
ACTA ARITHMETICA

139.3 (2009)

A construction of pseudorandom binary sequences
using both additive and multiplicative characters

by

László Mérai (Budapest)

1. Introduction. In order to study the pseudorandomness of finite bi-
nary sequences, Mauduit and Sárközy introduced several definitions in [6].
For a given binary sequence

EN = {e1, . . . , eN} ∈ {−1,+1}N

the well-distribution measure of EN is defined by

W (EN ) = max
a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣,
where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤ a +
(t− 1)b ≤ N , and the correlation measure of order l of EN is defined as

Cl(EN ) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣ M∑
n=1

en+d1 . . . en+dl

∣∣∣,
where the maximum is taken over all D = (d1, . . . , dl) and M such that
0 ≤ d1 < · · · < dl ≤ N −M .

The sequence EN is considered to be a “good” pseudorandom sequence
if both these measures W (EN ) and Cl(EN ) (at least for small l) are “small”
in terms of N (in particular, both are o(N) as N → ∞). This terminology
is justified since for a truly random sequence EN each of these measures is
�
√
N logN . (For a more precise version of this result see [1].)

Using the Legendre symbol, Mauduit and Sárközy [6] showed an example
of a “good” pseudorandom sequence. They defined a binary sequence by
putting N = p− 1 where p is a prime number, and

(1) en =
(
n

p

)
for n = 1, . . . , p− 1.

2000 Mathematics Subject Classification: Primary 11K45.
Key words and phrases: pseudorandom, binary sequence, hybrid character sum, rational
function.

DOI: 10.4064/aa139-3-3 [241] c© Instytut Matematyczny PAN, 2009



242 L. Mérai

They proved that

W (Ep−1)� p1/2 log p, Cl(Ep−1)� lp1/2 log p.

Other large families of binary sequences with strong pseudorandom prop-
erties were studied in [4], [3], [5], [8], [7], [10].

In this paper a new construction of a large family of pseudorandom
binary sequences is presented which uses both additive and multiplicative
characters.

Let p be a prime, ψ an additive character, χ a multiplicative character
in Fp, α ∈ C with |α| = 1, and f(x), g(x), q(x), r(x) ∈ Fp[x]. Let us define
Ep by

(2) en =


+1 if Re

(
αψ

(
f(n)
g(n)

)
χ

(
q(n)
r(n)

))
≥ 0

and g(n), r(n), q(n) 6= 0,
−1 otherwise.

Note that this construction generalizes several earlier ones:

Construction 1: If χ is the Legendre symbol, ψ is the trivial additive
character, α = 1, r(x) is a non-zero constant polynomial, we get an extended
variant of (1), studied in [3]:

en =

{( q(n)
p

)
for p - q(n),

1 for p | q(n),
for n = 1, . . . , p.

Construction 2: If χ is a general multiplicative character, ψ is the
trivial additive character, α = 1, r(x) is a non-zero constant polynomial, we
get the construction studied in [8], [10], [9]:

en =

{
+1 if Re(χ(q(n))) ≥ 0,
−1 otherwise,

for n = 1, . . . , p.

Construction 3: If ψ is the additive character of the form ψ(n) =
e(n/p) (where now e(α) = e2πiα), χ is the trivial multiplicative character,
α = i, then we get a variant of pseudorandom sequences studied in [4],
[5], [7]:

en =

+1 if rp

(
f(n)
g(n)

)
<
p

2
for p - g(n),

−1 otherwise,
for n = 1, . . . , p,

where rp(n) denotes the least non-negative residue of n modulo p.
Let us introduce the following notations: for a rational function F (x) =

f(x)/g(x) let degF (x) = deg f(x) − deg g(x) and deg∗ F (x) = deg f(x) +
deg g(x). Finally, let us denote the algebraic closure of Fp by Fp.
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Theorem 1. Assume that p is a prime number , χ is a non-principal
multiplicative character modulo p of order d, ψ is a non-principal addi-
tive character modulo p, α ∈ C with |α| = 1, F (x) = f(x)/g(x), Q(x) =
q(x)/r(x) ∈ Fp(x) are rational functions such that (g(x), f(x)) = 1 and
(q(x), r(x)) = 1 and neither q(x) nor r(x) has a multiple zero in Fp, and the
binary sequence Ep = {e1, . . . , ep} is defined by (2). Then

(3) W (Ep)� (deg∗ F + d deg∗Q)p1/2(log p)2.

