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1. Introduction. Let F be an algebraic number field, OF the ring of
integers in F , and K2 the Milnor K-functor. For a quadratic number field,
the 2-primary part of K2OF has been intensively studied (see [5]–[10]). For
an odd prime p, it is interesting to study the p-primary part of the tame
kernels of number fields; some results have been found in [1]–[4].

In this paper we investigate the odd part of the tame kernel K2OF for a
biquadratic field F , where F = Q(

√
d1,
√
d2). Section 2 studies the p-Sylow

subgroup of the class group of the cyclotomic extension of F . Let p be a
regular prime. In Section 3, we prove some results connecting the p-rank of
the tame kernel K2OF with the p-rank of the class groups of some subfields
of the number field F (ζp). In particular, when p = 3, 5, we get some results
connecting the p-rank of K2OF with the p-rank of the class groups of some
quadratic fields. As an application, we calculate the 3-rank of the tame
kernels K2OF when F = Q(

√
d1,
√
d2), where −50 < d1, d2 < 50. For any

odd prime p and a positive integer n ≥ 2, in Section 4, we prove explicitly
some relations between the groups (µpn⊗Cl(OF (ζpn )[1/p]))Gal(F (ζpn )/F ) and
K2OF /pn by using a map of Keune.

2. Biquadratic number fields. In this section, we give more infor-
mation on cyclotomic extensions of biquadratic fields. We fix the following
notation.

Let F = Q(
√
d1,
√
d2), F1 = Q(

√
d1), F2 = Q(

√
d2), with d1 and d2

squarefree. We assume that (d1, d2) = 1, p is an odd prime, n a positive in-
teger, ζpn a primitive root of unity of degree pn, L = F (ζpn), G = Gal(L/F ).
Clearly, G is cyclic as a subgroup of the cyclic group Gal(Q(ζpn)/Q). Let
p be a prime ideal of F dividing p, and let Zp be the decomposition group
of p in the abelian extension L/F. Denote by ep the ramification degree of
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p in L/F. For a number field ∗, we denote by A∗ and A∗[1/p] the p-Sylow
subgroups of Cl(O∗) and Cl(O∗[1/p]) respectively.

We consider the following cases.

1) d1 = p∗ = (−1)(p−1)/2p. Then F1 is the unique quadratic subfield
of Q(ζpn), and p is totally ramified in F1. By the assumption, p - d2. We
consider two subcases.

a)
(
d2
p

)
= 1. Then p splits in F2. It follows that pOF = p2

1p
2
2. Since p

is totally ramified in Q(ζpn), the prime ideals p1 and p2 of F are totally
ramified in L/F, and ep1 = ep2 = (L : F ) and Zp1 = Zp2 = G.

b)
(
d2
p

)
= −1. Then p is inert in F2, hence pOF = p2. Since p is totally

ramified in Q(ζpn), the prime ideal p of F is totally ramified in L/F with
ep = (L : F ) and Zp = G.

2) d1 6= p∗ and p | d1. Then p is totally ramified in F1. Let d1 = p∗d′1. By
the assumption, p - d2. We consider four subcases.

a)
(d′1
p

)
= 1 and

(
d2
p

)
= 1. Then p splits in Q(

√
d′1) and F2, so p

splits in Q(
√
d′1,
√
d2) and pOF = p2

1p
2
2. Let E = Q(

√
d1,
√
d2,
√
p∗) =

Q(
√
d′1,
√
d2,
√
p∗). Then the prime ideals p1 and p2 split in E/F. Since

p is totally ramified in Q(ζpn), we have ep1 = ep2 = (L : E) = (L : F )/2.
The decomposition fields of p1 and p2 in L/F are both E, and Zp1 = Zp2 =
Gal(L/E) = Gal(Q(ζpn)/Q(

√
p∗)).

b)
(d′1
p

)
= 1 and

(
d2
p

)
= −1. Then p splits in Q(

√
d′1) and is inert in F2,

so pOF = p2.Hence the prime ideal p splits in E/F. Since p is totally ramified
in Q(ζpn), the ramification degree ep equals (L : E) = (L : F )/2. The decom-
position field of p in L/F is E and Zp = Gal(L/E) = Gal(Q(ζpn)/Q(

√
p∗)).

c)
(d′1
p

)
= −1 and

(
d2
p

)
= 1. Then p splits in F2 and is inert in Q(

√
d′1),

so pOF = p2
1p

2
2. Hence the prime ideals p1 and p2 are inert in E/F. Since

p is totally ramified in Q(ζpn), we have ep1 = ep2 = (L : E) = (L : F )/2.
The decomposition fields of p1 and p2 in L/F are both F , and Zp1 = Zp2 =
Gal(L/F ) = Gal(Q(ζpn)/Q).

d)
(d′1
p

)
= −1 and

(
d2
p

)
= −1. Then p is inert in Q(

√
d′1) and F2, so

pOF = p2. Since
(d′1d2

p

)
= 1, p splits in Q(

√
d′1d2). Hence the prime ideal p

splits in E/F. Since p is totally ramified in Q(ζpn), we have ep = (L : E) =
(L : F )/2. The decomposition field of p in L/F is E, and Zp = Gal(L/E) =
Gal(Q(ζpn)/Q(

√
p∗)).

