
and z0 by z):

y−k/2f(z) =
1
Cr,k

�

B(z,r)

f(w)
Im(w)k/2

|w − z|k dµw

valid for any f holomorphic on B(z, r) with real k ≥ 2. Since Im(w) > 0 and
Im(z) = −y, we have |w − z| > y and therefore

(5.2) yk/2|f(z)| ≤ 1
Cr,k

�

B(z,r)

|f(w)| Im(w)k/2 dµw.

We have γB(z0, r) = B(γz0, r) for all γ in Γ . As shown in [25, Proposition
1.8], there exists an r > 0 so that B(γz0, r) ∩ B(γ′z0, r) = ∅ for all γ 6= γ′ ∈
Γ0\Γ . With this choice of r we see that

yk/2|P [φ](z)| =
∣∣∣yk/2 ∑

γ∈Γ0\Γ
(φ|kγ)(z)

∣∣∣ ≤ ∑
γ∈Γ0\Γ

Im(γz)k/2|φ(γz)|

≤
∑

γ∈Γ0\Γ

1
Cr,k

�

B(γz,r)

|φ(w)| Im(w)k/2 dµw

≤ 1
Cr,k

�

Γ0\H
|φ(w)| Im(w)k/2 dµw <∞,

so P [φ] converges absolutely and uniformly to a holomorphic function on H.
At this point we may verify that P [φ]|k(γ − 1) = 0 for all γ ∈ Γ . Also we
have shown that yk/2|P [φ](z)| is bounded and it follows from this (see [12,
p. 70]) for example, that P [φ] has rapid decay at each cusp. Hence P [φ] ∈ Sk
as we wanted to show.

6. An elliptic expansion example. For q = e2πiz, the discriminant
function is

∆(z) := q
∞∏
n=1

(1− qn)24.

It generates the one-dimensional space S12(Γ0(1)) for Γ0(1) = PSL2(Z). Its
parabolic expansion at infinity is

(6.1) ∆(z) =
∞∑
m=1

τ(m)qm
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and Ramanujan discovered that its coefficients τ(m) ∈ Z have many re-
markable properties. The point z0 = i ∈ H is an elliptic point for Γ0(1). It
is fixed by ε = ±

(
0 −1
1 0

)
with order N = 2. Then, recalling (4.5), the elliptic

expansion of ∆ at i is

(6.2) (∆|12σi)(w) =
∞∑
m=0

ci(m)wm.

Do the coefficients ci(m) have any arithmetic properties? As Petersson re-
alized in [24], it is possible to prove a general result relating the elliptic
expansion coefficients at a point to the Taylor coefficients there.

Proposition 16. For f ∈ Sk with elliptic expansion (4.5) at z0 ∈ H,

cz0(m) =
m∑
r=0

(
m+ k − 1
r + k − 1

)
(z0 − z0)r+k/2

r!
f (r)(z0).

Proof. Since f(z) is holomorphic in a neighborhood of z0 it has a Taylor
expansion

(6.3) f(z) = f(z0) + (z − z0)f ′(z0) + (z − z0)2f ′′(z0)/2! + · · · .
With (4.5) we have

(6.4) (f |kσz0)(w) =
(2iβ)k/2

(1− w)k
f

(
z0 − z0w

1− w

)
=
∞∑
m=0

cz0(m)wm.

Putting (6.3) and (6.4) together produces

(6.5)
∞∑
m=0

cz0(m)wm =
∞∑
j=0

f (j)(z0)
j!

(2iβ)j+k/2
wj

(1− w)j+k
.

Use the well-known identity

(6.6)
1

(1− w)a
=
∞∑
l=0

(
a− 1 + l

a− 1

)
wl

for a ∈ N in (6.5) and compare the coefficients of wm to complete the proof.

Applying the proposition to ∆(z) at z0 = i we find

ci(m) =
m∑
r=0

(
11 +m

11 + r

)
(2i)r+6∆(r)(i)/r!(6.7)

= −26
m∑
r=0

(
11 +m

11 + r

) ∞∑
n=1

τ(n)e−2πn(−4πn)r/r!.

It is clear from (6.7) that ci(m) ∈ R and from (4.6) we know that ci(m) = 0
for m odd. Evaluating the ci(m) numerically we have

(∆|12σi)(w) ≈ −0.114 + 1.094w2− 2.621w4− 6.694w6 + 37.787w8 +O(w10).
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With the Chowla–Selberg formula [3, p. 110] we may recognize the first term
as

ci(0) = −(4π)−6

(
Γ (1/4)
Γ (3/4)

)12

.

