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1. Introduction. Let L > 0 and M be rational integers such that
L− 4M > 0 and (L,M) = 1. Let α and β be the two roots of the trinomial
x2 −

√
Lx + M . For a non-negative integer n, the nth term in the Lehmer

sequence {Pn} (see [5]) is defined by

Pn := Pn(α, β) =


αn − βn

α− β
for n odd,

αn − βn

α2 − β2
for n even.

(1.1)

Lehmer sequences have many interesting properties and often arise in the
study of Diophantine equations. The arithmetic properties of the numbers
Pn can be found in [5, 15].

The main purpose of the present paper is to investigate the occurrence of
squares in Lehmer sequences and their applications to Diophantine equations
of the form
(1.2) aX4 − bY 2 = 2,
where a and b are given positive odd integers. This type of problem has
received considerable interest (see [3, 4, 11, 10, 14]). In certain ways it ac-
tually goes back to the classical work of Ljunggren [6–9], who was able
to prove many theorems on equations of the form aX4 − bY 2 = c with
c ∈ {±1,−2,±4}, but he did not prove any result on the case c = 2 (cu-
riously). Therefore, the result of this paper can be viewed as a case that
Ljunggren missed, for reasons that will never be known. Here as well as
throughout the paper, we use

(
A
B

)
to denote the Jacobi symbol of A with

respect to B, where A and B are coprime integers.
Rotkiewicz proved the following two results concerning the equations

Pp = px2, Pp = x2, where p is an odd prime.
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Theorem R1 (Theorem 5 in [11]). For an odd prime p the equation
Pp = px2, with x an integer , has no solutions provided that one of the
following two sets of assumptions is satisfied :

• (L,M) ≡ (1, 0) (mod 4) and
(
L
M

)
= 1, or

• (L,M) ≡ (0, 3) (mod 4) and
(
M
L

)
= 1.

Theorem R2 (Theorem 3 in [11]). For an odd prime p the equation
Pp = x2, with x an integer , has no solutions provided that one of the fol-
lowing two sets of assumptions is satisfied :

• (L,M) ≡ (3, 0) (mod 4) and
(
L
M

)
= 1, or

• (L,M) ≡ (0, 1) (mod 4) and
(
M
L

)
= 1.

Motivated by Diophantine equations of the form

(1.3) aX2 − bY 4 = 2,

where a and b are odd positive integers, Luca and Walsh [10] proved the
following results similar to those in Theorems R1 and R2 for different sets
of Lehmer sequences.

Theorem LW1 (Theorem 1 in [10]). Let p be an odd prime.

• If (L,M) ≡ (2, 1) (mod 4) and
(
L
M

)
= 1, then the equation Pp = px2,

with x an integer , has no solutions.
• If (L,M) ≡ (2, 1) (mod 4) and

(
L
M

)
= 1, then the equation Pp = x2,

with x an integer , has no solutions provided that p > 3.

In the first part of this paper, by the method similar to that of Luca and
Walsh [10], we will prove similar results for more sets of Lehmer sequences.

Theorem 1.1. Let p be an odd prime. If (L,M) ≡ (2, 3) (mod 4) and(
L
M

)
= 1, then the equation Pp = x2, with x an integer , has no solutions.

Theorem 1.2. Let p be an odd prime. If (L,M) ≡ (2, 3) (mod 4) and(
L
M

)
= 1, then the equation Pp = px2, with x an integer , has no solutions

provided that p > 3.

1.1. Diophantine applications. Suppose that a and b are odd positive
integers for which the equation

(1.4) aX2 − bY 2 = 2

is solvable in positive integers (X,Y ). Let (a1, b1) be the minimal positive
solution of equation (1.4), and define

(1.5) α =
a1
√
a+ b1

√
b√

2
.
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Furthermore, for k odd, define

αk =
ak
√
a+ bk

√
b√

2
,

where (ak, bk) are positive integers. It is well known that all positive integer
solutions (X,Y ) of equation (1.4) are of the form (ak, bk). Thus we see that
a solution to (1.2) is equivalent to the existence of an index k for which
ak = x2.

As an application of Theorem LW1, Luca and Walsh [10] proved the
following theorem.

Theorem LW2 (Theorem 2 in [10]).

• If b1 is not a square, then equation (1.3) has no solutions.
• If b1 is a square and b3 is not a square, then (X,Y ) = (a1,

√
b1) is

the only solution of equation (1.3).
• If b1 and b3 are both squares, then (X,Y ) = (a1,

√
b1) and (a3,

√
b3)

are the only solutions of equation (1.3).

In recent papers [1, 2, 13], using the Thue–Siegel method, it is proved that
the equation (1.2) has at most two solutions in positive integers. Moreover,
Akhtari, Togbé and Walsh [2] posed the following conjecture.

Conjecture 1.3. For any positive odd integers a, b, the equation
aX4 − bY 2 = 2 has at most one solution in positive integers, and such a
solution must arise from the fundamental solution to the quadratic equation
aX2 − bY 2 = 2.

As an application of Theorem 1.1, we prove the following result which
confirms this conjecture.

Theorem 1.4. For any positive odd integers a, b, the equation aX4−bY 2

= 2 has at most one solution in positive integers, and such a solution arises
from the fundamental solution to the quadratic equation aX2 − bY 2 = 2.

2. Properties of Jacobi’s symbol
(
Pn
Pm

)
. Let m and n be coprime

positive odd integers. As in the Eisenstein rule (see [9, p. 330]) we write the
following sequence of equalities:

(2.1)



n = 2k1m+ ε1r1, 0 < r1 < p,

m = 2k2r1 + ε2r2, 0 < r2 < r1,

r1 = 2k3r2 + ε3r3, 0 < r3 < r2,
. . .

rl−3 = 2kl−1rl−2 + εl−1rl−1, 0 < rl−1 < rl−2,

rl−2 = 2klrl−1 + εlrl, rl = 1,
εi = ±1, 2 - ri, i = 1, 2, . . . , l.
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Then (see [12, p. 332])

(2.2)
(
n

m

)
= (−1)

Pl
i=1

ri−1−1

2
· εiri−1

2 , r0 = m.

To compute the Jacobi symbol
(
Pn
Pm

)
in the case (L,M) ≡ (2, 3) (mod 4)

and
(
L
M

)
= 1, we need a result of Rotkiewicz (Lemmas 1 and 3 in [11]).

Lemma 2.1. If (L,M) ≡ (2, 3) (mod 4) and
(
L
M

)
= 1, then Pn ≡

(
2
n

)
(mod 4) and

(
M
Pn

)
=
(

2
n

)
.

With the above notations, by Theorem 1 in [11] we have the following
result.

Theorem 2.2. If (L,M) ≡ (2, 3) (mod 4) and
(
L
M

)
= 1, then(

Pn
Pm

)
= (−1)

Pl
i=1

( 2
ri−1

)−1

2
·
εi(

2
ri

)−1

2 ·
(

2
m

)k1+
ε1−1

2

· · ·
(

2
rl−1

)kl+
εl−1

2

,

where r0 = m.

A closer look at the above formula shows that we only need to consider
those ri (i = 0, . . . , l − 1) such that ri ≡ 3, 5 (mod 8). If ri ≡ 3, 5 (mod 8)
and ri+1 ≡ 1, 7 (mod 8), then the contribution of ri to the above formula is

(−1)ki+1+
εi+1−1

2
+

εi+1−1

2 = (−1)ki+1 .

If ri ≡ 3, 5 (mod 8) and ri+1 ≡ 3, 5 (mod 8), then the contribution of ri to
the above formula is

(−1)ki+1+
εi+1−1

2
+
−εi+1−1

2 = (−1)ki+1+1.

For the sake of brevity, we introduce the following notations:

λ1 = λ1(m,n) = ]{i : ri−1 ≡ 3, 5 (mod 8), ri ≡ 1, 7 (mod 8) and 2 - ki},
λ2 = λ2(m,n) = ]{i : ri−1 ≡ 3, 5 (mod 8), ri ≡ 3, 5 (mod 8) and 2 | ki}.