Theorem 2. Let p, F (x), Q(x) and Ep be as in Theorem 1. Assume also
that l ∈ N, 2 ≤ l < p and one of the following conditions holds:

(a) l = 2;
(b) (4 deg g)l < p, (4 deg∗Q)l < p;
(c) g(x) = (x+a1) . . . (x+ak) (with ai 6= aj for i 6= j) and l deg g < p/2,

(4 deg∗Q)l < p.

Then

(4) Cl(Ep)� (l + 1)(deg∗ F + ddeg∗Q)p1/2(log p)l+1.

2. On hybrid character sums. The proofs of Theorems 1 and 2 will be
based on hybrid character sum estimates. For rational functions F (x), Q(x)
∈ Fp(x) denote the union of the sets of poles of F (x) and Q(x) by S.

Definition 3. For F (x), Q(x) ∈ Fq(x) the character sum∑
n6∈S

ψ(F (n))χ(Q(n))

is degenerate if

F (x) = H(x)p −H(x) + b for some b ∈ Fq and H(x) ∈ Fq(x)

and
Q(x) = bH(x)d for some b ∈ Fq and H(x) ∈ Fq(x).

If the character sum is degenerate, then all of the terms are constant, so
one cannot give a non-trivial upper bound for the sum. For non-degenerate
sums Perel’muter gave a non-trivial upper bound in [11]:

Theorem 4. Let Fq be a finite field of characteristic p, χ be a non-
principal multiplicative character of Fq of order d, and ψ be a non-principal
additive character of Fq. Let F (x) = f(x)/g(x), Q(x) = q(x)/r(x) ∈ Fq(x).
Assume that the hybrid character sum is not degenerate and the following
conditions hold :

(1) If F = f/gλ1
1 . . . gλr

r , where the polynomials g1, . . . , gr are non-con-
stants and (g1, . . . , gr) = 1 then p - λi when λi > 0 for i = 1, . . . , r
and p - degF when degF > 0.

(2) If Q = qn1
1 . . . qnu

u /rm1
1 . . . rmv

v then 0 < ni,mi < d for all i.
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Then

(5)
∣∣∣∑
n6∈S

ψ(F (n))χ(Q(n))
∣∣∣ ≤ (d1 + d2 − 2)q1/2 + d1 + d2 + 1

with

d1 = max{deg f, deg g}+ s+ λ, d2 = deg q + deg r + µ,

where s is the number of distinct zeros of g, λ is 0 if deg g ≥ deg f and 1
otherwise, µ is 0 if d | degQ and 1 otherwise.

Theorem 5. Let p be a prime, let ψ be a non-principal additive charac-
ter of Fp, and χ a non-principal multiplicative character of Fp of order d.
Furthermore, let F = f/g, Q = q/r be non-zero rational functions over Fp,
and let s be the number of distinct zeros of g in Fp. Suppose that g(x) - f(x)
and Q(x) is not of the form bB(x)d for any b ∈ Fp and B(x) ∈ Fp(x).
If 1 ≤ N < p then

(6)
∣∣∣ ∑

0≤n<N
n6∈S

ψ(F (n))χ(Q(n))
∣∣∣

≤ 3(max{deg f, deg g}+ s+ deg q + deg r)p1/2 log p.

Proof. We can assume that the degrees of all the polynomials are less
than p since the result is trivial otherwise.

It follows from the basic properties of additive characters that

N−1∑
r=0

1
p

p−1∑
u=0

ψ(u(n− r)) =

{
1 if 0 ≤ n < N,

0 otherwise.

Let us denote the character sum in (6) by SN . We have

SN =
∑
n6∈S

ψ(F (n))χ(Q(n))
N−1∑
r=0

1
p

p−1∑
u=0

ψ(u(n− r))

=
1
p

p−1∑
u=0

(N−1∑
r=0

ψ(−ur)
)(∑

n6∈S
ψ(F (n) + un)χ(Q(n))

)

=
1
p

p−1∑
u=1

(N−1∑
r=0

ψ(−ur)
)(∑

n6∈S
ψ(F (n) + un)χ(Q(n))

)
+
N

p

∑
n6∈S

ψ(F (n))χ(Q(n))
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and so

|SN | ≤
1
p

p−1∑
u=1

∣∣∣N−1∑
r=0

ψ(ur)
∣∣∣ ∣∣∣∑
n6∈S

ψ(F (n) + un)χ(Q(n))
∣∣∣(7)

+
N

p

∣∣∣∑
n6∈S

ψ(F (n))χ(Q(n))
∣∣∣.

For a fixed u we consider the rational function

Fu(x) = F (x) + ux =
f(x)
g(x)

+ ux.