We will return to this interesting topic in future work.

7. The dimension of Snk . The first-order space Sk is finite-dimensional.
See [25, Theorem 2.24] for an exact formula for dimSk in terms of the
signature of Γ . We begin our study of higher-order forms, in this section,
by showing that Snk being finite-dimensional follows from Γ being finitely
generated. Suppose Γ\H has genus g, r elliptic fixed points and p cusps; then
there are 2g hyperbolic elements γi, r elliptic elements εi and p parabolic
elements πi generating Γ and satisfying the r + 1 relations:

(7.1) [γ1, γg+1] . . . [γg, γ2g]ε1 . . . εrπ1 . . . πp = 1, ε
ej
j = 1

for 1 ≤ j ≤ r and integers ej ≥ 2 as in [13, Proposition 2.6]. Here [a, b]
denotes the commutator aba−1b−1 of a, b.

Lemma 17. For every elliptic element ε in Γ and every f in Snk we have
f |k(ε− 1) = 0.

Proof. This follows by induction and the fact that if f ∈Snk then f |k(ε−1)
∈ Sn−1

k .

We noted in the introduction that Sn1
k ⊆ Sn2

k for any two integers 0 ≤
n1 ≤ n2. So we may consider the map

Pn : Snk /S
n−1
k → (Sn−1

k /Sn−2
k )2g

given by

(7.2) f 7→ (f |k(γ1 − 1), f |k(γ2 − 1), . . . , f |k(γ2g − 1))

with the hyperbolic generators of (7.1).

Lemma 18. The map Pn is well defined , linear and one-to-one.

Proof. To see that Pn is well defined we note that if f, g ∈ Snk represent
the same element in Snk /S

n−1
k then f−g = h for h ∈ Sn−1

k . Hence f |k(γi−1)
−g|k(γi−1) = h|k(γi−1) ∈ Sn−2

k and each component of Pn is well defined.
The map Pn is clearly linear. To show it is one-to-one we examine ker(Pn).
If f ∈ ker(Pn) then f |k(γi − 1) ∈ Sn−2

k for every hyperbolic generator γi.
By definition f |k(πi − 1) = 0 for all parabolic generators and, with Lemma
17, f |k(εi − 1) = 0 for all elliptic generators. Therefore f |k(γ − 1) ∈ Sn−2

k

for all γ ∈ Γ and f ∈ Sn−1
k . Thus ker(Pn) = 0 in Snk /S

n−1
k and the map is

one-to-one.
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We see then that

dim(Snk /S
n−1
k ) ≤ 2g dim(Sn−1

k /Sn−2
k )

and

(7.3) dim(Snk /S
n−1
k ) ≤ (2g)n−1 dim(S1

k).

It follows that Snk /S
n−1
k is finite-dimensional for all orders n. We may also

write (7.3) as

dim(Snk ) ≤ dim(Sn−1
k ) + (2g)n−1 dim(S1

k)

so that

dim(Snk ) ≤ (2g)n − 1
2g − 1

dim(S1
k)

and Snk is also finite-dimensional. Similar arguments appear in [17, p. 452]
and [1, Theorem 2.3].

In the case where Γ has a parabolic element the following more precise
result is demonstrated in [4]:

Theorem 19. For k in 2Z and Γ\H non-compact with genus g we have

dimS2
k = 0 if k ≤ 0,

dimS2
2 =

{
0 if dimS2 = 0,
(2g + 1) dimS2 − 1 otherwise,

dimS2
k = (2g + 1) dimSk if k ≥ 4.

Diamantis and Sim in [5] have recently extended Theorem 19 to all higher
orders. For example, the following formula may be derived from their [5,
Theorem 4.1]. Suppose n ∈ N and 4 ≤ k ∈ 2Z. If g ≥ 2 is the genus of
non-compact Γ\H we have

dimSnk =
⌊

Gn+1

2(G− g)(G− 1)

⌋
dimSk

when G = g +
√
g2 − 1. They also handle the difficult weight 2 case. Their

method of proof involves constructing non-holomorphic parabolic Poincaré
series that have the desired order n transformation properties and that also
depend on a parameter s ∈ C. The elements of Snk are obtained by mero-
morphically continuing these series to s = 0. The technical details quickly
become formidable.