With the above notations, we can rewrite Theorem 2.2 as follows.

Corollary 2.3. If (L,M) ≡ (2, 3) (mod 4) and
(
L
M

)
= 1, then(

Pn
Pm

)
= (−1)λ1+λ2 .

Note that the above formula for the Jacobi’s symbol is independent of
the signs of εi, i = 1, . . . , l. For the sake of brevity, we use

a1 − a2 − · · · − as
to denote the division a1 = 2a2 ± a3, a2 = 2a3 ± a4, . . . , as−2 = 2as−1 ± as;

λ1 = u; ri1 , . . . , riu
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to denote rij ≡ 3, 5 (mod 8), rij+1 ≡ 1, 7 (mod 8) and 2 - kij+1 (j = 1, . . . , u),
and

λ2 = v; ri1 , . . . , riv
to denote rij ≡ 3, 5 (mod 8), rij+1 ≡ 3, 5 (mod 8) and 2 | kij+1 (j = 1, . . . , v).

3. Proof of Theorem 1.1. By Lemma 2.1 and Pp = x2, we have
p ≡ ±1 (mod 8) and

(Pp

Pq

)
= 1 for any positive integer q coprime with p.

Hence it suffices to choose a positive integer q = r0 such that gcd(p, q) = 1
and λ1(q, p) + λ2(q, p) is odd.

3.1. The case p≡ 1 (mod 8). To begin, we prove the following four claims.

Claim 3.1. p ≡ 1 (mod 9).

For p ≡ −1 (mod 3), choosing q = r0 = 3, we have

p = 6k1 − 1, 2 - k1.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction.
For p ≡ −5 (mod 9), choosing q = r0 = 9, we have

p = 18k1 − 5, 9 = 2× 5− 1,
and so λ1 = 1; 5 and λ2 = 0, a contradiction again.

For p ≡ 7 (mod 9), choosing q = r0 = 9, we have

p = 18k1 + 7, 9− 7− 5− 3− 1,

and so λ1 = 1; 3 and λ2 = 0, again a contradiction. Claim 3.1 is proved.

Claim 3.2. p ≡ 1, 2 (mod 5).

Now we choose q = r0 = 5. For p ≡ −1 (mod 5), we have

p = 10k1 − 1, 2 - k1,

and so λ1 = 1; 5 and λ2 = 0, a contradiction.
For p ≡ 3 (mod 10), we have

p = 10k1 + 3, 2 - k1, 5 = 2× 3− 1,

and so λ1 = 1; 3 and λ2 = 0, a contradiction again, which proves Claim 3.2.

Claim 3.3. p ≡ ±1 (mod 7).

In this case, we choose q = r0 = 7. If p ≡ ±3 (mod 7), then

p = 14k1 ± 3, 7 = 2× 3 + 1.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction. If p ≡ ±5 (mod 7),
then

p = 14k2 ± 5, 7 = 2× 5− 3, 5 = 2× 3− 1.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction again, which proves
Claim 3.3.
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Claim 3.4. If p ≡ 1 (mod 3) and p ≡ 2 (mod 5), then p ≡ −1 (mod 7).

Choose q = r0 = 105. If p ≡ 1 (mod 7), then

p = 210k1 − 83, 105− 83− 61− 39− 17− 5,
17 = 4× 5− 3, 5 = 2× 3− 1.

Therefore λ1 = 2; 61, 3 and λ2 = 1; 5, a contradiction.

By the above four claims, if an odd positive integer p with p ≡ 1 (mod 8)
satisfies Pp = x2 for some positive integer x, then p ≡ 1 (mod 3), 1, 2 (mod 5)
and when p ≡ 2 (mod 5) then p ≡ −1 (mod 7). We divide the remaining
proof into four cases.

For positive integers k and l, we use P (k) and Q(l) to denote the prop-
erties that

3k | (p− 1) and 5l | (p+ 8).

Case 3.1: [p≡ 1 (mod 5), p≡ 1 (mod 3), P (2k)]⇒P (2k+1). Otherwise,
we have p ≡ 1 (mod 5), p ≡ 1 (mod 32k), p 6≡ 1 (mod 32k+1). First we
consider the case where p ≡ 1 + 2 · 32k (mod 32k+1), and choose q = r0 =
15 · 32k. Then we have p ≡ 1− 10 · 32k (mod 30 · 32k) and

p = 10 · 32k+1k1 − (10 · 32k − 1),

15 · 32k = 2(10 · 32k − 1)− (5 · 32k − 2), 10 · 32k − 1 = 2(5 · 32k − 2) + 3,

5 · 32k − 2 = 6k4 + 1, 2 - k4.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction.
Next we consider the case where p ≡ 1− 2 · 32k (mod 32k+1), and choose

q = r0 = 15 · 32k. Then p ≡ 1 + 10 · 32k (mod 30 · 32k) and

p = 30 · 32kk1 + (10 · 32k + 1),

15 · 32k = 2(10 · 32k + 1)− (5 · 32k + 2), 10 · 32k + 1 = 2(5 · 32k + 2)− 3,

5 · 32k + 2 = 6k4 − 1, 2 | k4.

Hence λ1 = 1; 10 · 32k + 1 and λ2 = 0, again a contradiction.

Case 3.2: [p ≡ 1 (mod 3), P (2k − 1)] ⇒ P (2k). In this case we choose
q = r0 = 32k. First we consider the case where p ≡ 1 + 2 · 32k−1 (mod 32k).
Note that

p = 2 · 32kk1 + (2 · 32k−1 + 1),

32k = 2(2 · 32k−1 + 1)− (32k−1 + 2), 2 · 32k−1 + 1 = 2(32k−1 + 2)− 3,

32k−1 + 2 = 6k4 − 1, 2 - k4.

Therefore λ1 = 1; 3 and λ2 = 0, a contradiction.
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Next we consider the case where p ≡ 1− 2 · 32k−1 (mod 32k), and choose
q = r0 = 32k. We have

p = 2 · 32kk1 − (2 · 32k−1 − 1),

32k = 2(2 · 32k−1 − 1)− (32k−1 − 2), 2 · 32k−1 − 1 = 2(32k−1 − 2) + 3,

32k−1 − 2 = 6k4 + 1, 2 | k4.

Hence λ1 = 1; 2 · 32k−1 − 1 and λ2 = 0, a contradiction again.

Case 3.3: [p ≡ 2 (mod 5), Q(2k)] ⇒ Q(2k + 1). Otherwise, we have
p ≡ −8 + 52k, −8− 52k, −8− 3 · 52k, −8 + 3 · 52k (mod 52k+1), so we divide
the proof into four subcases.

Subcase 3.3.1: p ≡ −8 + 3 · 52k (mod 52k+1). Since p ≡ 1 (mod 3) and
p ≡ −1 (mod 7), choosing q = r0 = 105 · 52k, we have p ≡ 63 · 52k − 8
(mod 210 · 52k) and

p = 210 · 52kk1 + (63 · 52k − 8),

105 · 52k = 2(63 · 52k − 8)− (21 · 52k − 16),

63 · 52k − 8 = 4(21 · 52k − 16)− (21 · 52k − 56),

(21 · 52k − 16)− (21 · 52k − 56)− (21 · 52k − 96)− · · ·
· · · − 109− 69− 29− 11− 7− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1; 21 · 52k − 16, a contradiction.

Subcase 3.3.2: p ≡ −8− 3 · 52k (mod 52k+1). Since p ≡ 1 (mod 3) and
p ≡ −1 (mod 7), choosing q = r0 = 105 · 52k, we have p ≡ −63 · 52k − 8
(mod 210 · 52k) and

p = 210 · 52kk1 − (63 · 52k + 8),

105 · 52k = 2(63 · 52k + 8)− (21 · 52k + 16),

63 · 52k + 8 = 2(21 · 52k + 16) + (21 · 52k − 24),

(21 · 52k + 16)− (21 · 52k − 24)− (21 · 52k − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 3; 19, 11, 3 and λ2 = 0, again a contradiction.