3) p - d1 and p - d2. Then p is unramified in F. Since p is totally ramified
in Q(ζpn), it is totally ramified in L/F. Hence the ramification degree ep of
the prime ideal p | p of F is (L : F ). The decomposition field of p in L/F
is F , and Zp = Gal(L/F ) = Gal(Q(ζpn)/Q).
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From the above conclusions, we deduce the following lemma:

Lemma 2.1. Let L = F (ζp). Assume that S′F is the set of prime ideals
of F which divide p and split completely in L. Then:

(i) |S′F | = 2 if p = 3, d1 ≡ 3 (mod 9) and d2 ≡ 1 (mod 3),
(ii) |S′F | = 1 if p = 3, 3 | d1 and d2 ≡ 2 (mod 3),
(iii) |S′F | = 0 otherwise.

Lemma 2.2. Assume that p is an odd prime and n a positive integer.
Let F = Q(

√
d1,
√
d2), K = Q(ζpn + ζ−1

pn ), L = F (ζpn). Let L1 = K(
√
d1),

L2 = K(
√
d1d2), L3 = K((ζpn − ζ−1

pn )
√
d1d2), L4 = K(

√
d2), L5 = K((ζpn −

ζ−1
pn )
√
d2), L6 = K((ζpn − ζ−1

pn )
√
d1), L7 = K(ζpn − ζ−1

pn ). Assume further
that p is regular and F ∩Q(ζpn) = Q. Then

AL = AL1 ⊕AL2 ⊕AL3 ⊕AL4 ⊕AL5 ⊕AL6 .

Proof. Let G = Gal(L/K), so we have τ1, τ2, σ ∈ G such that

τ1 :
√
d1 7→ −

√
d1,

√
d2 7→

√
d2, ζpn 7→ ζpn ,

τ2 :
√
d1 7→

√
d1,

√
d2 7→ −

√
d2, ζpn 7→ ζpn ,

σ :
√
d1 7→

√
d1,

√
d2 7→

√
d2, ζpn 7→ ζ−1

pn .

Also, 〈σ, τ2〉 = Gal(L/L1), 〈σ, τ1τ2〉 = Gal(L/L2), 〈στ1, τ1τ2〉 = Gal(L/L3),
〈σ, τ1〉 = Gal(L/L4), 〈στ2, τ1〉 = Gal(L/L5), 〈στ1, τ2〉 = Gal(L/L6), 〈τ1, τ2〉
= Gal(L/L7). Then we have idempotents in Zp[G]:

η0 =
(

1 + τ1
2

)(
1 + τ2

2

)(
1 + σ

2

)
, η1 =

(
1− τ1

2

)(
1 + τ2

2

)(
1 + σ

2

)
,

η2 =
(

1− τ1
2

)(
1− τ2

2

)(
1 + σ

2

)
, η3 =

(
1− τ1

2

)(
1− τ2

2

)(
1− σ

2

)
,

η4 =
(

1 + τ1
2

)(
1− τ2

2

)(
1 + σ

2

)
, η5 =

(
1 + τ1

2

)(
1− τ2

2

)(
1− σ

2

)
,

η6 =
(

1− τ1
2

)(
1 + τ2

2

)(
1− σ

2

)
, η7 =

(
1 + τ1

2

)(
1 + τ2

2

)(
1− σ

2

)
.

It is easy to verify 1 = η0 + η1 + η2 + η3 + η4 + η5 + η6 + η7.

We have η0AL ⊆ NL/KAL = 0 since p is regular. Furthermore, η1AL =
1
8(1− τ1)NL/L1

AL, so η1AL ⊆ AL1 . On the other hand, for any a ∈ AL1 , we
have σa = a, τ2a = a, (1+τ1)a = 0, i.e., τ1a = −a, since 1+τ1 = NL1/K and
p is regular. Hence, η1a = 1

8(1−τ1)(1+τ2)(1+σ)a = a, and so η1AL = AL1 .
Similarly, η4AL = AL4 and η7AL = AL7 .
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Also,

η2 =
(

1− τ1
2

)(
1− τ2

2

)(
1 + σ

2

)
=

1
8

(1− τ1)(1 + τ1τ2)(1 + σ),

η3 =
(

1− τ1
2

)(
1− τ2

2

)(
1− σ

2

)
=

1
8

(1− τ1)(1 + τ1τ2)(1 + στ1),

η5 =
(

1 + τ1
2

)(
1− τ2

2

)(
1− σ

2

)
=

1
8

(1− τ2)(1 + τ1)(1 + στ2),

η6 =
(

1− τ1
2

)(
1 + τ2

2

)(
1− σ

2

)
=

1
8

(1− τ1)(1 + τ2)(1 + στ1).

