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On the product of heights of algebraic numbers
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1. Introduction. Amongst the absolute values in a place v of an al-
gebraic number field K, two play a role in this article. If v is archimedean,
let ‖ · ‖v denote the unique absolute value in v that restricts to the usual
archimedean absolute value on Q. If v is non-archimedean and v | p, let ‖ · ‖v
denote the unique absolute value in v that restricts to the usual p-adic abso-
lute value on Q. For each place v of K, let Kv and Qv be the completions of
K and Q with respect to v and define the local degree of v as dv = [Kv : Qv].
For all places v let | · |v = ‖ · ‖dv/dv .

The absolute values | · |v satisfy the product rule: if α ∈ K×, then∏
v |α|v = 1. The absolute (logarithmic) Weil height of α is defined as

h(α) =
∑

v log+ |α|v where the sum is over all places v of K. Because of
the way in which the absolute values | · |v are normalized, h(α) does not
depend on the field K in which α is contained. If αi and αj are Galois
conjugates then h(αi) = h(αj) and for α ∈ Q×, h(α) = h(α−1).

By Kronecker’s theorem h(α) = 0 if and only if α = 0 or α ∈ Tor(Q×).
In 1933, Lehmer [5] asked whether or not there exists a constant % > 1 such
that

(1.1) deg(α)h(α) ≥ log %

in all other cases. For algebraic numbers α the Mahler measure M(α) of α is
defined by deg(α)h(α) = log M(α). The smallest non-zero Mahler measure
known is that of the roots of x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1, and
it is thought by many that if the answer to Lehmer’s question is yes then
the minimum possible % is the log of unique real root larger than one of the
above polynomial.
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Lehmer’s question remains unresolved to this day though affirmative
answers have been provided in some special cases. Schinzel [7] has shown
that for α totally real we may take % = 1

2 log((1 +
√

5)/2) · deg(α) on the
right side of (1.1). Höhn and Skoruppa [4] used a different proof to establish
the same result. Zhang [9] showed that there exists % > 1 such that

(1.2) h(α) + h(1− α) ≥ log %

for α different from 0, 1 and the primitive sixth roots of unity. Zagier [8] was
able to establish log % = 1

2 log((1+
√

5)/2) as a minimum for the right side of
(1.2) with cases of equality identified. As Zagier notes, it is interesting that
this is the same lower bound that appears in Schinzel’s lower bound for the
height of totally real algebraic numbers. Beukers and Zagier [1] generalized
the results of [8] with the following: if α1, . . . , αr ∈ Q× are such that

(1.3) α1 + · · ·+ αr = N 6= α−1
1 + · · ·+ α−1

r

where N is a rational integer, then

(1.4) h(α1) + · · ·+ h(αr) ≥
1
2

log
(

1 +
√

5
2

)
.

More recently, Samuels [6] extended this last result by allowing the N in
(1.3) to be any totally real algebraic integer. In the case r = 1, Samuels’
result captures Schinzel’s lower bound for the height of totally real algebraic
integers.

After Samuels, and in a different direction, Garza [2] established the
following result: Let α be an algebraic number different from 0 and ±1. Let
Rα be the proportion of the conjugates of α that are real. Then

(1.5) h(α) ≥ Rα

2
log
(

21−1/Rα +
√

41−1/Rα + 4
2

)
.

In the case Rα = 1, formula (1.5) also recaptures Schinzel’s lower bound for
the height of totally real algebraic numbers. Following [2], Höhn [3] showed
that his proof of [4] could be extended to also establish (1.5) in the case
that α is an algebraic integer. Our goal is to show that the stated results
of [2] and [6] are in fact consequences of an even more general formula. In
particular, we generalize the method of [3] to establish the following:

Theorem 1. Let α1, . . . , αr ∈ Q× be such that α1 + · · · + αr 6= α−1
1 +

· · · + α−1
r . Let RS be the proportion of the conjugates of S = α1 + · · · + αr

that are real. Then
r∑
i=1

h(αi) ≥
RS

2
log
(

(2r)1−1/RS +
√

(2r)2(1−1/RS) + 4
2

)
.
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In the case RS = 1 we not only recover the result of Samuels [6] but are
able to eliminate the requirement that S be an integer. In the case r = 1 we
recover Theorem 1 of Garza [2]. It is natural to ask whether a generalization
of Theorem 2 of Garza [2] can also be found. The answer is provided by the
following.

