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1. Introduction. Recently in a series of papers a new constructive ap-
proach has been developed to study pseudorandomness of binary sequences

(1) EN = {e1, . . . , eN} ∈ {−1,+1}N .
In particular, in [47] Mauduit and Sárközy first introduced the following
measures of pseudorandomness: the well-distribution measure of EN is de-
fined by

(2) W (EN ) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣
where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N ,
and the correlation measure of order k of EN is defined as

(3) Ck(EN ) = max
M,D

∣∣∣ M∑
n=1

en+d1 . . . en+dk

∣∣∣
where the maximum is taken over all D = (d1, . . . , dk) and M such that
0 ≤ d1 < · · · < dk ≤ N −M . The combined (well-distribution-correlation)
pseudorandom measure of order k was also introduced:

(4) Qk(EN ) = max
a,b,t,D

∣∣∣ t∑
j=0

ea+jb+d1 . . . ea+jb+dk

∣∣∣
where the maximum is taken over all a, b, t and D = (d1, . . . , dk) such that all
the subscripts a+jb+dl belong to {1, . . . , N}. Then the sequence EN is con-
sidered to be a “good” pseudorandom sequence if both W (EN ) and Ck(EN )
(at least for “small” k) are “small” in terms of N (in particular, both are
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o(N) as N →∞). Indeed, later Cassaigne, Mauduit and Sárközy [11] showed
that this terminology is justified since for almost all EN ∈ {−1,+1}N both
W (EN ) and Ck(EN ) are less than N1/2(logN)c. (See also [3].) It was also
shown in [47] that the Legendre symbol forms a “good” pseudorandom se-
quence. Later many further sequences were tested for pseudorandomness
[6]–[10], [16], [17], [19], [21], [41], [44], [45], [48], [49], [50], [60], [62], [63],
and further constructions were given for sequences with good pseudoran-
dom properties by using multiplicative characters [12]–[15], [20], [23], [26],
[29], [39], [55], [59], [61], [65], [66], [68], additive characters [18], [37], [38],
[43], [46], [52], [57], and both additive and multiplicative characters [42],
[58], [64].

In order to encrypt a 2-dimensional digital map or picture via the analog
of the Vernam cipher, instead of a pseudorandom binary sequence (as a key
stream) one needs the n-dimensional extension of the theory of pseudoran-
domness. Such a theory has been developed recently by Hubert, Mauduit
and Sárközy [31]. They introduced the following definitions:

Denote by InN the set of n-dimensional vectors whose coordinates are
integers between 0 and N − 1:

InN = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N -lattice or briefly an N -lattice. In [30]
this definition was extended to more general lattices in the following way:
Let u1, . . . ,un be n linearly independent vectors over the field of the real
numbers such that the ith coordinate of ui is a positive integer and the
other coordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0)
(with zi ∈ Z+). Let t1, . . . , tn be integers with 0 ≤ t1, . . . , tn < N . Then we
call the set

Bn
N = {x = x1u1 + · · ·+ xnun : 0 ≤ xi|ui| ≤ ti (< N) for i = 1, . . . , n}

an n-dimensional box N -lattice or briefly a box N -lattice.
In [31] the definition of binary sequences was extended to more dimen-

sions by considering functions of the type

η : InN → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) we will simply write
η(x) = η(x1, . . . , xn). Such a function can be visualized as the lattice points
of the N -lattice replaced by the two symbols + and −, thus they are called
binary N -lattices.

In [31] Hubert, Mauduit and Sárközy introduced the following measures
of pseudorandomness of binary lattices (here we present the definition in a
slightly modified but equivalent form as in [30]): Let η : InN → {−1,+1}.
Define the pseudorandom measure of order l of η by
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(5) Ql(η) = max
B,d1,...,dl

∣∣∣∑
x∈B

η(x + d1) · · · η(x + dl
∣∣∣,

where the maximum is taken over all distinct d1, . . . ,dl ∈ InN and all box
N -lattices B such that B + d1, . . . , B + dl ⊆ InN . Note that in the one-
dimensional special case, Q1(η) is the same as the well-distribution mea-
sure (2), and for every k ∈ N, Qk(η) is the combined measure (4).