Subcase 3.3.3: p ≡ −8 + 52k (mod 52k+1). Since p ≡ 1 (mod 3), choos-
ing q = r0 = 15 · 52k, we have p ≡ −9 · 52k − 8 (mod 30 · 52k) and

p = 30 · 52kk1 − (9 · 52k + 8),

15 · 52k = 2(9 · 52k + 8)− (3 · 52k + 16),
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9 · 52k + 8 = 2(3 · 52k + 16) + (3 · 52k − 24),

(3 · 52k + 16)− (3 · 52k − 24)− (3 · 52k − 64)− · · · − 91− 51− 11,
51 = 4× 11 + 7, 11− 7− 3− 1.

Hence λ1 = 1; 3 and λ2 = 0, again a contradiction.

Subcase 3.3.4: p ≡ −8−52k (mod 52k+1). Since p ≡ 1 (mod 3), choosing
q = r0 = 15 · 52k, we have p ≡ 9 · 52k − 8 (mod 30 · 52k) and

p = 30 · 52kk1 + (9 · 52k − 8),

15 · 52k = 2(9 · 52k − 8)− (3 · 52k − 16),

9 · 52k − 8 = 4(3 · 52k − 16)− (3 · 52k − 56),

(3 · 52k − 16)− (3 · 52k − 56)− (3 · 52k − 96)− · · · − 99− 59− 19,
59 = 4× 19− 17, 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1; 3 · 52k − 16, a contradiction again.

Case 3.4: [p ≡ 2 (mod 5), Q(2k − 1)] ⇒ Q(2k). Otherwise, p ≡
−8 + 52k−1, −8 − 52k−1, −8 − 3 · 52k−1, −8 + 3 · 52k−1 (mod 52k), so we
also divide the proof into four subcases.

Subcase 3.4.1: p ≡ −8 + 3 · 52k−1 (mod 52k). Choosing q = r0 = 52k,
we have

p = 2 · 52kk1 + (3 · 52k−1 − 8),

52k = 2(3 · 52k−1 − 8)− (52k−1 − 16),

3 · 52k−1 − 8 = 4(52k−1 − 16)− (52k−1 − 56),

(52k−1 − 16)− (52k−1 − 56)− (52k−1 − 96)− · · ·
· · · − 109− 69− 29− 11− 7− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1 or 52k−1 − 16, a contradiction.

Subcase 3.4.2: p ≡ −8 − 3 · 52k−1 (mod 52k). Choosing q = r0 = 52k,
we have

p = 2 · 52kk1 − (3 · 52k−1 + 8),

52k = 2(3 · 52k−1 + 8)− (52k−1 + 16),

3 · 52k−1 + 8 = 2(52k−1 + 16) + (52k−1 − 24),

(52k−1 + 16)− (52k−1 − 24)− (52k−1 − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 3; 19, 11 or 3 and λ2 = 0, a contradiction again.
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Subcase 3.4.3: p ≡ −8 + 52k−1 (mod 52k). Choose q = r0 = 18 · 52k.
Since p ≡ 1 (mod 9), we have p ≡ −9 · 52k−1 − 8 (mod 90 · 52k−1) and

p = 90 · 52k−1k1 − (9 · 52k−1 + 8),

45 · 52k−1 = 4(9 · 52k−1 + 8) + (9 · 52k−1 − 32),

9 · 52k−1 + 8 = 2(9 · 52k−1 − 32)− (9 · 52k−1 − 72),

(9 · 52k−1 + 8)− (9 · 52k−1 − 32)− (9 · 52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 9 · 52k−1 + 8, a contradiction again.

Subcase 3.4.4: p ≡ −8 − 52k−1 (mod 52k). Choosing q = r0 = 52k, we
have

p = 2 · 52kk1 − (52k−1 + 8),

52k = 4(52k−1 + 8) + (52k−1 − 32),

52k−1 + 8 = 2(52k−1 − 32)− (52k−1 − 72),

(52k−1 + 8)− (52k−1 − 32)− (52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 52k−1 + 8, again a contradiction.

3.2. The case p ≡ −1 (mod 8). Now let us say something about the
case p ≡ −1 (mod 8). It is not difficult to see that the argument is quite the
same as in the case p ≡ 1 (mod 8). We can use the same modules to derive
contradictions. For the sake of completeness, we present the details.

We have the following four claims.

Claim 4.1. p ≡ −1 (mod 9).

For p ≡ 1 (mod 3), choosing q = r0 = 3, we have

p = 6k1 + 1, 2 - k1.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction.
For p ≡ 5 (mod 9), choosing q = r0 = 9, we have

p = 18k1 + 5, 9 = 2× 5− 1,

and so λ1 = 1; 5 and λ2 = 0, a contradiction again.
For p ≡ −7 (mod 9), choosing q = r0 = 9, we have

p = 18k1 − 7, 9− 7− 5− 3− 1,

and so λ1 = 1; 3 and λ2 = 0, again a contradiction. Claim 4.1 is proved.

Claim 4.2. p ≡ −1,−2 (mod 5).



284 P. Z. Yuan and Y. Li

Now we choose q = r0 = 5. For p ≡ 1 (mod 5), we have

p = 10k1 + 1, 2 - k1.

Then λ1 = 1; 5 and λ2 = 0, a contradiction.
For p ≡ 7 (mod 10), we have

p = 10k1 − 3, 2 - k1, 5 = 2× 3− 1,

so λ1 = 1; 3 and λ2 = 0, a contradiction again, which proves Claim 4.2.

Claim 4.3. p ≡ ±1 (mod 7).

In this case, we choose q = r0 = 7. If p ≡ ±3 (mod 7), then

p = 14k1 ± 3, 7 = 2× 3 + 1.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction. If p ≡ ±5 (mod 7),
then

p = 14k2 ± 5, 7 = 2× 5− 3, 5 = 2× 3− 1.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction again, which proves
Claim 4.3.

Claim 4.4. If p ≡ −1 (mod 3), p ≡ −2 (mod 5), then p ≡ 1 (mod 7).

Choose q = r0 = 105. If p ≡ −1 (mod 7), then

p = 210k1 + 83, 105− 83− 61− 39− 17− 5,
17 = 4× 5− 3, 5 = 2× 3− 1.

Therefore λ1 = 2; 61, 3 and λ2 = 1; 5, a contradiction.

By the above four claims, if an odd positive integer p with p ≡ −1
(mod 8) satisfies Pp = x2 for some positive integer x, then p ≡ −1 (mod 9),
p ≡ −1,−2 (mod 5) and if p ≡ −2 (mod 5) then p ≡ 1 (mod 7). We divide
the remaining proof into four cases.

For positive integers k and l, we use P (k) and Q(l) to denote the prop-
erties that

3k | (p+ 1) and 5l | (p− 8).

Case 4.1: [p ≡ −1 (mod 5), p ≡ −1 (mod 3), P (2k)]⇒P (2k+1). Other-
wise, we have p ≡ −1 (mod 5), p ≡ −1 (mod 32k), p 6≡ −1 (mod 32k+1).
First we consider the case where p ≡ −1 − 2 · 32k (mod 32k+1), and choose
q = r0 = 15 · 32k. Then p ≡ −1 + 10 · 32k (mod 30 · 32k) and

p = 10 · 32k+1k1 + (10 · 32k − 1),

15 · 32k = 2(10 · 32k − 1)− (5 · 32k − 2), 10 · 32k − 1 = 2(5 · 32k − 2) + 3,

5 · 32k − 2 = 6k4 + 1, 2 - k4.

It follows that λ1 = 1; 3 and λ2 = 0, a contradiction.
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Next we consider the case where p ≡ −1+2 ·32k (mod 32k+1), and choose
q = r0 = 15 · 32k. Then p ≡ −1− 10 · 32k (mod 30 · 32k) and

p = 30 · 32kk1 − (10 · 32k + 1),

15 · 32k = 2(10 · 32k + 1)− (5 · 32k + 2), 10 · 32k + 1 = 2(5 · 32k + 2)− 3,

5 · 32k + 2 = 6k4 − 1, 2 | k4.