Theorem 2. Let α1, . . . , αr ∈ Q× be such that α1 + · · · + αr 6= α−1
1 +

+ · · · + α−1
r . Let K be the Galois closure of Q(α1 + · · · + αr) and let G =

Aut(K/Q). Let η : K ↪→ C be an embedding and let ξ ∈ G correspond to
complex conjugation with respect to η. Let CG(ξ) = {σ ∈ G : ξσ = σξ} and
let n = [G : CG(ξ)]. Then

r∑
i=1

h(αi) ≥
1

2n
log
(

(2r)1−n +
√

(2r)2(1−n) + 4
2

)
.

2. Preliminary lemmas. In this section we establish Lemmas 1 and 2,
which will be used to prove Theorems 1 and 2.

Lemma 1. For 0 < a < 1/2 and real xi > 0

f(x1, . . . , xr) =
(
∑r

i=1 |xi − x
−1
i |)a∏r

i=1 max{1, |xi|}1/2 max{1, |x−1
i |}1/2

≤ (4a)a(1− 2a)(1−2a)/4

(1 + 2a)(1+2a)/4
.

Proof. By symmetry we may assume that each xi ≥ 1. In this case,

f(x1, . . . , xr) =
(
∑r

i=1(xi − x−1
i ))a∏r

i=1 x
1/2
i

.

If one of the xi = 1 then the function reduces to r − 1 variables. We can
thus suppose that each xi > 1.

For i = 1, . . . , r

∂f

∂xi
=

(
∑r

j=1(xj − x−1
j ))a∏r

j=1 x
1/2
j

{
a(1 + 1/x2

i )∑r
j=1(xj − x−1

j )
− 1

2xi

}
and ∂f/∂xi = 0 is equivalent to

(2.1)
r∑
j=1

(xj − x−1
j ) = 2a(xi + x−1

i ).

It follows that if ∂f/∂x1 = · · · = ∂f/∂xr = 0, then for all i and j,

xi + x−1
i = xj + x−1

j .
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Since each xi > 1 it follows that x1 = · · · = xr. We let x be this common
value. Equality (2.1) thus reduces to

(2.2) r(x− x−1) = 2a(x+ x−1).

Solving this last equation for x results in x =
√

(r + 2a)/(r − 2a). Let ~x =
(x, . . . , x). Then

f(~x) =
ra(x− x−1)a

xr/2
=
ra(4a)a(r − 2a)(r−2a)/4

(r + 2a)(r+2a)/4
.

We wish to show that the expression on the right hand side of the last
equation is a decreasing function of r. For this purpose define the function
g(r) as follows:

g(r) =
ra(r − 2a)(r−2a)/4

(r + 2a)(r+2a)/4
.

Then

ln g(r) = a ln r +
1
4

(r − 2a) ln(r − 2a)− 1
4

(r + 2a) ln(r + 2a)

and so
d

dr
[ln g(r)] =

a

r
− 1

4
ln
(
r + 2a
r − 2a

)
=
a

r
− 1

4
ln
(

1 + 2a/r
1− 2a/r

)
=
a

r
− 1

4

(
−
∞∑
j=1

(−1)j(2a/r)j +
∞∑
j=1

(2a/r)j
)

=
a

r
− 1

2

∑
j odd

(2a/r)j = −1
2

∑
j≥3, odd

(2a/r)j < 0.

Since g(r) is a decreasing function of r it follows that f(x1, . . . , xr) ≤
(4a)ag(1).