In the next section we show how Petersson’s ideas extend smoothly into
order 2. As described in the final section, we expect these results to generalize
to all orders and help further our understanding of Snk .
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8. Constructing second-order forms

8.1. To construct higher-order Poincaré series we extend the construc-
tions (2.6), (3.5) and (4.7) by including a map L : Γ → C as follows. Recall
the definitions (2.5), (3.4), (4.3) and set

ΦPar(z,m, a;L) :=
∑

γ∈Γa\Γ
L(γ)((A−1

a e2πim·)|kγ)(z),(8.1)

ΦHyp(z,m, η;L) :=
∑

γ∈Γη\Γ
L(γ)((A−1

η e2πim·)|kγ)(z),(8.2)

ΦEll(z,m, z0;L) :=
∑

γ∈Γz0\Γ
L(γ)((A−1

z0 e
2πim·)|kγ)(z).(8.3)

If L is the constant map L : Γ → 1, then we recover the first-order series. Let
Hom(Γ,C) be the space of homomorphisms from Γ to C and let Hom0(Γ,C)
be the subspace of maps that are zero on all parabolic elements of Γ . As
we see in this section, for L ∈ Hom0(Γ,C) the series (8.1), (8.2), (8.3) are
second-order cusp forms. (For the hyperbolic series (8.2) to be well defined
we also require L : Γη → 0.)

We next prove Theorem 2, on second-order relative Poincaré series.

Proof of Theorem 2. First, for L ∈ Hom0(Γ,C) define Λ+
L (z) and Λ−L (z)

as follows. By a well-known theorem of Eichler and Shimura there exist
unique f+, f− in S2(Γ ) so that

L(γ) =
γz�

z

f+(w) dw +
γz�

z

f−(w) dw.

The right side above is independent of z and the path of integration in H.
Set

(8.4) Λ+
L (z) :=

z�

i

f+(w) dw, Λ−L (z) :=
z�

i

f−(w) dw.

Then clearly, for all z in H,

L(γ) = Λ+
L (γz)− Λ+

L (z) + Λ−L (γz)− Λ−L (z).

Set

P+[φ,L](z) :=
∑

γ∈Γ0\Γ
Λ+
L (γz)(φ|kγ)(z),

P−[φ,L](z) :=
∑

γ∈Γ0\Γ
Λ−L (γz)(φ|kγ)(z)

so that

P [φ,L](z) = P+[φ,L](z) + P−[φ,L](z)− Λ+
L (z)P [φ](z)− Λ−L (z)P [φ](z).
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Then, using (1.6) and Theorem 1 with φ(z) replaced by Λ+
L (z)φ(z), we have

P+[φ,L] ∈ Sk. The series P−[φ,L] is not holomorphic but it does satisfy
P−[φ,L]|k(γ − 1) = 0 for all γ ∈ Γ and, using the proof of Theorem 1 and
(1.6), we obtain

yk/2|P−[φ,L](z)| ≤
∑

γ∈Γ0\Γ
Im(γz)k/2|Λ−L (γz)φ(γz)| <∞.

Now f ∈ Sk implies yk/2|f(z)| � 1 uniformly for all z ∈ H. Therefore

yk/2|P [φ,L](z)| ≤ yk/2|P+[φ,L](z)|+ yk/2|P−[φ,L](z)|(8.5)

+ yk/2|Λ+
L (z)P [φ](z)|+ yk/2|Λ−L (z)P [φ](z)|

� 1 + |Λ+
L (z)|+ |Λ−L (z)|.(8.6)

Let F be a fixed fundamental domain for Γ\H intersecting R ∪∞ at a
finite number of cusps. For each such cusp a the scaling matrix σa maps
z ∈ H with 0 ≤ x < 1 and y large into a neighborhood of a, as in Figure 1.
Since f+, f− are bounded on F and have exponential decay at cusps, we
must have |Λ+

L (z)|, |Λ−L (z)| � 1 on F so that (8.6) implies

(8.7) yk/2|P [φ,L](z)| � 1 for z ∈ F.

It follows that P [φ,L](z) converges absolutely and uniformly on all compact
sets of H to a holomorphic function. It is easy to check that

P [φ,L]|k(γ − 1) = −L(γ)P [φ] ∈ S1
k(Γ )

for all γ ∈ Γ . Since L ∈ Hom0(Γ,C) we also have P [φ,L]|k(π − 1) = 0 for
all parabolic π ∈ Γ .

