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A construction of pseudorandom binary sequences
using both additive and multiplicative characters

by

LAszLO MERAI (Budapest)

1. Introduction. In order to study the pseudorandomness of finite bi-
nary sequences, Mauduit and Sarkézy introduced several definitions in [6].
For a given binary sequence

EN = {617' . '7€N} € {_17+1}N

the well-distribution measure of Ey is defined by

W(EyN) = max|U(En,t,a,b)| = max‘Zeaﬂb

a,b,t a,b,t

where the maximum is taken over all a,b,t € N such that 1 < a < a+
(t —1)b < N, and the correlation measure of order | of En is defined as

M
Ci(Ex) = max|V(Ex, M, D)| = IA]%( Zl Cndy - - - Ens, )
n—=

where the maximum is taken over all D = (di,...,d;) and M such that
0<di<---<di <N —-M.

The sequence Ep is considered to be a “good” pseudorandom sequence
if both these measures W(Ey) and Cj(En) (at least for small [) are “small”
in terms of N (in particular, both are o(NN) as N — o0). This terminology
is justified since for a truly random sequence Fx each of these measures is
< v/Nlog N. (For a more precise version of this result see [1].)

Using the Legendre symbol, Mauduit and Sarkozy [6] showed an example
of a “good” pseudorandom sequence. They defined a binary sequence by
putting N = p — 1 where p is a prime number, and

(1) en:<z> forn=1,...,p—1.
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They proved that
W(Ep—1) < pl/2 logp, Ci(Ep-1) < lpl/2 log p.
Other large families of binary sequences with strong pseudorandom prop-
erties were studied in [4], [3], [5], [8], [7], [10].
In this paper a new construction of a large family of pseudorandom
binary sequences is presented which uses both additive and multiplicative
characters.

Let p be a prime, 9 an additive character, xy a multiplicative character
in Fp, o € C with || =1, and f(x),g(z),q(z),r(z) € Fplx]. Let us define

E, by
Sone ()
(2) en = and g(n),(n £0,

—1 otherwise.

\/

Note that this construction generalizes several earlier ones:

CONSTRUCTION 1: If x is the Legendre symbol, 1 is the trivial additive
character, a = 1, r(x) is a non-zero constant polynomial, we get an extended
variant of (1), studied in [3]:

o { (42) for p q(n),

forn=1,...,p.
1 for p|q(n),
CONSTRUCTION 2: If x is a general multiplicative character, v is the
trivial additive character, « = 1, r(x) is a non-zero constant polynomial, we
get the construction studied in [8], [10], [9]:

. {+1 if Re(x(g(n))) > 0,

forn=1,...,p.
—1 otherwise, Y
CONSTRUCTION 3: If ¢ is the additive character of the form ¢ (n) =
e(n/p) (where now e(a) = e?™®), y is the trivial multiplicative character,
a = i, then we get a variant of pseudorandom sequences studied in [4],

(5], [7]:
f(n)

en = +1 ipr<g(n)) < g for p 1 g(n),

—1 otherwise,

forn=1,...,p,

where 7,(n) denotes the least non-negative residue of n modulo p.

Let us introduce the following notations: for a rational function F'(z) =
f(z)/g(x) let deg F(x) = deg f(x) — degg(x) and deg” F(x) = deg f(x) +
deg g(x). Finally, let us denote the algebraic closure of I, by Fp.
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THEOREM 1. Assume that p is a prime number, x is a non-principal
multiplicative character modulo p of order d, v is a non-principal addi-
tive character modulo p, a € C with |o| = 1, F(z) = f(z)/g9(z), Q(zx) =
q(x)/r(xz) € Fp(z) are rational functions such that (g(z), f(xz)) = 1 and

(q(z),r(z)) = 1 and neither q(x) nor r(x) has a multiple zero in Iy, and the
binary sequence E, = {e1,...,ep} is defined by (2). Then

(3) W(E,) < (deg" F + ddeg” Q)pl/Q(logp)Q.

THEOREM 2. Let p, F'(z),Q(x) and E, be as in Theorem 1. Assume also
thatl € N, 2 <[ < p and one of the following conditions holds:

(a) 1 =2
(b) (4degg)' <p, (4deg” Q)" < p;
(c) g(z) = (x+a1)...(z+ag) (with a; # aj fori# j) andldegg < p/2,
(4deg* Q)" < p.
Then
(4) Ci(Ep) < (I+1)(deg" F + ddeg” Q)p'/*(log p)' .

2. On hybrid character sums. The proofs of Theorems 1 and 2 will be
based on hybrid character sum estimates. For rational functions F'(z), Q(x)
€ F,(x) denote the union of the sets of poles of F'(z) and Q(x) by S.

