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1. Statement of results. Fix a positive integer N ≥ 2. Throughout
this paper, we will consider the unique, non-terminating, base N expansion
of a number x ∈ [0, 1], written as

x =
d1(x)
N

+
d2(x)
N2

+ · · ·+ dn(x)
Nn

+ · · · with di(x) ∈ {0, 1, . . . , N − 1}.

For each digit i ∈ {0, 1, . . . , N − 1}, we will write

Πi(x;n) =
1
n
|{1 ≤ j ≤ n | dj(x) = i}|

for the frequency of the digit i among the first n digits of x.
We recall that in a metric space X, a set S is called residual if its com-

plement is of the first category. Also recall that we say that a typical element
x has property P if the set S = {x ∈ X | x has property P} is residual. We
refer the reader to Oxtoby [Ox] for more details. The limiting behaviour of
the frequencies Πi(x;n) has been investigated extensively during the past
many years. For example, Volkmann [Vo] and Šalát [Ša1] proved that for a
typical x, we have

lim sup
n→∞

Πi(x;n) = 1 and lim inf
n→∞

Πi(x;n) = 0

for all 0 ≤ i ≤ N − 1. Their proofs can also be found in various textbooks;
see, for example, Billingsley [Bi, p. 16] and Hlawka [Hl, p. 77].

During the past 50 years these results have been extended and gen-
eralized further in many different directions [APT, CZ, Ol, Ša2, Si, SŠ].
For example, recently Olsen [Ol] proved Theorem A below. To state this
result we need to introduce some notation. Let ∆N denote the family of
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N -dimensional probability vectors, i.e.

∆N =
{

(p0, p1, . . . , pN−1)
∣∣∣ pi ≥ 0,

N−1∑
i=0

pi = 1
}
,

and write

Π(x;n) = (Π0(x;n), Π1(x;n), . . . ,ΠN−1(x;n))

for the vector of frequencies of digits. Then clearly Π(x;n) ∈ ∆N , and
consequently the set of accumulation points of the sequence (Π(x;n))n is a
subset of ∆N . Somewhat surprisingly, in [Ol] it is proved that for a typical
x ∈ [0, 1], the set of accumulation points of (Π(x;n))n is all of ∆N .

Theorem A [Ol]. The set

{x ∈ [0, 1] | the set of accumulation points of (Π(x;n))∞n=1 equals ∆N}
is residual.

Given a divergent sequence, forming its Cesàro averages may succeed in
producing a convergent sequence, and one might expect that iterating this
method would eventually give a convergent sequence when applied to the
sequence (Π(x;n))n. In this paper we will prove a somewhat unexpected
result that strengthens Theorem A considerably. Namely, we show that for a
typical x, the set of accumulation points of all higher order Cesàro averages
of the sequence (Π(x;n))n equals ∆N . To state this result precisely, we
make the following definitions. Let

Π
(1)
i (x;n) = Πi(x;n),

and for k ≥ 2, let

Π
(k)
i (x;n) =

∑n
j=1Π

(k−1)
j (x; j)
n

denote kth iterated Cesàro average. Next let

Π(k)(x;n) = (Π(k)
0 (x;n), Π(k)

1 (x;n), . . . ,Π(k)
N−1(x;n))

denote the vector of kth iterated Cesàro averages. Now we can state our
main theorem.

Theorem 1.1. The set

R = {x ∈ [0, 1] | the set of accumulation points of (Π(k)(x;n))∞n=1

equals ∆N for all k ∈ N}
is residual.

The proof of Theorem 1.1 is given in Section 2. Before presenting it, we
make a few remarks concerning our result in different contexts. Below we
will denote the Hausdorff dimension and the packing dimension by dimH



Iterated Cesàro averages 289

and dimP respectively. The reader is referred to [Fa] for the definitions of
dimensions.

Using Theorem 1.1 it is easy to find the packing dimension of the set R.

Corollary 1.2. The packing dimension of the set R equals 1, i.e.

dimPR = 1.