Hence λ1 = 1; 10 · 32k + 1 and λ2 = 0, again a contradiction.

Case 4.2: [p ≡ −1 (mod 3), P (2k− 1)]⇒ P (2k). In this case we choose
q = r0 = 32k. First we consider the case where p ≡ −1− 2 · 32k−1 (mod 32k).
Note that

p = 2 · 32kk1 − (2 · 32k−1 + 1),

32k = 2(2 · 32k−1 + 1)− (32k−1 + 2), 2 · 32k−1 + 1 = 2(32k−1 + 2)− 3,

32k−1 + 2 = 6k4 − 1, 2 - k4.

Therefore λ1 = 1; 3 and λ2 = 0, a contradiction.
Next we consider the case where p ≡ −1+2 ·32k−1 (mod 32k), and choose

q = r0 = 32k. We have

p = 2 · 32kk1 + (2 · 32k−1 − 1),

32k = 2(2 · 32k−1 − 1)− (32k−1 − 2), 2 · 32k−1 − 1 = 2(32k−1 − 2) + 3,

32k−1 − 2 = 6k4 + 1, 2 | k4.

Hence λ1 = 1; 2 · 32k−1 − 1 and λ2 = 0, a contradiction again.

Case 4.3: [p ≡ 3 (mod 5), Q(2k)] ⇒ Q(2k + 1). Otherwise, we have
p ≡ 8 + 52k, 8 − 52k, 8 − 3 · 52k, 8 + 3 · 52k (mod 52k+1), so we divide the
proof into four subcases.

Subcase 4.3.1: p ≡ 8− 3 · 52k (mod 52k+1). Since p ≡ −1 (mod 3) and
p ≡ 1 (mod 7), choosing q = r0 = 105 · 52k, we have p ≡ −63 · 52k + 8
(mod 210 · 52k) and

p = 210 · 52kk1 − (63 · 52k − 8),

105 · 52k = 2(63 · 52k − 8)− (21 · 52k − 16),

63 · 52k − 8 = 4(21 · 52k − 16)− (21 · 52k − 56),

(21 · 52k − 16)− (21 · 52k − 56)− (21 · 52k − 96)− · · ·
· · · − 109− 69− 29− 11− 7− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1; 21 · 52k − 16, a contradiction.

Subcase 4.3.2: p ≡ 8 + 3 · 52k (mod 52k+1). Since p ≡ −1 (mod 3)
and p ≡ 1 (mod 7), choosing q = r0 = 105 · 52k, we have p ≡ 63 · 52k + 8
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(mod 210 · 52k) and

p = 210 · 52kk1 + (63 · 52k + 8),

105 · 52k = 2(63 · 52k + 8)− (21 · 52k + 16),

63 · 52k + 8 = 2(21 · 52k + 16) + (21 · 52k − 24),

(21 · 52k + 16)− (21 · 52k − 24)− (21 · 52k − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 3; 19, 11, 3 and λ2 = 0, again a contradiction.

Subcase 4.3.3: p ≡ 8−52k (mod 52k+1). Since p ≡ −1 (mod 3), choosing
q = r0 = 15 · 52k, we have p ≡ 9 · 52k + 8 (mod 30 · 52k) and

p = 30 · 52kk1 + (9 · 52k + 8),

15 · 52k = 2(9 · 52k + 8)− (3 · 52k + 16),

9 · 52k + 8 = 2(3 · 52k + 16) + (3 · 52k − 24),

(3 · 52k + 16)− (3 · 52k − 24)− (3 · 52k − 64)− · · · − 91− 51− 11,
51 = 4× 11 + 7, 11− 7− 3− 1.

Hence λ1 = 1; 3 and λ2 = 0, again a contradiction.

Subcase 4.3.4: p ≡ 8 + 52k (mod 52k+1). Since p ≡ 1 (mod 3), choosing
q = r0 = 15 · 52k, we have p ≡ −9 · 52k + 8 (mod 30 · 52k) and

p = 30 · 52kk1 − (9 · 52k − 8),

15 · 52k = 2(9 · 52k − 8)− (3 · 52k − 16),

9 · 52k − 8 = 4(3 · 52k − 16)− (3 · 52k − 56),

(3 · 52k − 16)− (3 · 52k − 56)− (3 · 52k − 96)− · · · − 99− 59− 19,
59 = 4× 19− 17, 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1; 3 · 52k − 16, a contradiction again.

Case 4.4: [p ≡ 3 (mod 5), Q(2k − 1)] ⇒ Q(2k). Otherwise, we have
p ≡ 8 + 52k−1, 8 − 52k−1, 8 − 3 · 52k−1, 8 + 3 · 52k−1 (mod 52k), so we also
divide the proof into four subcases.

Subcase 4.4.1: p ≡ 8− 3 · 52k−1 (mod 52k). Choosing q = r0 = 52k, we
have

p = 2 · 52kk1 − (3 · 52k−1 − 8),

52k = 2(3 · 52k−1 − 8)− (52k−1 − 16),

3 · 52k−1 − 8 = 4(52k−1 − 16)− (52k−1 − 56),



Squares in Lehmer sequences 287

(52k−1 − 16)− (52k−1 − 56)− (52k−1 − 96)− · · ·
· · · − 109− 69− 29− 11− 7− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1; 52k−1 − 16, a contradiction.

Subcase 4.4.2: p ≡ 8 + 3 · 52k−1 (mod 52k). Choosing q = r0 = 52k, we
have

p = 2 · 52kk1 + (3 · 52k−1 + 8),

52k = 2(3 · 52k−1 + 8)− (52k−1 + 16),

3 · 52k−1 + 8 = 2(52k−1 + 16) + (52k−1 − 24),

(52k−1 + 16)− (52k−1 − 24)− (52k−1 − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 3; 19, 11, 3 and λ2 = 0, a contradiction again.

Subcase 4.4.3: p ≡ 8−52k−1 (mod 52k). Choose q = r0 = 18 ·52k. Since
p ≡ −1 (mod 9), we have p ≡ 9 · 52k−1 + 8 (mod 90 · 52k−1) and

p = 90 · 52k−1k1 + (9 · 52k−1 + 8),

45 · 52k−1 = 4(9 · 52k−1 + 8) + (9 · 52k−1 − 32),

9 · 52k−1 + 8 = 2(9 · 52k−1 − 32)− (9 · 52k−1 − 72),

(9 · 52k−1 + 8)− (9 · 52k−1 − 32)− (9 · 52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 9 · 52k−1 + 8, a contradiction again.

Subcase 4.4.4: p ≡ 8 + 52k−1 (mod 52k). Choosing q = r0 = 52k, we
have

p = 2 · 52kk1 + (52k−1 + 8),

52k = 4(52k−1 + 8) + (52k−1 − 32),

52k−1 + 8 = 2(52k−1 − 32)− (52k−1 − 72),

(52k−1 + 8)− (52k−1 − 32)− (52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 52k−1 + 8, again a contradiction. Therefore we
have proved Theorem 1.1 for the case p ≡ −1 (mod 8).

If n > 1 is an odd integer with Pn = x2, by Lemma 2.1 and Pn = x2,
we have n ≡ ±1 (mod 8) and

(
Pn
Pq

)
= 1 for any positive integer q coprime

with n. From the proof of the above two subsections, we see that Pn is not
a square when n > 1 is an odd integer with gcd(n, 105) = 1. Since 3, 5 6≡ ±1
(mod 8) and 7 6≡ −1 (mod 9), we derive that Pp is not a square for p = 3, 5, 7.
Combining the above arguments, we have proved Theorem 1.1.
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4. Proof of Theorem 1.2

4.1. The solutions to equations Pp = px2. Suppose Pp = px2, where p is
an odd prime and x is a positive integer. By equation (23) in [11], we have

(4.1) Pn = (α− β)2λn + nM (n−1)/2 for all odd n > 0,

where λn is some rational integer. Since Pp = px2, it follows that p |Pp. By
a result of Lehmer (see [5] and [15]), we have p | (α− β)2. Now let q be any
odd integer. By (4.1) and the fact that p | (α− β)2, it follows that

Pq ≡ qM (q−1)/2 (mod p).