To show that Fu(x) satisfies the conditions of Theorem 4, it suffices to prove
that Fu(x) is not of the form A(x)p−A(x) with A(x) ∈ Fp(x). Suppose that

Fu(x) =
(
K(x)
L(x)

)p
− K(x)
L(x)

(8)

with K(x), L(x) ∈ Fp[x] such that (K(x), L(x)) = 1. Then

L(x)p(f(x) + uxg(x)) = (K(x)p−1 − L(x)p−1)K(x)g(x),

so L(x)p | g(x) as (K(x), L(x)) = 1. Since deg g(x) < p, it follows that L(x)
is a nonzero constant polynomial. Thus we get

f(x) + uxg(x) = (αK(x)p + βK(x))g(x),

and hence
f(x) = (αK(x)p + βK(x)− ux)g(x),

for some α, β ∈ Fp with αβ 6= 0.
Since g(x) - f(x) and either

deg(αK(x)p + βK(x)− ux) > p

or
deg(αK(x)p + βK(x)− ux) = 1

we see that (8) cannot hold.
Since F (x) +ux, F (x) and Q(x) satisfy the conditions of Theorem 4, we

deduce from (7) that

|SN | ≤
1
p

( p−1∑
u=1

∣∣∣N−1∑
r=0

ψ(ur)
∣∣∣+N

)
· 2(max{deg f,deg g}+ s+ deg q + deg r)p1/2

and
p−1∑
u=0

∣∣∣N−1∑
r=0

ψ(ur)
∣∣∣ < 4

π
p log p+ 0.38p+ 0.64,

by Theorem 1 in [2].
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3. The well-distribution measure. To express the terms of Ep, we
will need the generalization of Lemma 2 in [4].

Lemma 6. Let m ∈ N, and let ε be an mth root of unity. Then

1
m

∑
−[m/2]<a≤[m/2]

vm(a)εa =

{
+1 if −π/2 ≤ arg(ε) < π/2,
−1 otherwise,

where vm(a) is a function of period m such that vm(0) = 1, and if m is odd ,
then

vm(a) = ia
(

1 + i
(−1)a − cos(πa/m)

sin(πa/m)

)
if 1 ≤ |a| < m/2,

while if m is even, then

vm(a) =

 0 if a is even

ia
(

2− 2i
cos(aπ/m)
sin(aπ/m)

)
if a is odd

if 1 ≤ |a| ≤ m/2.

Furthermore, in both cases, vm(a)� m/a if a 6= 0.

Proof. For m odd, the statement has been proved in [4]; for m even the
proof is similar.

Proof of Theorem 1. To prove the desired inequality, consider a ∈ Z and
b, t ∈ N such that

(9) 1 ≤ a ≤ a+ (t− 1)b ≤ p, b < p.

Then by Lemma 6 we have

U(Ep, t, a, b) =
t−1∑
j=0

ea+jb

=
1
dp

∑
−[dp/2]<h≤[dp/2]

vdp(h)αh

·
( ∑

0≤j≤t−1
a+jb6∈S

ψ(F (a+ jb))hχ(Q(a+ jb))h +O
( ∑

0≤j≤p
a+jb∈S

1
))

+O(deg f)

=
1
dp

∑
−[dp/2]<h≤[dp/2]

vdp(h)αh
( ∑

0≤j≤t−1
a+jb6∈S

ψ(F (a+ jb))hχ(Q(a+ jb))rd(h)
)

+O(|S|) +O(deg f),

since χ(Q(n))h = χ(Q(n))rd(h) for n ∈ Fp.
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If 0 < |h| ≤ dp/2 then h - p or h - d (and so rd(h) - d), thus the hybrid
character sums are not degenerate. Furthermore,

max{deg f, deg g}+ s ≤ 2(deg f + deg g)

and
deg∗Qrd(h) = rd(h) deg∗Q ≤ ddeg∗Q,

thus by Theorem 5 we have

|U(Ep, t, a, b)| =
∣∣∣ t−1∑
j=0

ea+jb

∣∣∣
≤ 1
dp

∑
−[dp/2]<h≤[dp/2]

h6=0

|vdp(h)|
∣∣∣ ∑

0≤j≤t−1
a+jb6∈S

ψ(F (a+ jb))hχ(Q(a+ jb))rd(h)
∣∣∣

+ |vdp(0)|+O(|S|) +O(deg f)

� 1
dp

∑
−[dp/2]<h≤[dp/2]

h6=0

|vdp(h)|(deg∗ F + deg∗Qrd(h))p1/2 log p+ |vdp(0)|

� (deg∗ F + deg∗Qrd(h))p1/2 log p
∑

−[dp/2]<h≤[dp/2]
h6=0

1
|h|

� (deg∗ F + ddeg∗Q)p1/2(log p)2.