By the above proof, ηiAL = ALi , i = 2, 3, 5, 6. Since p is regular, we have
AL7 = 0, and the conclusion follows.

3. p-rank. In the following, we assume that F ∩ Q(ζp) = Q. Let L =
F (ζp) with Γ = Gal(L/Q) ∼= G × T, where G = Gal(Q(ζp)/Q) and T =
Gal(F/Q).

Let ω be the Teichmüller character of the group (Z/p)∗. We fix a prim-
itive root g (mod p) and let σ := σg (σg(ζp) = ζgp ). We have the following
idempotents:

εj =
1

p− 1

p−1∑
a=1

ωj(a)σ−1
a =

1
p− 1

p−2∑
k=0

ωjk(g)σ−k, 0 ≤ j ≤ p− 2.

Let λ : Cl(OL) → Cl(OL[1/p]) be the homomorphism induced by the
imbedding OL → OL[1/p]. Evidently λ is a surjective homomorphism of
Γ -modules.

Let E be the maximal unramified p-extension of the field L with an
elementary abelian Galois group H := Gal(E/L). Since µp := 〈ζp〉 ⊂ L,
E/L is a Kummer extension, i.e., E = L(B1/p), for some subgroup B of
L∗ containing L∗p. Let B0 := B/L∗p. For every b ∈ L∗ and b0 = bL∗p,
we have b0 ∈ B0 iff b is singular primary, i.e., (b) = ap for some ideal a
of L, and xp ≡ b (mod p(1− ζp)) for some x ∈ L∗. Consequently, we have a
homomorphism of Γ -modules:

φ : B0 → (AL)p, φ(b0) = Cl(a).

Let U ′L be the group of singular primary units of L. Then Kerφ ∼= U ′L/U
p
L

(see [2]).

Lemma 3.1 ([2]). Let F be a number field with F ∩ Q(ζp) = Q, and let
p be an odd prime. Then

p-rank(K2OF ) = p-rank(εp−2AL[1/p]) + |S′F |.
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Lemma 3.2. The mapping λ : εp−2Cl(OL) → εp−2Cl(OL[1/p]) is an
isomorphism if one of the following conditions is satisfied:

1) p - d1 and p - d2,

2) d1 = pd′1,
(d′1
p

)
= −1 and

(
d2
p

)
= 1,

3) p 6= 3, p | d1 and
(
d2
p

)
= −1.

Proof. Let P be the unique prime ideal over p in L. The group Kerλ is
generated by the class containing the prime ideal P of L. If 1) and 2) are
satisfied, then the prime ideal p | p of F does not split in L by 1) and 3) of
Section 2. So we have σ(P) = P. Therefore, P ∈ ε0Cl(OL).

Suppose now condition 3) is satisfied. Then by 2b) and 2d) of Section 2,
in L we have (1 − ζp) = P1P2, where P1 and P2 are different prime ide-
als of E. Consequently σ(P1) = P1 or P2. Thus for a = Cl(P1) we have
σ(a) = ±a. Evidently a generates Kerλ. Assume that am ∈ εp−2Cl(OL) for
some m. Then

am = εp−2a
m =

1
p− 1

p−2∑
k=0

ωk(p−2)(g)σ−kam

=
1

p− 1

p−2∑
k=0

ωk(p−2)(g)(±1)kmam

=
1

p− 1
1− (ωp−2(g)(±1)m)p−1

1− ωp−2(g)(±1)m
am.

Since p 6= 3, p− 2 6= 1
2(p− 1). It follows that ωp−2(g)(±1)m 6= 1. Therefore

am = 0. This completes the proof.

Theorem 3.3. Assume that p is a regular prime. Let K = Q(ζp + ζ−1
p ),

L = F (ζp), L1 = K(
√
d1), L2 = K(

√
d1d2), L3 = K((ζp − ζ−1

p )
√
d1d2),

L4 = K(
√
d2), L5 = K((ζp − ζ−1

p )
√
d2), L6 = K((ζp − ζ−1

p )
√
d1).

(i) If p > 3, then

p-rank(K2OF ) = p-rank(εp−2AL3 [1/p]) + p-rank(εp−2AL5 [1/p])
+ p-rank(εp−2AL6 [1/p])

provided d1 = pd′1,
(d′1
p

)
= 1 and

(
d2
p

)
= 1, while

p-rank(K2OF ) = p-rank(εp−2AL3) + p-rank(εp−2AL5)
+ p-rank(εp−2AL6)

otherwise.
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(ii) If 3 - d1 and 3 - d2, or d1 ≡ 6 (mod 9) and d2 ≡ 1 (mod 3), then

3-rank(K2OF ) = 3-rank(AL3) + 3-rank(AL5) + 3-rank(AL6),

where L3 = Q(
√
−3d1d2), L5 = Q(

√
−3d2), L6 = Q(

√
−3d1).

