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1. Introduction. Let n be a positive integer. Given a polynomial with
integer coefficients, f € Z[z|, denote by m,,(f) its logarithmic Mahler mea-
sure over Z/nZ, defined by

n—1
ma(f) = - > log [ (7).
k=0

By An, > 0 we denote the Lehmer constant of Z/nZ,

Ap, = mi
=y ™)
my(f)>0
(see [11]). We notice later that the minimum is indeed attained, and that it
is the same if deg f < n —1 is assumed. Lind [I1] has given an upper bound
for A, (see below) and he obtained the values

1 1 1
A =log2, A= 3 log3, M= 1 log3, A, = —log2 for all odd n.
n

We sharpen his result, complement it by a lower bound, and obtain the value
of A\, for all n except for multiples of 420. The main result is formulated in
Section [2] and proved in Section

2. Main result. For a positive integer n, let {p/((n))} denote the small-
o(n

rime number
est { P o } that does not divide n. We write p¥ || n when p* is a
positive integer

principal divisor of n, that is, if p is a prime and k is a positive integer such
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that p¥ |n and pF*'4n. Let
p'(n) = min(minp,minppk) = min(p(n), min p”)
ptn— pFin plln
Lind proved that A\, < n~!logp(n) for all n. Extending his result we
obtain the following theorem, our main result.

THEOREM 1. The Lehmer constant of Z/nZ is of the form X\, =
n~!log A,, with an integer A,, > 2 not dividing n and in the range

() < Ay < 0'(n).
For allm=1,...,419 (mod 420), we have A, = p'(n) = p"(n).

ExXAMPLE 1. Example new values are A\g = %log 4, \g = %log 3, or more
generally,

1
—log3 if, and only if, n = 2k with 31k,
A= "
" 1
—log4 if, and only if, n = 6k with odd k.
n

REMARK 1. (i) Theorem (1| yields the exact value of A\, when p'(n) =
p(n), or more generally, when p'(n) = p”(n). Thus it also includes certain
multiples of 420. For example, let n = 6 - k - 420 with 111k. Then p'(n) =
p(n) =11 and thus A\, = n~log11.

(ii) By Theorem [1| the known upper bound ), < n~!logp(n) is sharp-
ened strictly for all n = 6 (mod 12), where it yields the exact value for A,
and also for certain multiples of 420. For example, let n = 11-13-420. Then
the theorem implies \,, = n~!log A, with A, € {8,9,16}, while p(n) = 17.

OPEN QUESTION. Determine )\, = n~'logA, for n = 420. By Theo-
rem [I[(i) we have A9 € {8,9,11}.

3. Proof of Theorem (1. We have, for f € Z[z],

n—1
(1) mn(f)=%10g|An(f)l with  An(f) = [] £(e2™*/m).
k=0

The number A, (f) is always an integer, and there is an elementary way
to see that. To this end we recall the determinantal relation of [I3], readily
extended here to f of arbitrary degree. If deg f < n — 1, write f(z) =
agp + a1z + -+ + ap—12™ ', with zero coefficients where necessary. If a
polynomial of higher degree is given, with coefficients ag,a), ..., replace
it first with f as above by defining ap = > ,_, (mod ) aj. Let C, denote
the n x n integer circulant matrix with first row a = (ag,...,a,—1). Then
det C, = Z;é f(e*/m) and this implies

(2) An(f) = det Co.
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Hence, A, (f) is indeed an integer. Observe that expressing m,(f) in terms

of the integer A, (f) justifies the definition of the Lehmer constant A, as a

minimum, not just an infimum. We will also use the expression of A, (f) as

a resultant, like for example in [2, [5, TI]. Indeed, since Res(z" — 1, f(x)) =
120 f(e2m/) | we have

(3) An(f) = Res(z" — 1, f(x)).

The more commonly used expression Res(f(x),z™ — 1), with interchanged
arguments, works as well, as long as only absolute values are considered. In-
deed, the sign of the determinant in or of the resultant in is irrelevant
for m,(f). We remark that the opposite sign is obtained for the polynomial

fY (@) = =" (1)),
with coefficient sequence (—a,—1, —ap_2, ..., —ap), the negative of the usual
reciprocal polynomial.