Then η is said to have strong pseudorandom properties, or briefly, it is
considered as a “good” pseudorandom binary lattice, if for fixed n and l and
“large” N the measure Ql(η) is “small” (much smaller than the trivial upper
bound Nn). This terminology is justified by the fact that, as it was proved
in [31], for a truly random binary lattice defined on InN and for fixed l the
measure Ql(η) is “small”, or more precisely, it is less than Nn/2 multiplied
by a logarithmic factor. Constructions for binary lattices, resp. large families
of binary lattices with strong pseudorandom properties, were presented in
[27], [28], [31], [40], [53], [54], [56].

In the one-dimensional case further related notions were also introduced
and studied: the normality measure [47]; the symmetry measure [24]; the
properties of the measures of pseudorandomness and the connection between
them [1]–[5], [8], [22], [25], [51], [69]. (See [67] for a survey of the early work
in this field.) In this series of papers our goal is to introduce and study the n-
dimensional analogs of these notions. More precisely, we restrict ourselves to
the special case n = 2, since the case of general n could be handled similarly
but then the formulas would be much more lengthy and complicated. In
particular, in this Part I of the series we study the connection between the
measures Qk and Ql for k 6= l, and we will introduce and study the normality
measure.

2. Connection between the measures Qk and Ql. In [11] we wrote
“. . . one might like to know whether it suffices to study correlation of order,
say, 2, or correlations of higher order must be studied as well. This question
can be answered by analyzing the connection between Ck(EN ) and Cl(EN )
for k 6= l (. . . ).” Indeed, we proved in [11]:

Theorem A. For k, l,N ∈ N, k | l, EN ∈ {−1,+1}N we have

Ck(EN ) ≤ N
(

(l!)k/l

k!

(
Cl(EN )
N

)k/l
+
(
l2

N

)k/l)
.

It follows that if k, l ∈ N, k | l, N → ∞ and Cl(EN ) is “small”, more
exactly, Cl(EN ) = o(N), then Ck(EN ) is also small (= o(N)). We also
showed that here the condition k | l is necessary and, indeed, for fixed k and
for N → ∞ there is an EN ∈ {−1,+1}N such that Cl(EN ) is small when
k - l, while Ck(EN ) is large (� N):
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Theorem B. If k,N ∈ N and k ≤ N , then there is a sequence EN ∈
{−1,+1}N such that if l ∈ N, l ≤ N/2, then

Cl(EN ) >
N − l
k
− 54k2N1/2 logN if k | l

and
Cl(EN ) < 27k2lN1/2 logN if k - l.

In [22] and [51] we also analyzed the connection between the measures
W (EN ) (= Q1(EN )) and Ck(EN ), but we have never studied the connection
between Qk(EN ) and Ql(EN ).

Here we will first study the connection between Qk(η) and Ql(η) for two-
dimensional binary lattices η (but our results and proofs could be adapted
to the cases when the dimension is 1 or greater than 2).

Theorem 1. For k, l,N ∈ N, k < N , l < N , k | l and every binary
lattice η : I2

N → {−1,+1} we have

Qk(EN ) ≤ N2

((
l

N

)2k/l

+
4(l!)k/l

k!

(
Ql(η)
N2

)k/l)
.

It follows that if k | l, N → ∞ and Ql(η) = o(N2), then Qk(η) is also
o(N2).

Proof. By (5) it suffices to prove that for all distinct d1, . . . ,dk ∈ I2
N

and box N -lattices B with B + d1, . . . , B + dk ⊆ I2
N we have

(6)
∣∣∣∑
x∈B

η(x + d1) . . . η(x + dk)
∣∣∣ ≤ N2

((
l

N

)2k/l

+
4(l!)k/l

k!

(
Ql(η)
N2

)k/l)
.

Write l/k = t so that t ∈ N as k | l. Then clearly

(7)
(∑

x∈B
η(x + d1) . . . η(x + dk)

)t
=
(∑

x1∈B
η(x1 + d1) . . . η(x1 + dk)

)
. . .
(∑

xt∈B
η(xt + d1) . . . η(xt + dk)

)
=
∑
x1∈B

· · ·
∑
xt∈B

η(x1 + d1) . . . η(x1 + dk) . . . η(xt + d1) . . . η(xt + dk)

= S1 + S2,

where S1 denotes the contribution of those terms η(x1 + d1) . . . η(xt + dk)
where there are two equal vectors amongst the xi + du’s:

(8) xi + du = xj + dv
(with (i, u) 6= (j, v)), while in S2 all these vectors are distinct.