It only remains to check that P [φ,L] has rapid decay at each cusp. At
any cusp a of F we have a Fourier expansion

(8.8) j(σa, z)−kP [φ,L](σaz) =
∑
m∈Z

ba(m)e2πimz

but

|j(σa, z)−kP [φ,L](σaz)| ≤ y−k/2 |Im(σaz)k/2P [φ,L](σaz)| � y−k/2

for z with 0 ≤ x < 1 and y large. Consequently, j(σa, z)−kP [φ,L](σaz)→ 0
as y →∞ uniformly for 0 ≤ x < 1. Hence we must have ba(m) = 0 in (8.8)
for all m ≤ 0 and P [φ,L] has rapid decay at the cusp a. By the discussion
at the end of Section 2.1 it is enough to verify the rapid decay condition at
the cusps of F.

Remark. We note that the bound (8.7) is not true in general if we allow
z ∈ H. For example, setting U(z) = yk/2|P [φ,L](z)| we see that

U(γmz) = yk/2|P [φ,L](z)−mL(γ)P [φ](z)|
becomes unbounded as m→∞ if L(γ) and P [φ](z) are non-zero.
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8.2. Now we have everything in place to verify our constructions.

Theorem 20. For 4 ≤ k ∈ 2Z and L ∈ Hom0(Γ,C) we have

ΦPar(z,m, a;L) ∈ S2
k for m ∈ N,(8.9)

ΦHyp(z,m, η;L) ∈ S2
k for m ∈ Z, L(γη) = 0,(8.10)

ΦEll(z,m, z0;L) ∈ S2
k for m ∈ N, Nm− k/2 ≥ 0,(8.11)

where N in (8.11) is |Γz0 |, the order of the subgroup of elements fixing z0.

The second-order parabolic series ΦPar(z,m, a;L) appears first, form = 0
and Γ = PSL2(Z), in Section 4 of Eichler’s paper [6]. In fact, he allows
L to be any period polynomial (the degree 0 polynomials correspond to
Hom0(Γ,C)) and uses the second-order parabolic series to prove the exis-
tence of general abelian integrals with prescribed periods. The general result
(8.9) is shown, with a different proof to the one given here, in [4, Prop. 4.2].

Proof of Theorem 20. The parabolic series. We proceed as in Proposi-
tion 4, beginning with ΦPar(z,m, a;L). According to Theorem 2 we need to
verify the condition

(8.12)
∞�

0

1�

0

(1 + |Λ+
L (σaz)|+ |Λ−L (σaz)|)e−2πmyyk/2−2 dx dy <∞.

The estimates

(8.13) Λ+
L (σaz), Λ−L (σaz)� 1 + |log y|,

when |Re(z)| ≤ 1, say, with an implied constant depending only on L, σa

and Γ , follow from noting that for any f ∈ S2(Γ ) (or f ∈ S2(σ−1
a Γσa)) we

know that y|f(z)| is bounded for z ∈ H [12, p. 70]. Thus, the left side of
(8.12) is less than

∞�

0

(1 + |log y|)e−2πmyyk/2−2 dy.

We leave it to the reader to show that this is bounded for k > 2 and m ∈ N.

The hyperbolic series. For the series ΦHyp(z,m, η;L) we must check that

(8.14)
µ�

1

π�

0

(1 + |Λ+
L (ση(reiθ))|+ |Λ−L (ση(reiθ))|)

× r−1e−πmθ/log ξ(sin θ)k/2−2 dθ dr <∞
is satisfied. The bounds

Λ+
L (σηz), Λ−L (σηz)� 1 + |log y|,

with an implied constant depending only on L, σa and Γ , are proved in the
same way as (8.13). With these the reader may confirm that (8.14) is true
for k > 2 and m ∈ Z.
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The elliptic series. For the series ΦEll(z,m, z0;L) we need

(8.15)
1�

0

π+π/N�

π−π/N
(1 + |Λ+

L (σz0(reiθ))|+ |Λ−L (σz0(reiθ))|)

× rm+1(1− r2)k/2−2 dθ dr <∞.
As we saw in (4.1) and Figure 3, σz0(reiθ) will be contained in a bounded
region of H. Thus we find

Λ+
L (σz0(reiθ))� 1 + |log Im(σz0(reiθ))|.