We therefore deduce the following sequence of equalities of Jacobi symbols:(
Pq
Pp

)
=
(
Pq
px2

)
=
(
Pq
p

)
=
(
qM (q−1)/2

p

)
(4.2)

=
(
q

p

)
·
(
M (q−1)/2

p

)
=
(
q

p

)
·
(

2
p

)(q−1)/2

.

For the last equality of (4.2), we have used Lemma 2.1. Thus, we have shown
that the equation Pp = px2 implies that

(4.3)
(
q

p

)
·
(

2
p

)(q−1)/2

=
(
Pq
Pp

)
for all odd q > 0.

We note that by Lemma 2.1, we can restrict to the cases p ≡ 1, 3 (mod 8).
In what follows, we investigate the relation (4.3). Hence it suffices to choose
an integer r1 such that q = 2p + r1 or q = 4p + r1 according to whether
r1 ≡ 3 (mod 4) or 1 (mod 4), and(

q

p

)
6= (−1)λ1(p,q)+λ2(p,q).

4.2. The case p ≡ 1 (mod 8). To begin, we prove the following three
claims.

Claim 5.1. p ≡ ±1 (mod 9).

We choose r1 = 9. Then for p ≡ ±5 (mod 9), we have

q = 4p+ 9, p = 18k2 ± 5, 9 = 2× 5− 1.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 5, λ2 = 0. On the other hand, by

the assumption,
(Pq

Pp

)
=
( q
p

)
= 1, a contradiction.

For p ≡ ±7 (mod 9), we have

q = 4p+9, p = 18k2±7, 9 = 2×7−5, 7 = 2×5−3, 5 = 2×3−1.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 3 and λ2 = 0. On the other hand,(Pq

Pp

)
=
( q
p

)
= 1, again a contradiction. Claim 5.1 is proved.
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Claim 5.2. p ≡ 1, 3 (mod 5).

Now we choose r1 = 5. For p ≡ −1 (mod 5), we have

q = 4p+ 5, p = 10k2 − 1, 2 - k2,

by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 5 and λ2 = 0. On the other hand,

by the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

5
p

)
= 1, a contradiction.

For p ≡ 7 (mod 10), we have

q = 4p+ 5, p = 10k2 − 3, 2 | k2, 5 = 2× 3− 1.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 1; 3 and λ2 = 1; 5. By the assumption,(Pq

Pp

)
=
( q
p

)
=
(

5
p

)
= −1, a contradiction again, which proves Claim 5.2.

Claim 5.3. p ≡ 1, 3, 5 (mod 7).

In this case, we choose r1 = 7. If p ≡ −1 (mod 7), then we have the
division

q = 2p+ 7, p = 14k2 − 1.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 0 and λ2 = 0. On the other hand, by

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

7
p

)
=
(p

7

)
= −1, a contradiction.

If p ≡ −3 (mod 7), then

q = 2p+ 7, p = 14k2 − 3, 7 = 2× 3 + 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 3 and λ2 = 0, while by

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

7
p

)
=
(p

7

)
= 1, again a contradiction.

If p ≡ −5 (mod 7), then

q = 2p+ 7, p = 14k2 − 5, 7 = 2× 5− 3, 5 = 2× 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 3 and λ2 = 0, while by

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

7
p

)
=
(p

7

)
= 1, a contradiction again, which

proves Claim 5.3.

By the above three claims, we divide the proof into nine cases. For pos-
itive integers k and l, we use P (k) and Q(l) to denote the properties that

3k | (p− 1) and 5l | (p− 8).

Case 5.1: [p ≡ 1 (mod 5), p ≡ 1 (mod 3), P (2k)]⇒ P (2k+ 1). If p ≡ 1
(mod 5), p ≡ 1 (mod 32k), p 6≡ 1 (mod 32k+1), we choose r0 = 15 · 32k. First
we consider the case where p ≡ 1 + 2 ·32k (mod 32k+1). Then p ≡ 1−10 ·32k
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(mod 10 · 32k+1). We have

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 − (10 · 32k − 1),

15 · 32k = 2(10 · 32k − 1)− (5 · 32k − 2), 10 · 32k − 1 = 2(5 · 32k − 2) + 3,

5 · 32k − 2 = 6k5 + 1, 2 - k5.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 3 and λ2 = 0. By the assumption,(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= 1, a contradiction.

Next we consider the case where p ≡ 1 − 2 · 32k (mod 32k+1), hence
p ≡ 1 + 10 · 32k (mod 10 · 32k+1), and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 + (10 · 32k + 1),

15 · 32k = 2(10 · 32k + 1)− (5 · 32k + 2), 10 · 32k + 1 = 2(5 · 32k + 2)− 3,

5 · 32k + 2 = 6k5 − 1, 2 | k5.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 10 · 32k + 1 and λ2 = 0. On the

other hand,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= 1, again a contradiction.

Case 5.2: [p ≡ 3 (mod 5), p ≡ 1 (mod 3), 2 | k, P (2k)] ⇒ P (2k + 1).
Choose r0 = 15 · 32k. We first consider the case where p ≡ 1 + 2 · 32k

(mod 32k+1). Then p ≡ 1 + 2 · 32k (mod 10 · 32k+1), and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 + (2 · 32k + 1),

15 · 32k = 8(2 · 32k + 1)− (32k + 8), 2 · 32k + 1 = 2(32k + 8)− 15,

32k + 8 = 30k5 − 1, 2 - k5.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 0 and λ2 = 0, while by the assump-

tion,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −1, a contradiction.

Next we consider the case where p ≡ 1 − 2 · 32k (mod 32k+1). It follows
that p ≡ 1− 8 · 32k (mod 10 · 32k+1), and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 − (8 · 32k − 1),

15 · 32k = 2(8 · 32k − 1)− (32k − 2), 8 · 32k − 1 = 8(32k − 2) + 15,

32k − 2 = 30k5 − 11, 15− 11− 7− 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 2; 11, 3 and λ2 = 0. By the

assumption,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −1, a contradiction again.

Case 5.3: [p ≡ 3 (mod 5), p ≡ 1 (mod 3), 2 - k, P (2k)] ⇒ P (2k + 1).
Choosing r0 = 15 · 32k, first we consider the case where p ≡ 1 + 2 · 32k
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(mod 32k+1). Then p ≡ 1 + 8 · 32k (mod 10 · 32k+1) and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 + (8 · 32k + 1),

15 · 32k = 2(8 · 32k + 1)− (32k + 2), 8 · 32k + 1 = 8(32k + 2)− 15,

32k + 2 = 30k5 + 11, 2 | k5, 15− 11− 7− 3− 1.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 2; 11, 3 and λ2 = 0, while by the

assumption,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −1, a contradiction.

Next we consider the case where p ≡ 1 − 2 · 32k (mod 32k+1), hence
p ≡ 1− 2 · 32k (mod 10 · 32k+1). We have

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 − (2 · 32k − 1),

15 · 32k = 8(2 · 32k − 1)− (32k − 8), 2 · 32k − 1 = 2(32k − 8) + 15,

32k − 8 = 30k5 + 1.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 0 and λ2 = 0. On the other hand,(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −1, a contradiction again.

Case 5.4: [p ≡ 1 (mod 3), P (2k− 1)]⇒ P (2k). Choosing r0 = 32k, first
we consider the case where p ≡ 1 + 2 · 32k−1 (mod 32k). We have

q = 4p+ 32k, p = 2 · 32kk2 + (2 · 32k−1 + 1),

32k = 2(2 · 32k−1 + 1)− (32k−1 + 2), 2 · 32k−1 + 1 = 2(32k + 2)− 3,

32k−1 + 2 = 6k5 − 1, 2 - k5.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 3 and λ2 = 0, while by the

assumption,
(Pq

Pp

)
=
( q
p

)
= 1, a contradiction.