(iii) If d1 ≡ 3 (mod 9) and d2 ≡ 1 (mod 3), then

3-rank(K2OF ) = 3-rank(AL3) + 3-rank(AL5) + 3-rank(AL6) + 2,

where L3 = Q(
√
−3d1d2), L5 = Q(

√
−3d2), L6 = Q(

√
−3d1).

(iv) If d1 ≡ 6 (mod 9) and d2 ≡ 2 (mod 3), then

3-rank(K2OF ) = 3-rank(AL3) + 3-rank(AL5) + 3-rank(AL6) + 1,

where L3 = Q(
√
−3d1d2), L5 = Q(

√
−3d2), L6 = Q(

√
−3d1).

(v) If d1 ≡ 3 (mod 9) and d2 ≡ 2 (mod 3), then

3-rank(K2OF ) = 3-rank(AL3 [1/3])+3-rank(AL5)+3-rank(AL6)+1,

where L3 = Q(
√
−3d1d2), L5 = Q(

√
−3d2), L6 = Q(

√
−3d1).

Proof. (i) By the assumption and Lemma 2.2, we have

AL = AL1 ⊕AL2 ⊕AL3 ⊕AL4 ⊕AL5 ⊕AL6 .

We recall that σ is a generator of Gal(L/F ). Then

σ(p−1)/2εp−2 = ω(g(p−1)/2)p−2εp−2 = −εp−2.

On the other hand, it is easy to check that σ(p−1)/2 acts trivially on AL1 ,
AL2 and AL4 . Therefore, the result follows from Lemmas 2.1, 3.1 and 3.2.

(ii) By the proof of (i), we have

3-rank(K2OF ) = 3-rank(ε1AL3) + 3-rank(ε1AL5) + 3-rank(ε1AL6),

where L3 = Q(
√
−3d1d2), L5 = Q(

√
−3d2), L6 = Q(

√
−3d1). It is easy to

see that Gal(Li/Q) = 〈σ〉 for i = 3, 5, 6. So ALi = ε1ALi for i = 3, 5, 6,
completing the proof.

(iii) By Lemmas 2.1, 2.2 and 3.1, we have

3-rank(K2OF ) = 3-rank(ε1AL3 [1/3]) + 3-rank(ε1AL5 [1/3])
+ 3-rank(ε1AL6 [1/3]) + 2,

where L3 = Q(
√
−3d1d2), L5 = Q(

√
−3d2), L6 = Q(

√
−3d1). Since d1 ≡ 3

(mod 9) and d2 ≡ 1 (mod 3), we have
(−d1/3

3

)
= −1 and

(−d1d2/3
3

)
= −1.

Hence 3 is inert is L3 and L6. Clearly, 3 is ramified in L5. So ALi [1/3] = ALi,

where i = 3, 5, 6. Therefore, the result follows from the proof of (ii).
The proofs of (iv) and (v) are similar to that of (iii).

Example. As an application of Theorem 3.3, we calculate the 3-rank
of K2OF when −50 < d1, d2 < 50. The results are given in the tables of
Section 5.



Odd part of tame kernels 281

Let Gal(F1/Q) = 〈τ1〉 and Gal(F2/Q) = 〈τ2〉. Then T := Gal(F/Q) =
〈τ1, τ2〉. We consider the following idempotents:

θ0 =
(

1 + τ1
2

)(
1 + τ2

2

)
, θ1 =

(
1− τ1

2

)(
1 + τ2

2

)
,

θ2 =
(

1 + τ1
2

)(
1− τ2

2

)
, θ3 =

(
1− τ1

2

)(
1− τ2

2

)
.

Lemma 3.4. For p = 4s+ 1, we have

θ1ε2 =
1

p− 1

(
1− τ1

4

) s−1∑
k=0

ω2k(g)σ−kNL/E1
,(1)

θ2ε2 =
1

p− 1

(
1− τ2

4

) s−1∑
k=0

ω2k(g)σ−kNL/E2
,(2)

θ3ε2 =
1

p− 1

(
1− τ1

4

) s−1∑
k=0

ω2k(g)σ−kNL/E3
,(3)

where E1, E2 and E3 are the subfields of L fixed by 〈τ2, σsτ1〉, 〈τ1, σsτ2〉 and
〈τ1τ2, σsτ1〉 respectively.

Proof. Since ω2s(g) = −1 and σ4s = 1, we get

ε2 =
1

p− 1

s−1∑
k=0

ω2k(g)σ−k(1 + ω2s(g)σ−s + ω4s(g)σ−2s + ω6s(g)σ−3s)

=
1

p− 1

s−1∑
k=0

ω2k(g)σ−k(1− σs + σ2s − σ3s)

=
1

p− 1

s−1∑
k=0

ω2k(g)σ−k(1− σs)(1 + σ2s).