4. The correlation measure

Proof of Theorem 2. Consider any M < p and D = (d1, . . . , dl) such
that 0 ≤ d1 < · · · < dl ≤ p−M . Then

V (Ep,M,D) =
M∑
n=1

en+d1 . . . en+dl

=
1

(dp)l
∑

1≤n≤M
n+d1,..., n+dl 6∈S

l∏
i=1

∑
−[dp/2]<hi≤[dp/2]

vdp(hi)

· αhi(ψ(F (n+ di))χ(Q(n+ di)))hi

+O
( ∑

1≤n≤M
n+d1∈S

1 + · · ·+
∑

1≤n≤M
n+dl∈S

1
)

+O(l deg f),

whence, separating the contribution of the term with h1 = · · · = hl = 0,
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(10) V (Ep,M,D) =
1

(dp)l
(M +O(|S|l))

+
1

(dp)l
∑

−[dp/2]<h1≤[dp/2]

· · ·
∑

−[dp/2]<hl≤[dp/2]

(h1,...,hl)6=(0,...,0)

vdp(h1) . . . vdp(hl)
l∏

i=1

αhi

·
∑

1≤n≤M
n+d1,..., n+dl 6∈S

l∏
i=1

(ψ(F (n+ di))χ(Q(n+ di)))hi

+O(|S|l) +O(l deg f).

Now consider one of the innermost sums (where (h1, . . . , hl) 6= (0, . . . , 0)),
and let hi1 < · · · < hir be the non-zero hi’s. Then

∑
1≤n≤M

n+d1,..., n+dl 6∈S

l∏
i=1

(ψ(F (n+ di))χ(Q(n+ di)))hi(11)

=
∑

1≤n≤M
n+d1,..., n+dl 6∈S

ψ
( l∑
i=1

hiF (n+ di)
)
χ
( l∏
i=1

Q(n+ di)hi

)

=
∑

1≤n≤M
n+di1

,..., n+dir 6∈S

ψ
( r∑
j=1

hijF (n+ dij )
)
χ
( r∏
j=1

Q(n+ dij )rd(hij
)
)

=
∑

1≤n≤M
n+di1

,..., n+dir 6∈S

ψ

(
fh1,...,hl

(n)
gh1,...,hl

(n)

)
χ

(
qh1,...,hl

(n)
rh1,...,hl

(n)

)

with

fh1,...,hl
(x) =

r∑
t=1

hitf(x+ dit)
∏

1≤j≤r
j 6=t

g(x+ dij ),

gh1,...,hl
(x) =

r∏
j=1

g(x+ dij ),

qh1,...,hl
(x) =

r∏
j=1

q(x+ dij )rd(hij
),

rh1,...,hl
(x) =

r∏
j=1

r(x+ dij )rd(hij
),
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so that

deg fh1,...,hl
≤ deg f + (r − 1) deg g ≤ deg f + (l − 1) deg g,

deg gh1,...,hl
= r deg g ≤ l deg g,

deg∗
(
qh1,...,hl

rh1,...,hl

)
≤

r∑
j=1

rd(hij ) deg∗Q ≤ lddeg∗Q.

In order to give an upper bound for the character sum in (11), we have
to show that this sum is not degenerate for every (h1, . . . , hl) 6= (0, . . . , 0).

First, suppose that p - hij for all j = 1, . . . , r. The following lemma
(Lemmas 8 and 9 in [7]) shows that the character sum is not degenerate.

Lemma 7. If p, f(x), g(x) and l satisfy the conditions in Theorem 2 and
p - hij for j = 1, . . . , r, then gh1,...,hl

(x) - fh1,...,hl
(x).

By the lemma, from (11) we have

(12)
∣∣∣∣ ∑

1≤n≤M
n+di1

,..., n+dir 6∈S

ψ

(
fh1,...,hl

(n)
gh1,...,hl

(n)

)
χ

(
qh1,...,hl

(n)
rh1,...,hl

(n)

)∣∣∣∣
≤ 3
(

deg∗
(
fh1,...,hl

gh1,...,hl

)
+ deg∗

(
qh1,...,hl

rh1,...,hl

))
p1/2 log p

≤ 3(l + 1)(deg∗ F + ddeg∗Q)p1/2 log p,

since

max{deg fh1,...,hl
,deg gh1,...,hl

}+ sh1,...,hl
≤ deg f + (l + 1) deg g
≤ (l + 1) deg∗ F

where sh1,...,hl
is the number of distinct zeros of gh1,...,hl

.
On the other hand, if there are some hij such that p |hij , then d - hij

since 0 < |hij | ≤ [dp/2]. Let

q′h1,...,hl
(x) =

r∏
j=1
d-hij

q(x+ dij )rd(hij
), r′h1,...,hl

(x) =
r∏
j=1
d-hij

r(x+ dij )rd(hij
).