First we estimate S1. In (8), u and v can be chosen in at most k ways
each, i, j in t ways each, xj (for fixed j) in |B| (= number of lattice points
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in B) ≤ N2 ways, and u, v,xj determine xi uniquely. Each of the t − 2
remaining xh’s can be chosen in at most N2 ways, so that S1 has at most
k2t2N2(N2)t−2 = l2N2(t−1) terms and thus

(9) |S1| ≤ l2N2(t−1).

Now we estimate S2. We will use the lexicographical ordering of the
lattice points (x, y) ∈ N2 (i.e., the vectors z = (x, y)): we write (x, y) < (u, v)
if either x < u, or x = u and y < v. Then clearly we have (x, y) + (c, d) <
(u, v) + (c, d) if (x, y), (u, v), (c, d) ∈ N2 and (x, y) < (u, v).

We may assume that d1 < · · · < dk in terms of this ordering. Consider
each of the terms η(x1 + d1) . . . η(xt + dk) in S2, and rearrange the factors
η(xi + du) so that the vectors are increasing:

η(x1 + d1) . . . η(xt + dk) = η(w1) . . . η(wl), w1 < · · · < wl.

We t-colour these factors η(w1), . . . , η(wl): if the vector wu is of the form
wu = xj + dv, then we give η(wu) the jth colour. Then to each term
η(w1) . . . η(wl) we may assign the sequence of the colours following each
other in the order used to colour η(w1), . . . , η(wl). In this way we get colour
patterns of length l where each of the t colours occurs k times, so that the
number of these colour patterns is l!/(k!)t.

Now let us fix any of the colour patterns, and consider each of the terms
η(w1) . . . η(wl) with this fixed colour pattern. We define an equivalence re-
lation among these terms by

η(w1) . . . η(wl) ∼ η(v1) . . . η(vl) if v1 −w1 = · · · = vl −wl.

Clearly, this is indeed an equivalence relation. Fix a colour pattern and an
equivalence class, and collect all the terms from this class. Let

(10) η(a1) . . . η(al)

be any fixed term taken from this class. Then we have

(11) η(a1) < · · · < η(al),

and every term belonging to the class is of the form

(12) η(a1 + x) . . . η(al + x),

or equivalently,

(13) η(y)η(y + (a2 − a1)) . . . η(y + (al − a1)).

Now we will determine all vectors x,y ∈ N2 for which the product in (12),
resp. (13), appears in the sum S2 in (7). First, observe that it follows from
(11) that

η(a1 + x) < · · · < η(al + x),

so that if the product (12) appears in (7), then it certainly belongs to S2.
So the question is: when does the product (12), resp. (13), appear in (7)?
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For j = 1, . . . , t, let η(aij ) denote the factor in (10) in which the jth colour
first appears; then clearly aij is of the form

aij = zj + d1 with some zj ∈ B (for j = 1, . . . , t);

in particular,

a1 = air = zr + d1 for some r ∈ {1, . . . , t}.
Then the ijth factor in (13) is

η(y + (aij − a1)) = η(y + (zj − zr)).

Since this is of the same colour as η(aij ), we see that y + (zj − zr) must be
of the form

y + (zj − zr) = xj + d1 with the xj ∈ B in (7),

whence

y = xj + d1 + zr − zj ∈ B + d1 + zr − zj for j = 1, . . . , t;

in particular, for j = r we have

y ∈ B + d1.

It follows that we must have

(14) y ∈ (B + d1) ∩
⋂

1≤j≤t
j 6=r

(B + dr + zr − zj).

On the other hand, reversing this argument it can be shown that if y satisfies
(14), then the product in (13) belongs to the given equivalence class.

On the right hand side of (14) we have t translates of the same box B;
let B = {(au, bv) : 0 ≤ u ≤ U, 0 ≤ v ≤ V }. Then it is easy to see by
induction on t that the intersection of t translates is also a translate of a
similar box B′ = {(au, bv) : 0 ≤ u ≤ U ′, 0 ≤ v ≤ V ′} (with U ′, V ′ in place
of U, V ); denote this translate by B′ + d′. Then the sum of the terms (13)
belonging to the given equivalence class is∑

y∈B′+d′

η(y)η(y + (a2 − a1)) . . . η(y + (al − a1))

=
∑
x∈B′

η(x + d′)η(x + d′ + a2 − a1) . . . η(x + d′ + al − a1).