Next we consider the case where p ≡ 1− 2 · 32k (mod 32k+1). We have

q = 4p+ 32k, p = 2 · 32kk2 − (2 · 32k−1 − 1),

32k = 2(2 · 32k−1 − 1)− (32k−1 − 2), 2 · 32k−1 − 1 = 2(32k−1 − 2) + 3,

32k−1 − 2 = 6k5 + 1, 2 | k5.

Therefore by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 2 ·32k−1−1 and λ2 = 0.

By the assumption,
(Pq

Pp

)
=
( q
p

)
= 1, again a contradiction.

Case 5.5: p ≡ −1 (mod 3), p ≡ 1 (mod 5). Choosing r0 = 15, we have

q = 2p+ 15, p = 30k2 + 11, 2 | k2, 15− 11− 7− 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 2; 11, 3 and λ2 = 0. By the

assumption,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
=
( p

15

)
= −1, a contradiction.
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Case 5.6: p ≡ −1 (mod 9), p ≡ 3 (mod 7). Choosing r0 = 63, we have

q = 2p+ 63, p = 126k2 + 17,
63 = 4× 17− 5, 17 = 4× 5− 3, 5 = 2× 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 1; 3 and λ2 = 1; 5. By the

assumption,
(Pq

Pp

)
=
( q
p

)
=
(

63
p

)
=
(p

7

)
= −1, a contradiction.

Case 5.7: p ≡ −1 (mod 3), p ≡ 3 (mod 5), p ≡ 5 (mod 7). In this case
we choose p ≡ −37 (mod 105),

q = 4p+ 105, p = 210k2 − 37, 105− 37− 31− 25− 19− 13− 7− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 2; 37, 13 and λ2 = 0. By

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

105
p

)
= −1, a contradiction.

Case 5.8: [p ≡ 8 (mod 5), p ≡ 1 (mod 7), Q(2k)] ⇒ Q(2k + 1). Other-
wise, we have p ≡ 8 + 52k, 8− 52k, 8− 3 · 52k, 8 + 3 · 52k (mod 52k+1), so we
divide the proof into four subcases.

Subcase 5.8.1: p ≡ 8 + 3 · 52k (mod 52k+1). Since p ≡ −1 (mod 3) and
p ≡ 1 (mod 7), we have p ≡ 63 · 52k + 8 (mod 210 · 52k) and

q = 4p+ 105 · 52k, p = 210 · 52kk2 + (63 · 52k + 8),

105 · 52k = 2(63 · 52k + 8)− (21 · 52k + 16),

63 · 52k + 8 = 2(21 · 52k + 16) + (21 · 52k − 24),

(21 · 52k + 16)− (21 · 52k − 24)− (21 · 52k − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 3; 19, 11, 3 and λ2 = 0; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

105
p

)
= 1,

a contradiction.

Subcase 5.8.2: p ≡ 8− 3 · 52k (mod 52k+1). Since p ≡ −1 (mod 3), we
have p ≡ −3 · 52k + 8 (mod 30 · 52k) and

q = 2p+ 15 · 52k, p = 30 · 52kk2 − (3 · 52k − 8),

15 · 52k = 6(3 · 52k − 8)− (3 · 52k − 48),

3 · 52k − 8 = 2(3 · 52k − 48)− (3 · 52k − 88),

(3 · 52k − 8)− (3 · 52k − 48)− (3 · 52k − 88)− · · · − 67− 27− 13− 1.

Hence λ1 = 1; 13 and λ2 = 0; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= 1,

again a contradiction.
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Subcase 5.8.3: p ≡ 8− 52k (mod 52k+1). We have

q = 4p+ 52k+1, p = 10 · 52kk2 − (52k − 8), 2 - k2,

52k+1 = 6(52k − 8)− (52k − 48),

52k − 8 = 2(52k − 48)− (52k − 88),

(52k − 8)− (52k − 48)− (52k − 88)− · · · − 97− 57− 17,
57 = 4× 17− 11, 17− 11− 5− 1.

Hence λ1 = 2; 52k+1, 5 and λ2 = 0; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

5
p

)
=−1,

again a contradiction.

Subcase 5.8.4: p ≡ 8 + 52k (mod 52k+1). Since p ≡ −1 (mod 3) and
p ≡ 1 (mod 7), we have p ≡ 21 · 52k + 8 (mod 210 · 52k) and

q = 4p+ 105 · 52k, p = 210 · 52kk2 + (21 · 52k + 8),

105 · 52k = 4(21 · 52k + 8) + (21 · 52k − 32),

21 · 52k + 8 = 2(21 · 52k − 32)− (21 · 52k − 72),

(21 · 52k + 8)− (21 · 52k − 32)− (21 · 52k − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 21 · 52k + 8; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

105
p

)
= 1, a contradiction again.

Case 5.9: [p ≡ 8 (mod 5), Q(2k − 1)] ⇒ Q(2k). Otherwise, we have
p ≡ 8 + 52k−1, 8 − 52k−1, 8 − 3 · 52k−1, 8 + 3 · 52k−1 (mod 52k), so we also
divide the proof into four subcases.

Subcase 5.9.1: p ≡ 8− 3 · 52k−1 (mod 52k). We have

q = 4p+ 52k, p = 10 · 52k−1k2 − (3 · 52k−1 − 8),

52k = 2(3 · 52k−1 − 8)− (52k−1 − 16),

3 · 52k−1 − 8 = 4(52k−1 − 16)− (52k−1 − 56),

(52k−1 − 16)− (52k−1 − 56)− (52k−1 − 96)− · · ·
· · · − 109− 69− 29− 11− 7− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1; 52k−1−16; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

25
p

)
= 1, a contradiction.

Subcase 5.9.2: p ≡ 8 + 3 · 52k−1 (mod 52k). We have

q = 4p+ 52k, p = 2 · 52kk2 + (3 · 52k−1 + 8),

52k = 2(3 · 52k−1 + 8)− (52k−1 + 16),

3 · 52k−1 + 8 = 2(52k−1 + 16) + (52k−1 − 24),
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(52k−1 + 16)− (52k−1 − 24)− (52k−1 − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 3; 19, 11, 3 and λ2 = 0; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

25
p

)
= 1,

a contradiction again.

Subcase 5.9.3: p ≡ 8−52k−1 (mod 52k). Since p ≡ −1 (mod 9), we have
p ≡ 9 · 52k−1 + 8 (mod 90 · 52k−1) and

q = 4p+ 9 · 52k, p = 90 · 52k−1k2 + (9 · 52k−1 + 8),

45 · 52k−1 = 4(9 · 52k−1 + 8) + (9 · 52k−1 − 32),

9 · 52k−1 + 8 = 2(9 · 52k−1 − 32)− (9 · 52k−1 − 72),

(9 · 52k−1 + 8)− (9 · 52k−1 − 32)− (9 · 52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 9 · 52k−1 + 8; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

9
p

)
= 1, a contradiction again.

Subcase 5.9.4: p ≡ 8 + 52k−1 (mod 52k). We have

q = 4p+ 52k, p = 2 · 52kk2 + (52k−1 + 8),

52k = 4(52k−1 + 8) + (52k−1 − 32),

52k−1 + 8 = 2(52k−1 − 32)− (52k−1 − 72),

(52k−1 + 8)− (52k−1 − 32)− (52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 52k−1 + 8; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

25
p

)
= 1, again a contradiction.

4.3. The case p ≡ 3 (mod 8). The proof of this case is similar to the
case p ≡ 1 (mod 8). For the sake of completeness, we present the details.

Claim 6.1. p ≡ ±1 (mod 9).

We choose r1 = 9. Then for p ≡ ±5 (mod 9), we have

q = 4p+ 9, p = 18k2 ± 5, 9 = 2× 5− 1.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 5 and λ2 = 0. On the other hand,

by the assumption,
(Pq

Pp

)
=
( q
p

)
= 1, a contradiction.

For p ≡ ±7 (mod 9), we have

q = 4p+9, p = 18k2±7, 9 = 2×7−5, 7 = 2×5−3, 5 = 2×3−1.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 3 and λ2 = 0. On the other hand,

we have
(Pq

Pp

)
=
( q
p

)
= 1, again a contradiction. Claim 6.1 is proved.
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Claim 6.2. p ≡ 1, 3 (mod 5).