From the assumption, none of these polynomials is constant. Thus it is
enough to prove the following lemma:

Lemma 8. If p, q(x), r(x) and l satisfy the conditions in Theorem 2 and
there exists an index j such that d - hij , then

q′h1,...,hl
(x)

r′h1,...,hl
(x)

= bB(x)d

for no b ∈ Fp and B(x) ∈ Fp(x).
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In order to prove this, we will need the following lemma from [5].

Lemma 9. Assume that p is a prime number , k, l ∈ N and k, l < p.
Assume also that one of the following conditions holds:

(1) l ≤ 2,
(2) (4k)l < p.

Then for all A,B ⊂ Zp with |A| = k and |B| = l, there is a c ∈ Zp such that
the equation

(13) a+ b = c, a ∈ A, b ∈ B,
has exactly one solution in a, b.

Proof of Lemma 8. We use the approach developed in [3]. We say that
%(x), σ(x) ∈ Fp[x] are equivalent, σ ∼ %, if there is an a ∈ Fp such that
%(x+ a) = σ(x). Clearly, this is an equivalence relation.

Write q(x) and r(x) as the product of irreducible polynomials over Fp. It
follows from our assumption on the polynomials that all of these irreducible
factors are distinct. Let us divide these factors into groups of equivalent
factors. A typical group has the following form: %(x + a1), . . . , %(x + au)
(where u ≤ deg q) belong to q(x), and %(x + b1), . . . , %(x + bv) (where
v ≤ deg r) belong to r(x), where the constants ai, bj are distinct by as-
sumption.

By the definition of q′h1,...,hl
and r′h1,...,hl

the factors occurring in the
polynomials for a given group have the following form: %(x + at + dij ) for
t = 1, . . . , u and j = 1, . . . , r and %(x+ bz + dij ) resp. All these polynomials
are equivalent, and no other irreducible factor belongs to this equivalence
class.

Now set A = {a1, . . . , au, b1, . . . , bv}, B = {di1 , . . . , dir}. It follows from
assumption of Theorem 2 that either

|B| = r ≤ l = 2

or
(4|A|)|B| ≤ (4(deg q + deg r))l ≤ (4 deg∗Q)l < p,

so that one of the assumptions (1) or (2) in Lemma 9 holds, and thus
the lemma can be applied. Hence there is a c ∈ Fp that has exactly one
representation (13). Thus either %(x+c) - q′h1,...,hl

(x) or %(x+c) - r′h1,...,hl
(x),

so
%(x+ c) | q′h1,...,hl

(x)(r′h1,...,hl
(x))d−1

but
(%(x+ c))d - q′h1,...,hl

(x)(r′h1,...,hl
(x))d−1.

By Lemma 8 the character sum in (12) is not degenerate, so the inequal-
ity also holds if there are some hij such that p |hij .
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Thus (10) and (12) yield

|V (Ep , M,D)|

� 1
(dp)l

∣∣∣ ∑
−[dp/2]<h1≤[dp/2]

· · ·
∑

−[dp/2]<hl≤[dp/2]

(h1,...,hl)6=(0,...,0)

vdp(h1) . . . vdp(hl)
∣∣∣

·
∣∣∣ ∑

1≤n≤M
n+d1,..., n+dl 6∈S

ψ
( l∏
i=1

hiF (n+ di)
)
χ
( l∑
i=1

Q(n+ di)hi

)∣∣∣
+O(|S|l) +O(l deg f)

� 1
(dp)l

(l + 1)(deg∗ F + d deg∗Q)p1/2 log p
( ∑
|h|<dp/2

|vdp(h)|
)l

+O(|S|l) +O(l deg f)

� 1
(dp)l

(l + 1)(deg∗ F + d deg∗Q)p1/2 log p
(

1 +
∑

0<|h|<dp/2

dp

h

)l
+O(|S|l) +O(l deg∗Q)

� (l + 1)(deg∗ F + d deg∗Q)p1/2(log p)l+1,

which completes the proof of Theorem 2.
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2005.



252 L. Mérai

[10] S. M. Oon, On pseudo-random properties of certain Dirichlet series, Ramanujan J.
15 (2008), 19–30.

[11] G. I. Perel’muter, On certain character sums, Uspekhi Mat. Nauk 18 (1963), no. 2,
145–149.

Department of Algebra and Number Theory
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