DEFINITION 3. For F(z), Q(x) € Fy(x) the character sum

Y U(E)x(Qn))
is degenerate if "
F(x)=H(z)’ — H(z)+0b for some be F, and H(x) € Fy(x)
and
Q(z) = bH(z)? for some b € F, and H(z) € Fy(z).

If the character sum is degenerate, then all of the terms are constant, so
one cannot give a non-trivial upper bound for the sum. For non-degenerate
sums Perel’'muter gave a non-trivial upper bound in [11]:

THEOREM 4. Let I, be a finite field of characteristic p, x be a non-
principal multiplicative character of ¥y of order d, and v be a non-principal
additive character of Fy. Let F(z) = f(z)/g9(x), Q(z) = q(x)/r(z) € Fy(z).
Assume that the hybrid character sum is not degenerate and the following
conditions hold:

(1) If F = f/gi‘1 ...g}, where the polynomials g1, ...,g, are non-con-
stants and (g1,...,9r) = 1 then pt \; when \; > 0 fori=1,...,r
and p 1 deg F' when deg F' > 0.

(2) If Q =g ... g /r{" ...rl™ then 0 < ng,m; < d for all i.
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Then

6) |3 eFE@NQM)| < (d+ 2~ 2)g" + di +dz + 1
ngS

with

dy = max{deg f,degg} + s+ A, do =degq+ degr+ u,

where s is the number of distinct zeros of g, A is 0 if degg > deg f and 1
otherwise, p is 0 if d|deg @ and 1 otherwise.

THEOREM 5. Let p be a prime, let ¢ be a non-principal additive charac-
ter of Fp, and x a non-principal multiplicative character of ), of order d.
Furthermore, let F' = f/g, Q = q/r be non-zero rational functions over Fp,
and let s be the number of distinct zeros of g in Fp. Suppose that g(z) 1 f(x)
and Q(z) is not of the form bB(z)? for any b € F, and B(x) € Fp(x).
If 1< N <p then

© | > vFmNNQM)
Ogn'r;éN

< 3(max{deg f,deg g} + s + deg ¢ + deg r)p1/2 log p.

Proof. We can assume that the degrees of all the polynomials are less
than p since the result is trivial otherwise.

It follows from the basic properties of additive characters that

N-1_ p—1 .
Z;ZW“(”—T)): {1 if0<n<N,
r=0 ° u=0

0 otherwise.

Let us denote the character sum in (6) by Sy. We have

N-1_, p—1
Sy = S w(Fm)Qm) Y ;Zwu(n — )

ngS r=0 u=0
1 p—1 N-1

——— —ur F(n un n
pu_o(r:0 o >)(n¢3w< (m) + un)x(Q(n)) )
1 p—1 N-1

== W(—ur Y(F(n) +un)x(Q(n
pu_l(r_o ( >)(n¢8 (F(n) + un)x(Q(n)) )
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and so
-1 N-1
(7) |wv:212wszﬁ n) + un)x(Q(n))
u=1 r=0
+ = 3 wP)x Q)|
ngS
For a fixed u we consider the rational function
Fu(z) = F(z) +ux = gég + uz.

To show that F),(z) satisfies the conditions of Theorem 4, it suffices to prove
that F,(x) is not of the form A(x)P — A(x) with A(x) € F,(x). Suppose that

_ (K@)\"_ K()
) nio = () - 5
with K (z), L(x) € Fp[z] such that (K (z), L(z)) = 1. Then

L(z)P(f(2) +uzg(z)) = (K(2)P~' = L(x)" ) K (2)g(),
so L(z)? | g(z) as (K(z), L(x)) = 1. Since deg g(x) < p, it follows that L(x)
is a nonzero constant polynomial. Thus we get

f(@) +uxg(z) = (@K ()P + SK(x))g(x),

and hence
f(z) = (aK(z)" + BK(z) — ux)g(x),
for some «, 8 € E? with af # 0.
Since g(x) { f(x) and either
deg(aK(x)P + BK (x) —uz) > p
or
deg(aK (z)P + K (z) —uzx) =1
we see that (8) cannot hold.
Since F'(z) +ux, F(z) and Q(z) satisfy the conditions of Theorem 4, we
deduce from (7) that
p—1 N-1
Sy <= ( > wn)| +N)
u=1 r=0
-2(max{deg f,deg g} + s + deg g + degr)p'/?

and
-1

2

—1
( b(u ‘< plog p + 0.38p + 0.64,
=0 r

i

if
Il
o

by Theorem 1 in [2]. m
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3. The well-distribution measure. To express the terms of E,, we
will need the generalization of Lemma 2 in [4].