REMARK 2. (i) Lehmer and Pierce [10, 13] investigated the sequences
{A1(f), Aa(f), ...} for f € Z]z]. For example, the polynomial f(x) =2 — =z
yields A, (f) = 2™ — 1, the Mersenne numbers; we refer to [0, [7, 8, [9]. For
Lehmer’s problem, formulated in [10], we refer to [3|,[14] and the spectacular
solution for odd coefficients in [2]. Lind’s Lehmer constants \,, relate to the
family {A,(f): f € Z[z]} for fixed n.

(ii) Our approach highlights and makes use of the fact that finding pos-
sible (or minimal) values of the logarithmic Mahler measure over Z/nZ is
equivalent to finding possible (or minimal) values of integer circular deter-
minants, an open problem attributed to Taussky-Todd [12].

Call f € Z[x] cyclotomic if all its zeros lie on the complex unit circle.
As a preliminary observation we determine, for all n, the exact value of a
cyclotomic variant of Lind’s Lehmer constants.

LEMMA 1. For cyclotomic polynomials f € Z[x], the minimal possible
value of my(f) > 0 is determined by

(4) min m.(f) =n " tlog p”(n).
fEZ[z] cyclotomic
my(f)>0
Proof. First, Kronecker’s theorem implies that any cyclotomic polyno-
mial f € Z[x] is the product of some of @, P9, ... and a constant, if neces-

sary; here @, € Z[x] denotes the mth cyclotomic polynomial, i.e., the monic
polynomial whose zeros are the primitive mth roots of unity. Since always

(5) An(fif2) = An(f1)An(f2),
and consequently, my,(f1f2) < m,(f1) + m,(f2), we thus obtain
( ) fGZ[x]r(I}ylgllotomic m (f) minll,g, m ( )

my (f)>0 My (Pm)>0
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Let ¢(n) denote Euler’s totient of n. We point out that

(7)  Ap(Pp) = Res(z" — 1, P, (2))

0 if m|n,

1 if at least two distinct primes divide m/ged(m,n),

pPld) if m/ged(m, n) is the power of a prime pfn
—here we write ged(m,n) = ¢,

p? P if m/ged(m, n) is the power of a prime p|n

| —here we factorize ged(m,n) = pFq with p* || n.
We remark that by our approach no negative sign is needed here, for any
m,n. This formula is obtained from [I proof of Theorem 2], where it is used

for a short proof of the formula for Res(®,,, (), @m,(x)); secondly, since
(8) Res(z" — 1,9, (z)) = Res(P1(z"), P (2)),

the formula also follows from applying [4, Proposition 14]; a third, con-
venient and direct source is [5, Theorem 3].
Notice that implies, for any n,m, that in particular

(9) Ap (@) = 0,1, or Ay(Pm) > min(lﬁinp, Il];ll|nppk) = p”(’I’L).

p*n
Since also yields
An(Pp) =p  forpin,
Ap(@yerr) = for p¥m,
we conclude that the inequality in @D is sharp, that is,
(11) min Ay (@) = p'(n).

ghiyens

Ap (¢m ) >2

(10)

Finally, since m,,(®,,) = n~!log A, (®,,), the statement of the lemma follows
by combining @ and . "

LEMMA 2. Let n satisfy n # 6 (mod 12) and n # 0 (mod 420). Then
p(n) = p/'(n), that is, the least non-divisor of n is a prime (and not a prime
power).

REMARK 3. The example given in Remark [If(i) shows that the implica-
tion of Lemma [2] cannot be reversed.

Proof of Lemma 2. Suppose that n # 6 (mod 12) and p'(n) < p(n); we
verify that this implies 420 | n. First, if 61n, then either p’'(n) = p(n) =2 or
p'(n) = p(n) = 3. This contradicts the assumption p’(n) < p(n). Hence, we
have n = 6k for some k. The case of k odd is excluded by the assumption
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n # 6 (mod 12), so we obtain k even. In other words, n = 12k’ for some &'.
If 51k, then we have p'(n) = p(n) = 5, in contradiction to the assumption
p'(n) < p(n). Therefore, we have n = 60k” for some k”. Finally, if 7{%",
then p/(n) = p(n) = 7, again contrary to p'(n) < p(n). Thus we conclude
that n = 420%™ for some k"’. =

Proof of Theorem [1}

STEP I: First notice that indeed A, = n~'log A,, for an integer A,, > 2;
in fact,
(12) Ap = min |A,(f)|

fEL[x]
|An (F)]>2

Therefore, A, = |A,(fo)| for some fy € Z[z] with deg fo = n — 1. Upon
replacing fo with f defined above, if necessary, we can assume that A, =

STEP II: We show that A, {n. Suppose that A, divides n. Then there
exists a prime p dividing both A,, and n. Let p™ || A,, and p* || n. Since A, | n
we notice that m < k. On the other hand, let C, be the n x n integer
circulant matrix whose first row consists of the coefficients of fj, so that

(13) An = An(fo) = det C.