For (1),

θ1ε2 =
(

1− τ1
2

)(
1 + τ2

2

)
1

p− 1

s−1∑
k=0

ω2k(g)σ−k(1− σs)(1 + σ2s)

=
1

p− 1

(
1− τ1

4

) s−1∑
k=0

ω2k(g)σ−k(1 + τ2)(1 + τ1σ
s)(1 + σ2s)

=
1

p− 1

(
1− τ1

4

) s−1∑
k=0

ω2k(g)σ−kNL/E1
.

The equalities (2) and (3) can be proved similarly.
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Lemma 3.5 ([2]). p-rank(εkAL) = p-rank(εp−kB0) for 0 ≤ k ≤ p, where
we identified εp−1 = ε0 and εp = ε1.

Lemma 3.6. For 0 ≤ k ≤ 3 and 0 ≤ j ≤ p− 2, we have

p-rank(θkεp−jAL) ≤ p-rank(θkεjAL) + p-rank(θkεj(U ′L/U
p
L)).

Proof. Since φ : B0 → (AL)p is a homomorphism of Γ -modules, we have

φ : θkεjB0 → θkεj(AL)p for 0 ≤ k ≤ 3, 0 ≤ j ≤ p− 2.

In view of Kerφ ∼= U ′L/U
p
L we get

(Kerφ) ∩ (θkεjB0) ∼= θkεj(U ′L/U
p
L),

and hence

p-rank(θkεjB0) ≤ p-rank(θkεjAL) + p-rank(θkεj(U ′L/U
p
L)).

Therefore the result follows from Lemma 3.5.

Theorem 3.7. Let 5 - d1d2. If F is a totally real field, then

5-rank(K2OF ) ≤ 5-rank(AE1) + 5-rank(AE2) + 5-rank(AE3) + 3,

and if F is a CM field, then

5-rank(K2OF ) ≤ 5-rank(AE1) + 5-rank(AE2) + 5-rank(AE3) + 1,

where E1 = Q(
√

5d1), E2 = Q(
√

5d2), E3 = Q(
√

5d1d2).

Proof. By Lemmas 2.1, 3.1 and 3.2, 5-rank(K2OF ) = 5-rank(ε3AL).
Since θ0ε3AL ⊂ AQ(ζ5), Lemmas 3.4 and 3.6 yield

5-rank(K2OF ) ≤
3∑

k=1

(5-rank(AEk
) + 5-rank(UEk

/U5
Ek

)).

By the Dirichlet unit theorem, we conclude that 5-rank(UEk
/U5

Ek
) = 1

resp. 0 if Ek is a real resp. imaginary quadratic field. This completes the
proof.

4. pn-rank. In this section, we use the same notation as in Section 2.

Lemma 4.1 ([3]). Let F be a number field, and for any odd prime p and
a positive integer n, let Γ = Gal(F (ζpn)/F ). We have an exact sequence

(∗) 0→ (µpn ⊗ Cl(OF (ζpn )[1/p]))Γ
ι→K2OF /pn

λ→
⊕
p|p

(µpn)Zp

c→ (µpn)Γ → 0.
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Theorem 4.2. Let F = Q(
√
d1,
√
d2) and L = F (ζpn), where n ≥ 2.

(i) If p > 3, then K2OF /pn ∼= (µpn ⊗ Cl(OL[1/p]))Γ .
(ii) K2OF /3n ∼= (µ3n⊗Cl(OL[1/3]))Γ provided d1 = −3 and

(
d2
3

)
= −1,

or 3 | d1 with
(−d1/3

3

)
= −1 and

(
d2
3

)
= 1, or 3 - d1 and 3 - d2.

(iii) We have an exact sequence

0→ (µ3n ⊗ Cl(OL[1/3]))Γ → K2OF /3n → µ3 → 0

provided d1 = −3 and
(
d2
3

)
= 1, or 3 | d1 with

(−d1/3
3

)
= 1 and(

d2
3

)
= −1, or 3 | d1 with

(−d1/3
3

)
= −1 and

(
d2
3

)
= −1.

(iv) We have an exact sequence

0→ (µ3n ⊗ Cl(OL[1/3]))Γ → K2OF /3n → µ3 ⊕ µ3 → 0

provided 3 | d1 with
(−d1/3

3

)
= 1 and

(
d2
3

)
= 1.

Proof. Since µpn is a cohomologically trivial Z-module for every sub-
group Z of Γ , we get

(µpn)Zp
∼= (µpn)Zp = µpn ∩ LZp ,

where LZp is the decomposition field of p in the extension L/F . From the
conclusions of Section 2, this field is F or E = Q(

√
d1,
√
d2,
√
p∗). Obviously,

the pth root of 1, where p > 3, does not belong to this field. So (i) is proved
by Lemma 4.1.