LEMMA 6. Let m € N, and let € be an mth root of unity. Then

l Z Um(@)c?a = { +1 th_ﬂ-/2 S arg(g) < 7'('/2,
—m/2]<a<[m/2] - otherwise,
where vy, (a) is a function of period m such that v, (0) = 1, and if m is odd,

e (=1)° — cos(ra/m)
4 <1 i sin(wa/m)

vm(a) =

) if 1<|al<m/2,
while if m is even, then

0 if a is even
m = f 1< < 2.
om(@) =1 (2 — 2i COS(M/m)) if aisodd 0 LSll=m/

sin(am/m)
Furthermore, in both cases, vy, (a) < m/a if a # 0.

Proof. For m odd, the statement has been proved in [4]; for m even the
proof is similar. =

Proof of Theorem 1. To prove the desired inequality, consider a € Z and
b,t € N such that

(9) I1<a<a+4+(t—-1)b<p, b<p.

Then by Lemma 6 we have
Ep7t7a b Zea+3b

= 1 Z vdp(h)ah

—[dp/2]<h<[dp/2]

> U(Fa+ b)) (Qa+0)" +0( > 1)) +O0(deg )

0<j<t—1 0<j<p
a+jbgS a+jbeS

1
= > et (3 wFa+ ) x(Qa+ b))
P —ldp/2]<h<[dp/2] 0<j<t—1

a+jbgS
+ O(S]) + O(deg f),

since x(Q(n))" = x(Q(n))"¢™) for n € F,,.
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If 0 < |h| < dp/2 then h{por h{d (and so r4(h) 1 d), thus the hybrid

character sums are not degenerate. Furthermore,
max{deg f,deg g} + s < 2(deg f + deg g)

and
deg”* Q’"d(h) =rq(h)deg” Q < ddeg* @,

thus by Theorem 5 we have

t—1
U(Epta,b)| = | Y earn|
j=0
1 . . T
— Y eI Y et ) (@ + )y
P _lapj2)<n<(dp/2 0<j<i-1
h+£0 a+jbeS
+ [0 (0)| + O(IS]) + O(deg f)
1 * * T
<o 2 lva(W)(deg” F+deg” Q)p! 2 logp + [ugy (0)

—[dp/2]<h<[dp/2]
h+£0

< (deg® F +deg” Q"M)p?logp " T
—[dp/2]<h<[dp/2]
h£0

& (deg* F' + ddeg” Q)pl/Q(logp)Z. "

4. The correlation measure

Proof of Theorem 2. Consider any M < p and D = (di,...,d;) such
that 0 <dy < ---<d; <p— M. Then

V(E,, M, D) Zen+dl. Cntd,

1 !
= (dp)! Z H Z vap(hi)

1<n<M 1=1 —[dp/2]<h;<[dp/2]
n+di,...,n+d; ¢S

- (P (F(n+ di)x(Q(n + di))"

(9( Sotrer Y 1>+(9(ldegf),

1<n<M 1<n<M
n+d; €S ntd,eS

whence, separating the contribution of the term with h; =--- = h; = 0,
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1
10 V(E, M,D)=—— (M + O(|S|!
(10) (Ep ) (dp)l( (IS10))
!
1 .
a2 3 ) (k) [T
—ldp/2|<h1<[dp/2]  —[dp/2]<h;<[dp/2] i=1

(hi,.h)#(0,...,0)

> H F(n+di)x(Q(n + di)))™

1<n<M =1
n+dy,...,n+d; ¢S

+ O(|S|l) + O(ldeg f).

Now consider one of the innermost sums (where (hq,...,h) # (0,...,0)),
and let h;; < --- < h;, be the non-zero h;’s. Then

(1) S [T+ d)an+ )

1<n<M =1
n+d1,...,n+dl€8

l l

- ¥ @b(ZhiF(n—Fdi))X(HQ(n—Fdi)hi)

1<n<M i=1 i=1
n+di,...,n+d; ¢S

— Z w

1<n<M
n+tdiy ..., ntd;, €S

= ’lﬁ(fhl’ = n) (thv--nhz(n))
1<n<M Ghi by (1) Thy,...h (M)

n+tdiy ..., ntd;, €S

Jj= Jj=1

with
'

P @) = hi f(x+ i) ] g9l +di),

t=1 1<j<r
P
[ H x +di;
Ghy,...h H T+ d;; (hiy),

Thi,.h H r(r + dj (hiy),
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so that
deg fh1,...,hl < degf + (7“ — 1) degg < degf + (l _ 1) deg g,
deg gn,,...n, = rdegg < ldegy,
deg” <q}“’”> <N " ralhi,) deg” Q < ld deg* Q.

rhlv--whl j=1

In order to give an upper bound for the character sum in (11), we have
to show that this sum is not degenerate for every (hi,...,h;) # (0,...,0).