Proof. Recall that if C is a compact subset of R and M is a subset of
C with dimPM < dimPC, then M is of the first category in C (see [Ed,
Exercise (1.8.4)]). Combined with Theorem 1.1, this implies that dimPR =
dimP([0, 1]) = 1.

Now we compare this with the Hausdorff dimension of R. It follows from
[OW] that dimHR = 0. Hence, in terms of dimensions, the size of R varies
between “very big” and “very small” depending on the exact viewpoint, but
it follows from Theorem 1.1 that R is always “very big” topologically.

This contrast between the topological and measure-theoretical view-
points is also emphasized by Borel’s Normal Number Theorem, which states
that

Πi(x;n)→ 1
N

for Lebesgue almost all x ∈ [0, 1]. It follows from Borel’s Normal Number
Theorem that for Lebesgue almost all x ∈ [0, 1], the sequence (Πi(x;n))n has
only one accumulation point (namely 1/N). This contrasts vastly with the
topological point of view. Namely, Theorem 1.1 states that for a typical x,
the set of accumulation points of (Π(k)

i (x;n))n equals the simplex of N -
dimensional probability vectors for all k ∈ N.

2. Proof of Theorem 1.1. Throughout the proof, we will work with
a subset of [0, 1], namely

I = [0, 1] \ {x ∈ [0, 1] |x has a terminating N -adic expansion}.

To simplify the notation in our proof, we define the function ϕ1(x) = 2x

and ϕm(x) = ϕ1(ϕm−1(x)) for m ≥ 2. For brevity, write D = (QN ∩∆N ) \
{(1, 0, 0, . . . , 0)}. (We exclude one particular vector for technical reasons,
which become apparent in the proof of Claim 2.) We define the property P
as follows. We say that a sequence (xn)n in RN has property P if for all
q ∈ D, m ∈ N, i ∈ N, and ε > 0, there exists j ∈ N satisfying:

(i) j ≥ i,
(ii) j/2j < ε,

(iii) if j < n < ϕm(j) then |xn − q| < ε.

Our proof of Theorem 1.1 will consist of three lemmas:
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(1) First we will prove that the set

(2.1) A = {x ∈ I | (Π(1)(x;n))∞n=1 has property P}
is residual.

(2) Then we will show that if (Π(k)(x;n))∞n=1 has property P, then
(Π(k+1)(x;n))∞n=1 also has property P.

(3) Finally, we will show that A ⊆ R (recall that R is defined in Theo-
rem 1.1).

Lemma 2.1. The set A is residual (recall that A is defined in (2.1)).

Proof. For fixed h,m, i ∈ N and q ∈ D, we define property Ph,m,q,i, as
follows. We say that a sequence (xn)n has property Ph,m,q,i if for every
ε > 1/h, there exists j ∈ N satisfying:

(i) j ≥ i,
(ii) j/2j < ε,

(iii) j < n < ϕm(2j)⇒ |xn − q| < ε.

Let Gh,m,q,i = {x ∈ I | (Π(1)(x;n))∞n=1 has property Ph,m,q,i}. Clearly,⋂
h∈N

⋂
m∈N

⋂
q∈D

⋂
i∈N

Gh,m,q,i = A.

Claim 1. Gh,m,q,i is open.

Proof. Let x ∈ Gh,m,q,i. Since x ∈ Gh,m,q,i, there exists a positive integer
j such that j ≥ i, j/2j < 1/h, and if j < n < ϕm(2j), then |Π(1)(x;n)−q| <
1/h.

We now choose δ to equal 1/Nϕm(2j)+1 if the 2jth digit of x is neither 0
nor N − 1, otherwise we choose it to be 1/Na where a is any integer such
that the (a− 1)st and (a− 2)nd digits are not both either 0 or N − 1, and
that a > ϕm(2j) + 1. Then all y ∈ B(x, δ) have their first ϕm(2j) digits the
same as x, and so B(x, δ) ⊆ Gh,m,q,i. This completes the proof of Claim 1.