From the conclusions of Section 2, we have the following results:

If d1 = −3 and
(
d2
3

)
= 1, then

⊕
p|3(µ3n)Zp

∼= µ3 ⊕ µ3 and (µ3n)Γ ∼= µ3.

If d1 = −3 and
(
d2
3

)
= −1, then

⊕
p|3(µ3n)Zp

∼= µ3 and (µ3n)Γ ∼= µ3.

If 3 | d1 6= −3,
(−d1/3

3

)
= 1 and

(
d2
3

)
= 1, then

⊕
p|3(µ3n)Zp

∼= µ3 ⊕ µ3

and (µ3n)Γ = {1}.

If 3 | d1 6= −3,
(−d1/3

3

)
= 1 and

(
d2
3

)
= −1, then

⊕
p|3(µ3n)Zp

∼= µ3 and
(µ3n)Γ = {1}.

If 3 | d1 6= −3,
(−d1/3

3

)
= −1 and

(
d2
3

)
= 1, then

⊕
p|3(µ3n)Zp = {1} and

(µ3n)Γ = {1}.
If 3 | d1 6= −3,

(−d1/3
3

)
= −1 and

(
d2
3

)
= −1, then

⊕
p|3(µ3n)Zp

∼= µ3 and
(µ3n)Γ = {1}.

If 3 - d1 and 3 - d2, then
⊕

p|3(µ3n)Zp = {1} and (µ3n)Γ = {1}.
Now (ii)–(iv) follow from Lemma 4.1.
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5. Tables

Table 1. (d1, d2) with 3-rank(K2OF ) = 1

(−47,−43) (−47,−31) (−47,−26) (−47,−22) (−47,−13) (−47,−5) (−47, 29) (−47, 43) (−46,−19)

(−46,−17) (−46,−11) (−46,−7) (−46, 29) (−46, 43) (−43,−34) (−43,−31) (−43,−26) (−43,−17)

(−43,−11) (−43,−1) (−43, 14) (−43, 29) (−41,−17) (−41,−14) (−41,−13) (−41,−10) (−41,−7)

(−41,−2) (−41, 13) (−41, 29) (−41, 43) (−38,−37) (−38,−35) (−38,−29) (−38,−23) (−38,−13)

(−38,−11) (−38, 29) (−38, 43) (−37,−35) (−37,−34) (−37,−23) (−37,−14) (−37,−2) (−37, 29)

(−37, 43) (−35, 29) (−35, 43) (−34,−23) (−34,−7) (−34, 29) (−34, 43) (−31,−29) (−31,−26)

(−31,−10) (−31,−2) (−31, 23) (−31, 29) (−31, 43) (−29,−26) (−29,−23) (−29,−22) (−29,−14)

(−29,−2) (−29,−1) (−29, 43) (−26,−19) (−26,−7) (−26, 29) (−26, 43) (−23,−22) (−23,−17)

(−23,−14) (−23,−11) (−23, 29) (−23, 31) (−23, 43) (−22,−19) (−22, 29) (−22, 43) (−19,−17)

(−19,−13) (−19, 29) (−19, 43) (−17,−14) (−17,−5) (−17, 29) (−17, 43) (−14,−13) (−14, 29)

(−13, 29) (−13, 41) (−13, 43) (−11,−7) (−11, 29) (−11, 43) (−10, 29) (−10, 43) (−7, 29)

(−7, 43) (−5, 29) (−5, 43) (−2, 29) (−2, 43) (−1, 29) (−1, 43) (2, 31) (2, 37)

(2, 41) (2, 43) (5, 17) (5, 29) (5, 43) (5, 47) (7, 11) (7, 26) (7, 29)

(7, 34) (7, 41) (7, 43) (7, 46) (10, 29) (10, 31) (10, 41) (10, 43) (11, 23)

(11, 29) (11, 38) (11, 46) (13, 14) (13, 19) (13, 29) (13, 38) (13, 41) (13, 43)

(13, 47) (14, 17) (14, 37) (14, 41) (14, 43) (17, 19) (17, 23) (17, 29) (17, 46)

(19, 22) (19, 26) (19, 29) (19, 43) (19, 46) (22, 23) (22, 43) (22, 47) (23, 34)

(23, 37) (23, 38) (23, 43) (26, 31) (26, 43) (26, 47) (29, 34) (29, 35) (29, 37)

(29, 38) (29, 41) (29, 46) (29, 47) (34, 37) (35, 37) (35, 38) (35, 43) (35, 47)

(37, 38) (37, 43) (38, 43) (41, 43) (43, 46) (−39,−14) (−39,−2) (−39, 43) (−30,−17)

(−30,−11) (−30, 43) (−21, 43) (6, 13) (6, 19) (6, 43) (15, 22) (15, 34) (15, 43)

(−47,−21) (−47, 15) (−41,−39) (−41, 42) (−26,−21) (10, 33) (13, 42) (31, 42) (−42,−37)

(−42,−31) (−42,−19) (−42,−13) (−42,−1) (−42, 5) (−42, 11) (−42, 17) (−42, 23) (−42, 41)