Lemma 2. Given r ∈ N and 0 < β < 1 define the function

P (a) = (2r)a(1−β)

(
(4a)a(1− 2a)(1−2a)/4

(1 + 2a)(1+2a)/4

)β
and 0 < a′ < 1/2 by

a′ =
1

2
√

1 + 41/βr2(1/β−1)
.

Then P attains its minimum on 0 < a < 1/2 at a′ and

P (a′) =
(√

1 + (2−1/βr1−1/β)2 + 2−1/βr1−1/β
)−β/2

.
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Proof. We first note that P (a) is continuously differentiable on the in-
terval (0, 1/2) and that

lim
a→0

P (a) = 1 and lim
a→1/2

P (a) > 1.

We proceed by noting that if u = 2a then P (a) = F (u)−1 where

F (u) =
(1 + u)β(1+u)/4

(2r)u(1−β)/2(2u)uβ/2(1− u)(1−u)β/4
.

Then

(F (u))2/β =
(1 + u)(1+u)/2

(2r)u(1/β−1)(2u)u(1− u)(1−u)/2
,

2
β

lnF (u) =
1
2

(1 + u) ln(1 + u)− u
(

1
β
− 1
)

ln 2r

− u ln 2u− 1
2

(1− u) ln(1− u),

2
β

d

du
lnF (u) =

1
2

+
1
2

ln(u+ 1)−
(

1
β
− 1
)

ln 2r

− ln 2u− 1 +
1
2

+
1
2

ln(1− u)

=
1
2

ln(u+ 1)−
(

1
β
− 1
)

ln 2r − ln 2u+
1
2

ln(1− u)

=
1
2

ln
(

1− u2

4u2

)
−
(

1
β
− 1
)

ln 2r.

The equation
d

du
lnF (u) = 0

is thus equivalent to

ln
(

1− u2

4u2

)
= ln((4r2)1/β−1),

which has the unique solution

u =
1√

1 + 41/βr2(1/β−1)

on the interval (0, 1). From this we have

a =
1
2
· 1√

1 + 41/βr2(1/β−1)
<

1
2
.

Since this is the value of u maximizing lnF (u) and hence F (u) and since
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P (a) = F (u)−1, we have found the value of a minimizing P (a). So we write

a′ =
1
2
· 1√

1 + 41/βr2(1/β−1)
<

1
2
.

We now substitute 2a′ into F (u) and obtain the maximum

F (2a′) =
(√

1 + (2−1/βr1−1/β)2 + 2−1/βr1−1/β
)β/2

.

3. Proofs of Theorems 1 and 2. Let

a =
1

2
√

1 + 41/βr2(1/β−1)
.

Let S = α1 + · · · + αr, S−1 = α−1
1 + · · · + α−1

r , and E = S − S−1. Let
F be the Galois closure of Q(α1, . . . , αr), let H ≡ Aut(F/Q) and extend
η : F ↪→ C. Let ξF ∈ H correspond to complex conjugation with respect
to η. Let HK be the subgroup of H fixing the field K. Then HK E H. Let
A = {σ ∈ H : σ(S) = σ(S)} and note that σ ∈ A if and only if ξFσ ∈ A.
Let φ : H→ H/HK be the natural projection homomorphism. Suppose that
ω ∈ H is such that φ(ω) ∈ CG(ξ)HK. Then φ−1(φ(ω)) ⊆ A. Moreover, if ω,
τ ∈ G and ω 6= τ then φ−1(ω) ∩ φ−1(τ) = ∅. It follows that |HK| · |CG(ξ)|
≤ |A| and that n ≥ |H|/|A|. For σ ∈ A we have

σ(E) =
r∑
i=1

(
σ(αi)−

1
σ(αi)

)
.

Since E 6= 0 it follows from the product rule that∏
v

|E|av = 1

where the product is over all places v of F. From the ultrametric inequality,
for v - ∞ it follows that

|E|av ≤
r∏
i=1

max{1, |αi|v}a
r∏
i=1

max{1, |αi|−1
v }a.