Claim 2. Gh,m,q,i is dense.

Proof. Let x ∈ I and δ > 0. We must now find y ∈ B(x, δ)∩Gh,m,q,i. Let
t ∈ N be such that 1/N t < δ. We can clearly choose a positive integer s ∈ N
and z1, . . . , zs ∈ {0, 1, . . . , N−1} such that if z = z1/N+z2/N2+· · ·+zs/N s

then Π(1)(z; s) = q. Let

y =
d1(x)
N

+ · · ·+ dt(x)
N t

+
∞∑
i=0

(
z1

N t+is+1
+

z2
N t+is+2

+ · · ·+ zs
N t+is+s

)
.

Then y ∈ B(x, δ) (as y has the first t digits the same as x).
Next we show that y ∈ Gh,m,q,i. All zi’s cannot be 0, because we ex-

cluded the vector (1, 0, . . . , 0). Therefore, y has a non-terminating N -adic
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expansion. Let ε ≥ 1/h, and choose j such that

j

2j
< ε and j ≥ N max

(
max

l∈{0,1,...,N−1}

∣∣∣∣Nl(z; s)(2 + t/s) +Nl(y; t)
ε

∣∣∣∣, i, t)
where Nl(x;n) = |{0 < j ≤ n | dj(x) = l}|. Fix a positive integer n
with j < n < ϕm(2j) and observe that we can find integers r and b, with
0 ≤ r < s and 0 ≤ b < Nl(z; s), such that n = t + b(n− t)/scs + r, and
Nl(y;n) = Nl(y; t) + b(n− t)/scNl(z; s) + b. We now have

|Π(1)(y;n)− q| = N max
l

∣∣∣∣Π(1)
l (y;n)− Nl(z; s)

s

∣∣∣∣
= N max

l

∣∣∣∣Nl(y;n)
n

−
nNl(z;s)

s

n

∣∣∣∣
= N max

l

∣∣∣∣Nl(y; t) +
⌊

n−t
s

⌋
Nl(z; s) + b

n
−
(
t+
⌊

n−t
s

⌋
s+ r

)Nl(z;s)
s

n

∣∣∣∣
≤ N max

l

(∣∣∣∣
⌊

n−t
s

⌋
Nl(z; s)− Nl(z;s)

s (t+ r)−Nl(z; s)
⌊

n−t
s

⌋
n

∣∣∣∣+
Nl(y; t) + b

n

)
≤ N max

l

(∣∣∣∣−Nl(z;s)
s (t+ r)
n

∣∣∣∣+
Nl(y; t) +Nl(z; s)

n

)
≤ N max

l

( Nl(z;s)
s (t+ r) +Nl(y; t) +Nl(z; s)

n

)
≤ N max

l

( Nl(z;s)
s (t+ s) +Nl(y; t) +Nl(z; s)

j

)
≤ N max

l

(
Nl(z; s)(2 + t/s) +Nl(y; t)

j

)
≤ ε,

where the maximum is over l ∈ {0, 1, . . . , N − 1}. This shows that y ∈
Gh,m,q,i, and completes the proof of Claim 2.

It follows from Claims 1 and 2 that A is the countable intersection of open
and dense sets, and hence residual. This completes the proof of Lemma 2.1.

Lemma 2.2. If (Π(k)(x;n))∞n=1 has property P, then (Π(k+1)(x;n))∞n=1

also has property P.