Then we have p* ||n and p™ ||det C,, and a result by Newman [12, Theo-
rem 2| thus implies that m > k + 1, so we obtain a contradiction.

STEP III: The previous step implies that the positive integer A, does
not divide n. By definition, p'(n) is the smallest number with this property.
We thus obtain the lower bound p'(n) < A,.

STEP IV: The upper bound 4,, < p’(n) is a consequence of Lemma

STEP V: Suppose that n = 6 (mod 12). Then 2 |n and 3 | n, while 4{n.
Hence, p'(n) = 4. On the other hand,
(14) minp? = 22" = 4,
pFn
and thus p”(n) = 4; notice that p(n) > 5. Therefore in Theorem [1| the lower
and upper bound coincide, and we obtain A,, = p/(n) = p"(n) = 4.

STEP VI: Suppose that n # 6 (mod 12) and n # 0 (mod 420). By
Lemma|2|these conditions on n imply that p(n) = p/(n). Since always p’(n) <
p"(n) < p(n), we conclude that p'(n) = p’(n). Thus the lower and upper
bound in Theorem (1] coincide and we obtain A, = p'(n) = p"(n). =

Acknowledgments. This research was supported by the Austrian Sci-
ence Fund FWF grant P 21339.



84

N. Kaiblinger

References

T. M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24
(1970), 457-462.

P. Borwein, E. Dobrowolski, and M. J. Mossinghoff, Lehmer’s problem for polyno-
mials with odd coefficients, Ann. of Math. 166 (2007), 347-366.

D. W. Boyd, Mahler’s measure and special values of L-functions, Experiment. Math.
7 (1998), 37-82.

C. C. Cheng, J. H. McKay, and S. S.-S. Wang, Resultants of cyclotomic polynomials,
Proc. Amer. Math. Soc. 123 (1995), 1053-1059.

J. E. Cremona, Unimodular integer circulants, Math. Comp. 77 (2008), 1639-1652.
M. Einsiedler, G. Everest, and T. Ward, Primes in sequences associated to polyno-
mials (after Lehmer), LMS J. Comput. Math. 3 (2000), 125-139.

G. Everest, P. Rogers, and T. Ward, A higher-rank Mersenne problem, in: Algo-
rithmic Number Theory, W. L. Mang, C. Fieker, and D. R. Kohel (eds.), Springer,
Berlin, 2002, 95-107.

A. Flatters, Primitive divisors of some Lehmer—Pierce sequences, J. Number Theory
129 (2009), 209-219.

C. J. Hillar and L. Levine, Polynomial recurrences and cyclic resultants, Proc. Amer.
Math. Soc. 135 (2007), 1607-1618.

D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34
(1933), 461-479.

D. Lind, Lehmer’s problem for compact abelian groups, Proc. Amer. Math. Soc. 133
(2005), 1411-1416.

M. Newman, On a problem suggested by Olga Taussky-Todd, Illinois J. Math. 24
(1980), 156—-158.

T. A. Pierce, The numerical factors of the arithmetic forms []1_, (1 £ j"), Ann. of
Math. 18 (1916), 53-64.

C. Smyth, The Mahler measure of algebraic numbers: a survey, in: Number Theory
and Polynomials, J. McKee and C. Smyth (eds.), Cambridge Univ. Press, 2008,
322-349.

Norbert Kaiblinger

Faculty of Mathematics

University of Vienna

Nordbergstrafle 15

1090 Wien, Austria

E-mail: norbert.kaiblinger@univie.ac.at

Received on 27.4.2009
and in revised form on 28.8.2009 (6011)


http://dx.doi.org/10.2307/2037387
http://dx.doi.org/10.4007/annals.2007.166.347
http://dx.doi.org/10.2307/2160701
http://dx.doi.org/10.1090/S0025-5718-08-02089-9
http://dx.doi.org/10.1016/j.jnt.2008.05.008
http://dx.doi.org/10.1090/S0002-9939-06-08672-2
http://dx.doi.org/10.2307/1968172
http://dx.doi.org/10.1090/S0002-9939-04-07753-6
http://dx.doi.org/10.2307/2007169

	Introduction
	Main result
	Proof of Theorem 1