First, suppose that p { h;; for all j = 1,...,r. The following lemma
(Lemmas 8 and 9 in [7]) shows that the character sum is not degenerate.

LEMMA 7. Ifp, f(x),g(x) andl satisfy the conditions in Theorem 2 and
p Jf hij for j=1,...,r, then gh17~-~7hl(x) )f fh17~~'7hl ($)

By the lemma, from (11) we have

(12) 3 ¢<fhlfw(")>x<thm(")>‘

1<n<M Ghi,....ly (n) Thi,..l (n)
n+di1,...,n+di7, S

< oo () g (B0 )21
ha,...l Tha,hy
< 3(1+1)(deg* F + d deg* Q)p*/*log p,
since
max{deg fn,,  n>deggh,,.. n}+ Shy,.n < deg f+ (I+1)degg
< (l+1)deg" F
where sy, p, is the number of distinct zeros of gp, . 4,-

On the other hand, if there are some h;; such that p|h;;, then d { h;;
since 0 < |hy;| < [dp/2]. Let

T

. T hz T hz
Gheom @) = [ @ +di)) ") ol @)= ] v+ di) ).

j=1 j=1

d’i’hij d'fhij

From the assumption, none of these polynomials is constant. Thus it is
enough to prove the following lemma:

LEMMA 8. Ifp, q(x),r(x) and [ satisfy the conditions in Theorem 2 and
there exists an index j such that dt h;;, then
q;zl,...,hl (z)
T.;'le-uvhl (w)
for no b € F, and B(x) € Fp(z).

= bB(z)?
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In order to prove this, we will need the following lemma from [5].

LEMMA 9. Assume that p is a prime number, k,I € N and k,l < p.
Assume also that one of the following conditions holds:

1) 1 <2,
(2) (4k)! <.

Then for all A, B C Z, with |A| =k and |B| =1, there is a ¢ € Z, such that
the equation

(13) a+b=c, a€cAbeDhB,
has exactly one solution in a,b.

Proof of Lemma 8. We use the approach developed in [3]. We say that
o(z),o(x) € Fplz] are equivalent, o ~ p, if there is an a € F, such that
o(z + a) = o(z). Clearly, this is an equivalence relation.

Write ¢(x) and r(x) as the product of irreducible polynomials over [F,,. It
follows from our assumption on the polynomials that all of these irreducible
factors are distinct. Let us divide these factors into groups of equivalent
factors. A typical group has the following form: o(z 4 a1),...,0(z + ay)
(where u < deggq) belong to ¢(z), and g(x + b1),...,0(x + b,) (where
v < degr) belong to r(x), where the constants a;, b; are distinct by as-
sumption.

By the definition of ¢, , and r, , the factors occurring in the
polynomials for a given group have the following form: o(x + a; + d;;) for
t=1,...,uand j=1,...,7 and o(x + b, + d;;) resp. All these polynomials
are equivalent, and no other irreducible factor belongs to this equivalence
class.

Now set A = {a1,...,a4,b1,...,b,}, B={di,,...,d; }. It follows from
assumption of Theorem 2 that either

IBl=r<l=2

or
(4]A])/B! < (4(deg g + deg 1))} < (4deg* Q) < p,

so that one of the assumptions (1) or (2) in Lemma 9 holds, and thus
the lemma can be applied. Hence there is a ¢ € [, that has exactly one
representation (13). Thus either o(x+c) { q;,, . (%) or o(z+c)tr, (2),
SO
d—
o(@ +0) L ahy (@) Ty, (@)
but
d d—
(0 + ) o () ()
By Lemma 8 the character sum in (12) is not degenerate, so the inequal-
ity also holds if there are some h;; such that p|h;;.
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Thus (10) and (12) yield
|V(Ep7 M7 D)|

1
< (dp)l‘ Z Z Udp<h1)...'l)dp(hl)’
—ldp/2]<hi<[dp/2]  —[dp/2]<h;<[dp/2]
(h17~--7hl)7£(07'-'70)
l l
> o(ITnersa)x( Qe +a))
1<n<M i=1 i=1
n+di,...,n+d;| ¢S

+ O(|S|l) + O(ldeg f)

1 l
<<W<Z+1><deg*F+ddeg*@>p1/2logp( > Joap(h))
P |h|<dp/2

+ O(|S|l) + O(ldeg f)

1 dp\'
< @) (I +1)(deg* F + d deg* Q)p'/? logp<1 + Z f)
p 0<|h|<dp/2

+ O(|S[l) + O(ldeg” Q)
< (I+1)(deg* F + ddeg* Q)p"/(log p)'**,

which completes the proof of Theorem 2. =
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