Proof. Let (Π(k)(x;n))∞n=1 have property P, and fix ε > 0, q ∈ D, i ∈ N
and m ∈ N. Since (Π(k)(x;n))∞n=1 has property P, there exists j′ ∈ N with
j′ ≥ i, j′/2j′

< ε/3, and such that if j′ < n < ϕm+1(2j′
) then |Π(k)(x;n)−q|

< ε/3. Let j = 2j′
. For all j < n < ϕm(2j) (i.e. 2j′

< n < ϕm+1(2j′
)), we
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have

|Π(k+1)(x;n)− q| =
∣∣∣∣Π(k)(x; 1) +Π(k)(x; 2) + · · ·+Π(k)(x;n)

n
− q
∣∣∣∣

=
∣∣∣∣Π(k)(x; 1) + · · ·+Π(k)(x; j′)

n

+
Π(k)(x; j′ + 1) + · · ·+Π(k)(x;n)− (n− j′)q

n
− j′q

n

∣∣∣∣
≤ |Π

(k)(x; 1) + · · ·+Π(k)(x; j′)|
n

+
|Π(k)(x; j′ + 1)− q|+ · · ·+ |Π(k)(x;n)− q|

n
+
|j′q|
n

≤ j′

n
+
ε

3
n− j′

n
+
j′

n
≤ j′

2j′ +
ε

3
+

j′

2j′ ≤
ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof of Lemma 2.2.

Lemma 2.3. The set A is a subset of R (recall that R is defined in
Theorem 1.1).

Proof. Let x ∈ A. By Lemma 2.2, we deduce that (Π(k)(x;n))n has
property P for all k. We now want to show that x ∈ R, i.e. the set of
accumulation points of (Π(k)(x;n))n equals ∆N . It is clear that the set of
accumulation points of (Π(k)(x;n))n is a subset of ∆N . Hence, it suffices to
show that each p ∈ ∆N is an accumulation point of (Π(k)(x;n))n. Therefore,
let p ∈ ∆N . Fix l ∈ N and q ∈ D such that |p− q| ≤ 1/l.

We first observe that we can find nl > l such that

(2.2) |q −Π(k)(x;nl)| ≤ 1/l.

We now prove (2.2). Indeed, since x ∈ A, we conclude from Lemma 2.2 that
(Π(k)(x;n))n has property P. In particular, we can find j ∈ N with l ≤ j
and such that if j < n < ϕm(2j) then |Π(k)(x;n)− q| < 1/l. Hence if nl is
any integer with j < nl < ϕm(2j) then |Π(k)(x;nl)− q| < 1/l.

Hence, the sequence (nl)l satisfies nl and

(2.3) |p−Π(k)(x;nl)| ≤ |p− q|+ |Π(k)(x;nl)− q| ≤ 2/l.

Since nl > l, we can extract an increasing subsequence (nlu)u of (nl)l. It
now follows from (2.3) that Π(k)(x;nlu) → p. Hence p is an accumulation
point of (Π(k)(x;nlu))∞u=1. This completes the proof of Lemma 2.3.

Proof of Theorem 1.1. It follows from Lemma 2.3 that A ⊆ R. By
Lemma 2.1, A is residual in I. Since it is easily seen that [0, 1] \ I is a
countable union of nowhere dense sets, A is residual in [0, 1]. Hence, we
conclude that R is residual.
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Journées Ergodiques, Rennes, 1973/1974), Lecture Notes in Math. 532, Springer,
Berlin, 1976, 202–215.

[Vo] B. Volkmann, Gewinnmengen, Arch. Math. (Basel) 10 (1959), 235–240.

J. Hyde, L. Olsen, I. Petrykiewicz, A. Shaw
Department of Mathematics
University of St Andrews
St Andrews, Fife KY16 9SS, Scotland
E-mail: jth4@st-and.ac.uk

lo@st-and.ac.uk
ip46@st-and.ac.uk
afs8@st-and.ac.uk

V. Laschos
Department of Mathematics

University of Bath
Bath, BA2 7AY, England

E-mail: V.Laschos@bath.ac.uk

Received on 14.9.2009
and in revised form on 14.1.2010 (6148)

http://dx.doi.org/10.1016/j.bulsci.2004.12.004
http://dx.doi.org/10.1017/S0305004104007601
http://dx.doi.org/10.1112/S0024610702003630

	Statement of results
	Proof of Theorem 1.1