By the definition of Ql, it follows that for any fixed equivalence class the
absolute value of this sum is∣∣∣ ∑

y∈B+d′

η(y)η(y + (a2 − a1)) . . . η(y + (al − a1))
∣∣∣ ≤ Ql(η).

It remains to estimate the number of equivalence classes. An equivalence
class is uniquely determined by the colour pattern, which can be chosen in
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l!/(k!)t ways, and by the box B′ formed by the vectors y in (14). This box
is uniquely determined by the t − 1 vectors zr − zj with j 6= t (r is fixed).
Each of these vectors is of the form (u, v) with −(N − 1) ≤ u, v ≤ N − 1,
thus each of them can be chosen in less than (2N)2 ways, so that B′ can be
chosen in less than (2N)2(t−1) ways. We may conclude that

(15) |S2| ≤
l!

(k!)t
(2N)2(t−1)Ql(η).

It follows from (7), (9) and (15) that∣∣∣∑
x∈B

η(x + d1) . . . η(x + dk)
∣∣∣ = (S1 + S2)1/t ≤ |S1|1/t + |S2|1/t

≤ l2/tN2N−2/t +
(l!)1/t

k!
22N2N−2/tQl(η)1/t

= N2

((
l

N

)2k/l

+
4(l!)k/l

k!

(
Ql(η)
N

)k/l)
,

which proves (6) and completes the proof of Theorem 1.
Now we will show that the condition k | l is necessary in Theorem 1:

Theorem 2. If k,N ∈ N and k ≤ N , then there is a binary N -lattice η
such that if l ∈ N, l ≤ N/2, then

(16) Ql(η) ≥ N(N − l)
k

if k | l

and

(17) Ql(η)� k2lN(logN)2 if k - l.

Proof. Let p denote the smallest prime with p > N so that, by Cheby-
shev’s theorem,

N < p ≤ 2N

(whence N − 1 ≤ p− 2).
Write q = p2, and denote by γ the quadratic character of Fq. Let v1,v2

be a basis of the vector space Fq over Fp.
Define η : I2

N → {−1,+1} by

η(x1, x2) =


γ((x1 + 1)v1 + (x2 + 1)v2) for x1 6≡ k − 1 (mod k),
k−1∏
j=1

γ((x1 + j − 1)v1 + (x2 + 1)v2) for x1 ≡ k − 1 (mod k).

Since 0 ≤ x1, x2 ≤ p − 2, we see that η is always +1 or −1. First we prove
(16). Define the 2-dimensional box N -lattice B by

B = {(x1, x2) : 0 ≤ x1 < N − l, x1 ≡ 0 (mod k), 0 ≤ x2 < N}.
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Define the vectors d1, . . . ,dl by

di = (i− 1, 0).

Then by the definition of the pseudorandom measure of order l we have

Ql(η) ≥
∑
x∈B

η(x + d1) . . . η(x + dl)

=
N−1∑
x2=0

∑
0≤x1<N−l
x1≡0 (mod k)

η(x1, x2)η(x1 + 1, x2) . . . η(x1 + l − 1, x2).

Since now k | l, we have

η(x1, x2)η(x1 + 1, x2) . . . η(x1 + l − 1, x2)

=
l/k−1∏
i=0

η(x1 + ik, x2)η(x1 + ik + 1, x2) . . . η(x1 + ik + k − 1, x2).

By the definition of η, for x1 ≡ 0 (mod k) we have

η(x1 + ik, x2)η(x1 + ik + 1, x2) . . . η(x1 + ik + k − 1, x2) = 1.

It follows that

Ql(η) ≥
N−1∑
x2=0

∑
0≤x1<N−l
x1≡0 (mod k)

1 ≥ N(N − l)
k

.

Next we prove (17). Let B1 be a box lattice of the form

B1 = {(x1z1, x2z2) : 0≤ x1z1 ≤ t1 (< N), 0≤ x2z2 ≤ t2 (< N), x1, x2 ∈ N},

and let d1, . . . ,dl ∈ I2
N be distinct vectors such that B+d1, . . . , B+dl ⊆ I2

N .
Let

S =
∑
x∈B1

η(x + d1) . . . η(x + dl).