Since F is Galois, it follows that all local archimedean degrees are equal
and we let d∞ be the common archimedean local degree. We now define the
archimedean absolute value | · |η on F by |λ|η = ‖η(λ)‖d∞/d∞ for λ ∈ F. From
the Galois action on places it follows that for each archimedean place v of
F there exists σ ∈ H such that |λ|v = ‖η(σ(λ))‖d∞/dη for λ ∈ F. In this case
we write | · |v = | · |σ and note that | · |σ = | · |ξσ. For σ 6∈ A we have

|E|aσ ≤ (2r)ad∞/d
r∏
i=1

max{1, |αi|σ}a
r∏
i=1

max{1, |αi|−1
σ }a.
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For σ ∈ A define σ(αi)′ = σ(αi) for ‖αi‖σ ≥ 1 and σ(αi)′ = σ(αi)−1 for
‖αi‖σ < 1. For σ ∈ A we have

|E|aσ ≤

∥∥∥∥∥
r∑
i=1

σ(αi)−
1

σ(αi)

∥∥∥∥∥
ad∞/d

η

≤
( r∑
i=1

∥∥∥∥σ(αi)−
1

σ(αi)

∥∥∥∥
η

)ad∞/d

≤
( r∑
i=1

‖σ(αi)′‖η −
1

‖σ(αi)′‖η

)ad∞/d
,

and from Lemma 1,

|E|aσ ≤
(

(4a)a(1− 2a)(1−2a)/4

(1 + 2a)(1+2a)/4
·
r∏
i=1

max{1, ‖σ(αi)′‖η}1/2
)d∞/d

≤
(

(4a)a(1− 2a)(1−2a)/4

(1 + 2a)(1+2a)/4

)d∞/d
·
r∏
i=1

max{1, |σ(αi)′|η}1/2.

Taking the product over A, we get∏
σ∈A

|E|aσ ≤
(

(4a)a(1−2a)(1−2a)/4

(1 + 2a)(1+2a)/4

)d∞|A|/|H|(∏
σ∈A

r∏
i=1

max{1, |σ(αi)′|η}1/2
)
.

Using the identity
∑
dv/d = 1 and taking the product over σ 6∈ A we have∏

σ 6∈A

|E|aσ ≤ ((2r)ad∞(1−|A|/|H|))
( ∏
σ 6∈A

r∏
i=1

max{1, |σ(αi)′|η}a
)
.

From 0 < a < 1/2, the product rule, the Galois action on places, ξA = A

and h(α) = h(α−1) we have

1 ≤ (2r)a(1−|A|/|H|)
(

(4a)a(1− 2a)(1−2a)/4

(1 + 2a)(1+2a)/4

)|A|/|H| r∏
i=1

eh(αi).

Since n ≥ |H|/|A| and 0 < a < 1/2 it follows that

1 ≤ (2r)a(1−1/n)

(
(4a)a(1− 2a)(1−2a)/4

(1 + 2a)(1+2a)/4

)1/n r∏
i=1

eh(αi).

From Lemma 2 with β = 1/n we have

(
√

1 + (2−nr1−n)2 + 2−nr1−n)1/2n ≤
r∏
i=1

eh(αi),

which is equivalent to
r∑
i=1

h(αi) ≥
1

2n
log
(

(2r)1−n +
√

4 + 41−nr2(1−n)

2

)
.

This completes the proof of Theorem 2.
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For the proof of Theorem 1, we consider S− S−1. We again let F be the
Galois closure of Q(α1, . . . , αr) and let G = Aut(F/Q). For σ ∈ G such that
σ(S) is real we have

σ(S− S−1) = σ(S)− σ(S−1) = σ(S)− σ(S−1)

= σ(α1) + · · ·+ σ(αr)−
1

σ(α1)
− · · · − 1

σ(αr)

=
r∑
i=1

(
σ(αi)−

1
σ(αi)

)
so that proof of Theorem 1 follows from the proof of Theorem 2 but with E
replaced by S− S−1.
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