(−42, 47) (−33,−31) (−33,−19) (−33,−13) (−33,−10) (−33,−7) (−33,−1) (−33, 2) (−33, 5)

(−33, 14) (−33, 17) (−33, 23) (−33, 26) (−33, 35) (−33, 38) (−33, 41) (−33, 47) (−15,−13)

(−15,−7) (−15,−1) (−15, 2) (−15, 11) (−15, 14) (−15, 17) (−15, 23) (−15, 26) (−15, 38)

(−15, 41) (−15, 47) (−6,−1) (−6, 5) (−6, 11) (−6, 17) (−6, 23) (−6, 35) (−6, 41)

(−6, 47) (3, 5) (3, 11) (3, 14) (3, 17) (3, 23) (3, 26) (3, 35) (3, 38)

(3, 41) (3, 47) (21, 23) (21, 26) (21, 38) (21, 41) (21, 47) (30, 41) (30, 47)

(39, 41) (39, 47) (−46,−33) (−46,−15) (−46, 3) (−46, 21) (−46, 39) (−43,−42) (−43,−33)

(−43,−15) (−43,−6) (−43, 3) (−43, 21) (−43, 30) (−43, 39) (−37,−33) (−37,−15) (−37,−6)

(−37, 3) (−37, 21) (−37, 30) (−37, 39) (−34,−33) (−34,−15) (−34, 3) (−34, 21) (−34, 39)

(−31,−15) (−31,−6) (−31, 3) (−31, 21) (−31, 30) (−31, 39) (−22,−15) (−22, 3) (−22, 21)

(−22, 39) (−19,−15) (−19,−6) (−19, 3) (−19, 21) (−19, 30) (−19, 39) (−13,−6) (−13, 3)

(−13, 21) (−13, 30) (−10, 3) (−10, 21) (−10, 39) (−7,−6) (−7, 3) (−7, 30) (−7, 39)

(−1, 3) (−1, 21) (−1, 30) (−1, 39) (2, 3) (2, 21) (2, 39) (5, 21) (5, 39)

(11, 21) (11, 30) (11, 39) (14, 39) (17, 21) (17, 30) (17, 39) (23, 30) (23, 39)

(35, 39) (38, 39) (−39,−37) (−39,−34) (−39,−31) (−39,−10) (−39,−7) (−39,−1) (−39, 2)

(−39, 5) (−39, 11) (−39, 14) (−39, 17) (−39, 23) (−39, 35) (−39, 38) (−39, 41) (−39, 47)

(−30,−19) (−30,−13) (−30,−7) (−30,−1) (−30, 11) (−30, 17) (−30, 23) (−30, 41) (−30, 47)

(−21,−19) (−21,−13) (−21,−10) (−21,−1) (−21, 2) (−21, 5) (−21, 11) (−21, 17) (−21, 23)

(−21, 26) (−21, 38) (−21, 41) (−21, 47) (6, 11) (6, 17) (6, 23) (6, 35) (6, 41)

(6, 47) (15, 17) (15, 23) (15, 26) (15, 38) (15, 41) (15, 47) (33, 35) (33, 38)

(42, 47) (−46,−39) (−46,−21) (−46, 15) (−43,−39) (−43,−21) (−43, 6) (−43, 15) (−43, 42)

(−37,−21) (−37, 6) (−37, 15) (−37, 33) (−37, 42) (−34,−21) (−34, 15) (−34, 33) (−31,−30)

(−31,−21) (−31, 6) (−31, 15) (−31, 33) (−31, 42) (−22,−21) (−22, 15) (−19, 6) (−19, 15)

(−19, 33) (−19, 42) (−13, 6) (−13, 15) (−13, 33) (−13, 42) (−10, 33) (−7, 6) (−7, 15)

(−7, 33) (−1, 6) (−1, 15) (−1, 33) (−1, 42) (2, 15) (2, 33) (5, 6) (5, 33)

(5, 42) (11, 15) (11, 42) (14, 15) (14, 33) (17, 33) (17, 42) (23, 33) (23, 42)

(41, 42)
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Table 2. (d1, d2) with 3-rank(K2OF ) = 2

(−14, 43) (2, 29) (11, 43) (14, 29) (17, 43) (22, 29) (23, 29) (26, 29) (29, 31)

(29, 43) (31, 43) (34, 43) (43, 47) (−42,−41) (−42,−29) (−42,−23) (−42,−17) (−42,−11)

(−42,−5) (−42, 1) (−42, 13) (−42, 19) (−42, 31) (−42, 37) (−33,−29) (−33,−23) (−33,−17)

(−33,−14) (−33,−5) (−33,−2) (−33, 1) (−33, 7) (−33, 10) (−33, 13) (−33, 19) (−33, 31)

(−33, 34) (−33, 37) (−15,−14) (−15,−11) (−15,−2) (−15, 1) (−15, 7) (−15, 13) (−15, 19)