Now we choose r1 = 5. For p ≡ −1 (mod 5), we have

q = 4p+ 5, p = 10k2 − 1, 2 | k2.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 0 and λ2 = 1; p. On the other hand,

by the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

5
p

)
= 1, a contradiction.

For p ≡ 7 (mod 10), we have

q = 4p+ 5, p = 10k2 − 3, 2 | k2, 5 = 2× 3− 1.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 1; 3 and λ2 = 1; p. By the assumption,(Pq

Pp

)
=
( q
p

)
=
(

5
p

)
= −1, a contradiction again, which proves Claim 6.2.

Claim 6.3. p ≡ 1, 3, 5 (mod 7).

In this case, we choose r1 = 7. If p ≡ −1 (mod 7), then we have the
division

q = 2p+ 7, p = 14k2 − 1.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; p and λ2 = 0. On the other hand,

by the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

7
p

)
= −

(p
7

)
= 1, a contradiction.

If p ≡ −3 (mod 7), then

q = 2p+ 7, p = 14k2 − 3, 7 = 2× 3 + 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 2; p, 3 and λ2 = 0, while by

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

7
p

)
= −

(p
7

)
= −1, again a contradiction.

If p ≡ −5 (mod 7), then

q = 2p+ 7, p = 14k2 − 5, 7 = 2× 5− 3, 5 = 2× 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 1; p, 3 and λ2 = 0, while

by the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

7
p

)
= −

(p
7

)
= −1, a contradiction again,

which proves Claim 6.3.

By the above three claims, we divide the proof into nine cases. For pos-
itive integers k and l, we use P (k) and Q(l) to denote the properties that

3k | (p− 1) and 5l | (p− 8).

Case 6.1: [p ≡ 1 (mod 5), p ≡ 1 (mod 3), P (2k)]⇒ P (2k+ 1). If p ≡ 1
(mod 5), p ≡ 1 (mod 32k), p 6≡ 1 (mod 32k+1), we choose r0 = 15 · 32k. First
we consider the case where p ≡ 1 + 2 ·32k (mod 32k+1). Then p ≡ 1−10 ·32k
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(mod 10 · 32k+1). We have

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 − (10 · 32k − 1),

15 · 32k = 2(10 · 32k − 1)− (5 · 32k − 2), 10 · 32k − 1 = 2(5 · 32k − 2) + 3,

5 · 32k − 2 = 6k5 + 1, 2 - k5.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 2; p, 3 and λ2 = 0. By the assumption,(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −1, a contradiction.

Next we consider the case where p ≡ 1 − 2 · 32k (mod 32k+1), hence
p ≡ 1 + 10 · 32k (mod 10 · 32k+1), and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 + (10 · 32k + 1),

15 · 32k = 2(10 · 32k + 1)− (5 · 32k + 2), 10 · 32k + 1 = 2(5 · 32k + 2)− 3,

5 · 32k + 2 = 6k5 − 1, 2 | k5.

By Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 1; p, 10 · 32k + 1 and λ2 = 0. On the

other hand,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −1, again a contradiction.

Case 6.2: [p ≡ 3 (mod 5), p ≡ 1 (mod 3), 2 | k, P (2k)] ⇒ P (2k + 1).
Choosing r0 = 15 · 32k, we first consider the case where p ≡ 1 + 2 · 32k

(mod 32k+1). Then p ≡ 1 + 2 · 32k (mod 10 · 32k+1), and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 + (2 · 32k + 1),

15 · 32k = 8(2 · 32k + 1)− (32k + 8), 2 · 32k + 1 = 2(32k + 8)− 15,

32k + 8 = 30k5 − 1, 2 - k5.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; p and λ2 = 0, while by the

assumption,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= 1, a contradiction.

Next we consider the case where p ≡ 1 − 2 · 32k (mod 32k+1). It follows
that p ≡ 1− 8 · 32k (mod 10 · 32k+1), and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 − (8 · 32k − 1),

15 · 32k = 2(8 · 32k − 1)− (32k − 2), 8 · 32k − 1 = 8(32k − 2) + 15,

32k − 2 = 30k5 − 11, 15− 11− 7− 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 3; p, 11, 3 and λ2 = 0. By

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= 1, a contradiction again.

Case 6.3: [p ≡ 3 (mod 5), p ≡ 1 (mod 3), 2 - k, P (2k)] ⇒ P (2k + 1).
Choosing r0 = 15·32k, first we consider the case of p ≡ 1+2·32k (mod 32k+1).
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Then p ≡ 1 + 8 · 32k (mod 10 · 32k+1) and so

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 + (8 · 32k + 1),

15 · 32k = 2(8 · 32k + 1)− (32k + 2), 8 · 32k + 1 = 8(32k + 2)− 15,

32k + 2 = 30k5 + 11, 2 | k5, 15− 11− 7− 3− 1.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 3; p, 11, 3 and λ2 = 0, while by the

assumption,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= 1, a contradiction.

Next we consider the case where p ≡ 1 − 2 · 32k (mod 32k+1), hence
p ≡ 1− 2 · 32k (mod 10 · 32k+1). We have

q = 2p+ 15 · 32k, p = 10 · 32k+1k2 − (2 · 32k − 1),

15 · 32k = 8(2 · 32k − 1)− (32k − 8), 2 · 32k − 1 = 2(32k − 8) + 15,

32k − 8 = 30k5 + 1.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; p and λ2 = 0. On the other hand,(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= 1, a contradiction again.

Subcase 6.4: [p ≡ 1 (mod 3), P (2k − 1)]⇒ P (2k). Choosing r0 = 32k,
first we consider the case where p ≡ 1 + 2 · 32k−1 (mod 32k). We have

q = 4p+ 32k, p = 2 · 32kk2 + (2 · 32k−1 + 1),

32k = 2(2 · 32k−1 + 1)− (32k−1 + 2), 2 · 32k−1 + 1 = 2(32k + 2)− 3,

32k−1 + 2 = 6k5 − 1, 2 - k5.

By Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 3 and λ2 = 0, while by the

assumption,
(Pq

Pp

)
=
( q
p

)
= 1, a contradiction.

Next we consider the case where p ≡ 1− 2 · 32k (mod 32k+1). We have

q = 4p+ 32k, p = 2 · 32kk2 − (2 · 32k−1 − 1),

32k = 2(2 · 32k−1 − 1)− (32k−1 − 2), 2 · 32k−1 − 1 = 2(32k−1 − 2) + 3,

32k−1 − 2 = 6k5 + 1, 2 | k5.

Therefore by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 1; 2 · 32k−1 and λ2 = 0.

By the assumption,
(Pq

Pp

)
=
( q
p

)
= 1, again a contradiction.

Case 6.5: p ≡ −1 (mod 3), p ≡ 1 (mod 5). Choosing r0 = 15, we have

q = 2p+ 15, p = 30k2 + 11, 2 | k2, 15− 7− 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 3; p, 11, 3 and λ2 = 0. By

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −

( p
15

)
= 1, a contradiction.
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Case 6.6: p ≡ −1 (mod 9), p ≡ 3 (mod 7). Choosing r0 = 63, we have

q = 2p+ 63, p = 126k2 + 17,
63 = 4× 17− 5, 17 = 4× 5− 3, 5 = 2× 3− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= −1 since λ1 = 2; p, 3 and λ2 = 1; 5. By

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

63
p

)
= −

(p
7

)
= 1, a contradiction.

Case 6.7: p ≡ −1 (mod 3), p ≡ 3 (mod 5), p ≡ 5 (mod 7). In this case
we choose p ≡ −37 (mod 105),

q = 4p+ 105, p = 210k2 − 37, 105− 37− 31− 25− 19− 13− 7− 1.

Therefore by Corollary 2.3,
(Pq

Pp

)
= 1 since λ1 = 2; 37, 13 and λ2 = 0. By

the assumption,
(Pq

Pp

)
=
( q
p

)
=
(

105
p

)
= −1, a contradiction.