Similarly, for Λ−L and using (4.9), the left side of (8.15) is bounded by a
finite constant times

(8.16)
1�

0

π+π/N�

π−π/N

(
1 +

∣∣∣∣log
1− r2
|1− reiθ|2

∣∣∣∣)rm+1(1− r2)k/2−2 dθ dr.

We have ∣∣∣∣log
1− r2
|1− reiθ|2

∣∣∣∣ ≤ |log(1− r2)|+ 2
∣∣log |1− reiθ|

∣∣
and since N ≥ 2 we know ∣∣log |1− reiθ|

∣∣ ≤ log 2.

Consequently, (8.16) is bounded by a constant times
1�

0

(1 + |log(1− r2)|)rm+1(1− r2)k/2−2 dr.

It is straightforward to verify that this is bounded for k > 2 and m ∈ N0.

9. Spanning questions

9.1. If Γ contains a parabolic element, or equivalently if Γ\H is non-
compact with a cusp a, then let

S1
Par(a) := {ΦPar(z,m, a) : m ∈ N}

be the set of all weight k parabolic Poincaré series associated to this cusp.
The elements in this set span the weight k cusp forms

(9.1) Sk = 〈S1
Par(a)〉

for the simple reason that any element in a subspace orthogonal to all of
S1

Par(a) must have an identically zero parabolic expansion at a by Proposi-
tion 5.

If Γ does not contain parabolic elements then we cannot construct para-
bolic Poincaré series. If Γ has an elliptic fixed point z0 then similar reasoning
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with Proposition 15 shows that the weight k elliptic Poincaré series

S1
Ell(z0) := {ΦEll(z,m, z0) : m ∈ N0}

span Sk.
It is possible that Γ does not contain any parabolic or elliptic elements.

It must contain a hyperbolic element though, by [16, Theorem 2.4.4]. If
η = {η1, η2} is any pair of hyperbolic fixed points then, with Proposition 8,
Sk is spanned by the weight k hyperbolic Poincaré series

S1
Hyp(η) := {ΦHyp(z,m, η) : m ∈ Z}.

9.2. We would expect the weight k second-order Poincaré series to span
the space S2

k/S
1
k and this is indeed the case, provided we allow the homo-

morphisms L as well as the indices m to vary. Similarly to the first-order
sets in Section 9.1, define

S2
Par(a) := {ΦPar(z,m, a;L) : m ∈ N, L ∈ Hom0(Γ,C)},
S2

Ell(z0) := {ΦEll(z,m, z0;L) : m ∈ N0, L ∈ Hom0(Γ,C)}.
Recall the hyperbolic generators (7.1) for Γ . For 1 ≤ i ≤ 2g define the
homomorphisms Lγi ∈ Hom0(Γ,C) dual to these generators by

Lγi(γj) := δij

and each Lγi is zero on the other elliptic and parabolic generators. It follows
that {Lγi : 1 ≤ i ≤ 2g} is a basis for Hom0(Γ,C).

Proposition 21. For a cusp a of Γ\H or an elliptic fixed point z0, the
sets S2

Par(a), S2
Ell(z0) each span S2

k/S
1
k.

Proof. Recall the map P2 : S2
k/S

1
k → (S1

k)2g given by (7.2). A short
calculation shows that

ΦPar(γjz,m, a;Lγi)
j(γj , z)k

= ΦPar(z,m, a;Lγi)− Lγi(γj)ΦPar(z,m, a).

Hence

P2(ΦPar(z,m, a;Lγi)) = (0, 0, . . . ,−ΦPar(z,m, a)︸ ︷︷ ︸
ith component

, . . . , 0).

Let F be any element of S2
k and

P2(F ) = (f1, f2, . . . , f2g).

Since we know that the ΦPar(z,m, a) span Sk, we may write each fi as a
finite sum

fi(z) =
∑
m

ci(m)ΦPar(z,m, a).
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Therefore

P2

(
F (z) +

2g∑
i=1

∑
m

ci(m)ΦPar(z,m, a;Lγi)
)

= 0,

from which it follows that

F (z) +
2g∑
i=1

∑
m

ci(m)ΦPar(z,m, a;Lγi) ∈ S1
k

and S2
k/S

1
k is spanned by S2

Par(a) as we wanted to show. The proof for S2
Ell(z0)

is identical.