(−15, 22) (−15, 31) (−15, 34) (−15, 37) (−15, 46) (−6,−5) (−6, 1) (−6, 7) (−6, 13)

(−6, 19) (−6, 31) (−6, 37) (−6, 43) (3, 7) (3, 10) (3, 13) (3, 19) (3, 22)

(3, 34) (3, 37) (3, 46) (21, 22) (21, 31) (21, 34) (21, 37) (21, 46) (30, 31)

(39, 46) (−47,−42) (−47,−15) (−47,−6) (−47, 3) (−47, 21) (−47, 30) (−47, 39) (−41,−15)

(−41,−6) (−41, 3) (−41, 21) (−41, 30) (−41, 39) (−38,−33) (−38,−15) (−38, 3) (−38, 21)

(−38, 39) (−35,−33) (−35,−6) (−35, 3) (−35, 39) (−29,−15) (−29,−6) (−29, 3) (−29, 21)

(−29, 30) (−29, 39) (−26,−15) (−26, 3) (−26, 21) (−23,−15) (−23,−6) (−23, 3) (−23, 21)

(−23, 30) (−23, 39) (−17,−15) (−17,−6) (−17, 3) (−17, 21) (−17, 30) (−17, 39) (−14, 3)

(−14, 39) (−11,−6) (−11, 3) (−11, 21) (−11, 30) (−11, 39) (−5, 3) (−5, 21) (−5, 39)

(−2, 3) (−2, 21) (−2, 39) (1, 3) (1, 21) (1, 30) (1, 39) (7, 30) (7, 39)

(10, 21) (10, 39) (13, 21) (13, 30) (19, 21) (19, 30) (31, 39) (34, 39) (37, 39)

(33, 43) (42, 43) (−42, 29) (−33, 29) (−15, 29) (−6, 29) (3, 29) (21, 29) (29, 30)

(29, 39) (−39,−22) (−39,−19) (−39, 29) (−30, 29) (−21, 29) (6, 29) (15, 29) (33, 41)

(33, 47) (−46, 33) (−43,−30) (−43, 33) (−37,−30) (26, 33) (29, 33) (29, 42)

Table 3. (d1, d2) with 3-rankK2OF = 3

(−42, 43) (−33,−47) (−33,−41) (−33,−26) (−33, 46) (−15, 43) (−6, 43) (3, 31) (3, 43)

(21, 43) (30, 37) (39, 19) (39, 22) (39, 43)

Finally, there are only two pairs (−33, 43) and (30, 43) with
3-rank(K2OF ) = 4. For any (d1, d2) which does not appear in the above
tables, the 3-primary part of K2OF is trivial.

Acknowledgments. I would like to thank the referee for many valuable
suggestions. This paper was supported by NSFC 10801076, NSFC 10971098
and the Natural Science Foundation of the Jiangsu Higher Education Insti-
tutions of China (Grant No. 08KJB110006).

References

[1] J. Browkin, Tame kernels of cubic cyclic fields, Math. Comp. 74 (2005), 967–999.
[2] —, On the p-rank of the tame kernel of algebraic number fields, J. Reine Angew.

Math. 432 (1992), 135–149.
[3] F. Keune, On the structure of K2 of the ring of integers in a number field, K-Theory

2 (1989), 625–645.
[4] M. Kolster, Odd torsion in the tame kernel of totally real number fields, in: Algebraic

K-Theory: Connections with Geometry and Topology, J. F. Jardine and V. P. Snaith
(eds.), Springer, 1989, 177–188.

[5] H. R. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields,
Acta Arith. 69 (1995), 153–169.

[6] —, The 4-rank of K2OF for real quadratic fields, ibid. 72 (1995), 323–333.
[7] —, The structure of the tame kernels of quadratic number fields (I), ibid. 113 (2004),

203–240.

http://dx.doi.org/10.1090/S0025-5718-04-01726-0
http://dx.doi.org/10.1007/BF00535049
http://dx.doi.org/10.4064/aa113-3-1


286 H. Zhou

[8] H. R. Qin, The 2-Sylow subgroup of K2OF for number fields F , J. Algebra 284
(2005), 494–519.

[9] —, Tame kernels and Tate kernels of quadratic number fields, J. Reine Angew.
Math. 530 (2001), 105–144.

[10] J. Tate, Relations between K2 and Galois cohomology, Invent. Math. 36 (1976),
257–274.

Haiyan Zhou
School of Mathematical Sciences
Nanjing Normal University
Nanjing 210093, P.R. China
E-mail: haiyanxiaodong@gmail.com

Received on 11.9.2009
and in revised form on 3.2.2010 (6147)

http://dx.doi.org/10.1016/j.jalgebra.2004.10.024
http://dx.doi.org/10.1007/BF01390012

	Introduction
	Biquadratic number fields
	p-rank
	pn-rank
	Tables