Case 6.8: [p ≡ 8 (mod 5), p ≡ 1 (mod 7), Q(2k)] ⇒ Q(2k + 1). Other-
wise, p ≡ 8 + 52k, 8− 52k, 8− 3 · 52k, 8 + 3 · 52k (mod 52k+1), so we divide
the proof into four subcases.

Subcase 6.8.1: p ≡ 8 + 3 · 52k (mod 52k+1). Since p ≡ −1 (mod 3) and
p ≡ 1 (mod 7), we have p ≡ 63 · 52k + 8 (mod 210 · 52k) and

q = 4p+ 105 · 52k, p = 210 · 52kk2 + (63 · 52k + 8),

105 · 52k = 2(63 · 52k + 8)− (21 · 52k + 16),

63 · 52k + 8 = 2(21 · 52k + 16) + (21 · 52k − 24),

(21 · 52k + 16)− (21 · 52k − 24)− (21 · 52k − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.

Hence λ1 = 3; 19, 11, 3 and λ2 = 0; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

105
p

)
= 1,

a contradiction.

Subcase 6.8.2: p ≡ 8− 3 · 52k (mod 52k+1). Since p ≡ −1 (mod 3), we
have p ≡ −3 · 52k + 8 (mod 30 · 52k) and

q = 2p+ 15 · 52k, p = 30 · 52kk2 − (3 · 52k − 8),

15 · 52k = 6(3 · 52k − 8)− (3 · 52k − 48),

3 · 52k − 8 = 2(3 · 52k − 48)− (3 · 52k − 88),

(3 · 52k − 8)− (3 · 52k − 48)− (3 · 52k − 88)− · · · − 67− 27− 13− 1.

Hence λ1 = 2; p, 13 and λ2 = 0; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

15
p

)
= −1,

again a contradiction.
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Subcase 6.8.3: p ≡ 8− 52k (mod 52k+1). We have
q = 4p+ 52k+1, p = 10 · 52kk2 − (52k − 8), 2 | k2,

52k+1 = 6(52k − 8)− (52k − 48), 52k − 8 = 2(52k − 48)− (52k − 88),

(52k − 8)− (52k − 48)− (52k − 88)− · · · − 97− 57− 17,
57 = 4× 17− 11, 17− 11− 5− 1.

Hence λ1 = 1; 5 and λ2 = 1; p; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

5
p

)
= −1,

again a contradiction.

Subcase 6.8.4: p ≡ 8 + 52k (mod 52k+1). Since p ≡ −1 (mod 3) and
p ≡ 1 (mod 7), we have p ≡ 21 · 52k + 8 (mod 210 · 52k) and

q = 4p+ 105 · 52k, p = 210 · 52kk2 + (21 · 52k + 8),

105 · 52k = 4(21 · 52k + 8) + (21 · 52k − 32),

21 · 52k + 8 = 2(21 · 52k − 32)− (21 · 52k − 72),

(21 · 52k + 8)− (21 · 52k − 32)− (21 · 52k − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 21 · 52k + 8; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

105
p

)
= 1, a contradiction again.

Case 6.9: [p ≡ 8 (mod 5), Q(2k − 1)] ⇒ Q(2k). Otherwise, p ≡ 8 +
52k−1, 8− 52k−1, 8− 3 · 52k−1, 8 + 3 · 52k−1 (mod 52k), so we also divide the
proof into four subcases.

Subcase 6.9.1: p ≡ 8− 3 · 52k−1 (mod 52k). We have

q = 4p+ 52k, p = 10 · 52k−1k2 − (3 · 52k−1 − 8),

52k = 2(3 · 52k−1 − 8)− (52k−1 − 16),

3 · 52k−1 − 8 = 4(52k−1 − 16)− (52k−1 − 56),

(52k−1 − 16)− (52k−1 − 56)− (52k−1 − 96)− · · ·
· · · − 109− 69− 29− 11− 7− 3− 1.

Hence λ1 = 2; 11, 3 and λ2 = 1; 52k−1−16; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

25
p

)
= 1, a contradiction.

Subcase 6.9.2: p ≡ 8 + 3 · 52k−1 (mod 52k). We have

q = 4p+ 52k, p = 2 · 52kk2 + (3 · 52k−1 + 8),

52k = 2(3 · 52k−1 + 8)− (52k−1 + 16),

3 · 52k−1 + 8 = 2(52k−1 + 16) + (52k−1 − 24),

(52k−1 + 16)− (52k−1 − 24)− (52k−1 − 64)− · · ·
· · · − 101− 61− 21− 19− 17− 15− 13− 11− 9− 7− 5− 3− 1.
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Hence λ1 = 3; 19, 11, 3 and λ2 = 0; on the other hand,
(Pq

Pp

)
=
( q
p

)
=
(

25
p

)
= 1,

a contradiction again.

Subcase 6.9.3: p ≡ 8−52k−1 (mod 52k). Since p ≡ −1 (mod 9), we have
p ≡ 9 · 52k−1 + 8 (mod 90 · 52k−1) and

q = 4p+ 9 · 52k, p = 90 · 52k−1k2 + (9 · 52k−1 + 8),

45 · 52k−1 = 4(9 · 52k−1 + 8) + (9 · 52k−1 − 32),

9 · 52k−1 + 8 = 2(9 · 52k−1 − 32)− (9 · 52k−1 − 72),

(9 · 52k−1 + 8)− (9 · 52k−1 − 32)− (9 · 52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 9 · 52k−1 + 8; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

9
p

)
= 1, a contradiction again.

Subcase 6.9.4: p ≡ 8 + 52k−1 (mod 52k). We have

q = 4p+ 52k, p = 2 · 52kk2 + (52k−1 + 8),

52k = 4(52k−1 + 8) + (52k−1 − 32),

52k−1 + 8 = 2(52k−1 − 32)− (52k−1 − 72),

(52k−1 + 8)− (52k−1 − 32)− (52k−1 − 72)− · · · − 93− 53− 13,
53 = 4× 13 + 1.

Hence λ1 = 0 and λ2 = 1; 52k−1 + 8; on the other hand,
(Pq

Pp

)
=
( q
p

)
=(

25
p

)
= 1, again a contradiction.

Thus we complete the proof of Theorem 1.2.

5. Proof of Theorem 1.4. Assume that ak = x2 for some odd integer
k > 1 and some positive integer x. Let p be a prime factor of k. Then

(5.1) gcd(ak/p, ak/ak/p) = gcd(1, p) = 1 or p.

Since
ak/p ·

ak
ak/p

= x2,

it follows from (5.1) that either ak/p = py2 or ak/p = y2 for some positive
integer y. If

α1 =
ak/p
√
a+ bk/p

√
b

√
2

and β1 =
bk/p
√
b− ak/p

√
a

√
2

,

then α1 and β1 are the roots of the quadratic equation

X2 −
√

2b2k/paX − 1 = 0,



Squares in Lehmer sequences 301

and

Pp =
ak
ak/p

=
αp1 − β

p
1

α1 − β1

is the pth term of the Lehmer sequence defined by L = 2b2k/pb and M = −1.
Since (L,M) ≡ (2, 3) (mod 4), by Theorems 1.1 and 1.2, the equation
Pp = y2 is impossible, while the equation Pp = py2 implies p = 3. This
implies that p= 3 is the only prime divisor of k, say k= 3t for some positive
integer t.

If t > 1, since ak/3 = 3z2, we have

ak/9 ·
ak/3

ak/9
= 3z2;

it follows that ak/9 = h2 for some positive integer h, and so a3 = 3u2,
a9/a3 = 3v2 by repeating the above argument and by Theorems 1.1 and 1.2.
Hence

3v2 = a9/a3 = 2a2
3a− 1 = 18u2a− 1,

which is impossible by modulo 3.
If t = 1, we have a1 = 3h2, a3/a1 = 3t2. Since

a3

a1
=
aa2

1 + 3bb21
2

= 18ah2 − 3 = 3t2,

upon division by 3 one obtains 6ah2−1 = t2, which is not possible modulo 3.
This completes the proof of Theorem 1.4.
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