The hyperbolic version of this result is slightly more involved in that, as
well as L and m, we also need to vary the hyperbolic points η. For a simple
choice, put

A := {ΦHyp(z,m, η(γ1);Lγi) : m ∈ Z, 2 ≤ i ≤ 2g},
B := {ΦHyp(z,m, η(γ2);Lγ1) : m ∈ Z}.

Proposition 22. The set S2
Hyp = A ∪ B spans S2

k/S
1
k.

Proof. With similar reasoning to the proof of Proposition 21 we see that
A spans the subspace of S2

k/S
1
k with image (0, f2, f3, . . . , f2g) under P2, and

B spans the subspace with image (f1, 0, . . . , 0), where the fi are arbitrary
elements of S1

k . Therefore, as in Proposition 21, for any F ∈ S2
k there exists G

in the space spanned by A∪B with P2(F+G) = 0. Consequently, F+G ∈ S1
k

and S2
k/S

1
k is spanned by A ∪ B.

Remark. We saw in Section 3.3 that the set

T 1
Hyp := {ΦHyp(z, 0, η(γ)) : γ ∈ Hyp(Γ )}

also spans Sk. The obvious second-order analog is

T 2
Hyp := {ΦHyp(z, 0, η(γ);L) : γ ∈ Hyp(Γ ), L ∈ Hom0(Γ,C), L(γ) = 0}.

We expect that this set spans S2
k/S

1
k , but have been unable to prove it.

The proof that the first-order Poincaré series span Sk relies on Peters-
son’s inner product (2.8) and the fact that each type of these series—
parabolic, hyperbolic and elliptic—pick out corresponding expansion coeffi-
cients, as we saw in Propositions 5, 8 and 15. Is there a similar proof that
second-order Poincaré series span S2

k? The answer is yes, but the inner prod-
uct on S2

k is not given by Petersson’s formula (2.8). See [11] for the details.

10. Higher-order forms. We saw in Section 8 that the usual Poincaré
series in S1

k could be generalized to series in S2
k by including L ∈ Hom(Γ,C)

in their definition. Together these series spanned S2
k . What plays the role of

L when we look to construct third-order and higher-order forms?
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First, we generalize our “|” notation slightly. For any L : Γ → C and γ ∈
Γ define L|γ := L(γ) and extend this linearly to C[SL2(R)] and C[PSL2(R)].
Consider the functions L1, L2 : Γ → C satisfying

L1|(δ1 − 1) = 0 for all δ1 ∈ Γ,
L2|(δ1 − 1)(δ2 − 1) = 0 for all δ1, δ2 ∈ Γ,

and in general, for n ∈ N, let Hom[n](Γ,C) be the space of all functions
Ln : Γ → C where

Ln|((δ1 − 1) · · · (δn − 1)) = 0 for all δ1, . . . , δn ∈ Γ.
Clearly, Hom[1](Γ,C) is just the space of constant functions, and is isomor-
phic to C. The functions L2 ∈ Hom[2](Γ,C) satisfy

L2(δ1δ2) = L2(δ1) + L2(δ2)− L2(I) for all δ1, δ2 ∈ Γ
and we have L2 − L2(I) ∈ Hom(Γ,C). Hence

Hom[2](Γ,C) ∼= C⊕Hom(Γ,C).

Similarly, if we set

Hom[n]
0 (Γ,C) := {Ln ∈ Hom[n](Γ,C) :

Ln|(π − 1) = 0 for all parabolic π ∈ Γ}
then

Hom[2]
0 (Γ,C) ∼= C⊕Hom0(Γ,C).

Recall we have shown that the full second-order space is spanned by Poincaré
series. For example, with (9.1) and Proposition 21 we have

(10.1) S2
k = 〈S1

Par(a) ∪ S2
Par(a)〉

in the parabolic case and similarly for the elliptic and hyperbolic series.
Thus, by (10.1) we have

S2
k = 〈{ΦPar(z,m, a;L) : m ∈ N, L ∈ Hom[2]

0 (Γ,C)}〉.
Looking towards future work, we expect that, for all n ∈ N,

Snk = 〈{ΦPar(z,m, a;L) : m ∈ N, L ∈ Hom[n]
0 (Γ,C)}〉

for a group with a cusp a, with similar results for the hyperbolic and elliptic
cases. This approach should parallel that of Diamantis and Sim [5] and also
be valid in the compact case.
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