We will prove that

(18) |S| � k2lN(logN)2

from which (17) follows. Write

di = (d(i)
1 , d

(i)
2 ).

Then

S =
t1/z1∑
x1=0

t2/z2∑
x2=0

l∏
i=1

η(x1z1 + d
(i)
1 , x2z2 + d

(i)
2 ).
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Define

(19) S(r) =
∑

0≤x1≤t1/z1
x1≡r (mod k)

t2/z2∑
x2=0

l∏
i=1

η(x1z1 + d
(i)
1 , x2z2 + d

(i)
2 ).

Then

(20) S =
k−1∑
r=0

S(r).

Next we will prove that

(21) |S(r)| � klN(logN)2.

Then (18) follows from (20) and (21). In (19) we substitute x1 = y1k+ r, so
that

S(r) =
∑

0≤y1≤(t1/z1−r)/k

t2/z2∑
x2=0

l∏
i=1

η((y1k + r)z1 + d
(i)
1 , x2z2 + d

(i)
2 )(22)

=
∑

0≤y1≤(t1/z1−r)/k

t2/z2∑
x2=0

l∏
i=1

η((y1kz1, x2z2) + (rz1 + d
(i)
1 , d

(i)
2 )).

Since B + di ⊆ I2
N , for 0 ≤ y1 ≤ (t1/z1 − r)/k we have

0 ≤ (y1k + r)z1 + d
(i)
1 ≤ N − 1 ≤ p− 2.

For y1 = 0 we get
1 ≤ rz1 + d

(i)
1 + 1 ≤ p− 1.

If also rz1 + d
(i)
1 ≡ k − 1 (mod k), then for 1 ≤ j ≤ k − 1 we have

(23) 1 ≤ rz1 + d
(i)
1 + 1− j ≤ p− 2.

We will use (23) later in the proof.
By the definition of η we have

η((y1kz1, x2z2) + (rz1 + d
(i)
1 , d

(i)
2 ))

= γ(y1kz1v1 + x2z2v2 + (rz1 + d
(i)
1 + 1)v1 + (d(i)

2 + 1)v2)

for rz1 + d
(i)
1 6≡ k − 1 (mod k), and

η((y1kz1, x2z2) + (rz1 + d
(i)
1 , d

(i)
2 ))

=
k−1∏
j=1

γ(y1kz1v1 + x2z2v2 + (rz1 + d
(i)
1 + 1− j)v1 + (d(i)

2 + 1)v2)

for rz1 + d
(i)
1 ≡ k − 1 (mod k).
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Let A and B be the following multisets:

A = {(rz1 + d
(i)
1 + 1)v1 + (d(i)

2 + 1)v2 : 1 ≤ i ≤ l,

rz1 + d
(i)
1 6≡ k − 1 (mod k)},

B = {(rz1 + d
(i)
1 + 1− j)v1 + (d(i)

2 + 1)v2 : 1 ≤ i ≤ l, 1 ≤ j ≤ k − 1,

rz1 + d
(i)
1 ≡ k − 1 (mod k)}.

Here |A| = n and |B| = (k − 1)m for some n,m ∈ N with

(24) n+m = l.

Let

B2 = {y1(kz1v1) + x2(z2v2) : 0 ≤ y1 ≤ (t1/z1 − r)/k, 0 ≤ x2 ≤ t2/z2}.

Then by (22),

S(r) =
∑
z∈B2

∏
α∈A∪B

γ(z + α).

Using the multiplicativity of the quadratic character γ, we have

S(r) =
∑
z∈B2

γ
( ∏
α∈A∪B

(z + α)
)
.

Now we will use the following lemma:

Lemma 1. Let p be an odd prime, n ∈ N, q = pn and v1, . . . , vn be a
basis of Fq over Fp. Let χ be a multiplicative character of Fq of order d > 1
and let f(x) ∈ Fq[x] not of the form cg(x)d for c ∈ Fq, g(x) ∈ Fq[x]. Suppose
that f(x) has s distinct zeros in its splitting field over Fq, and k1, . . . , kn are
positive integers with k1 ≤ p, . . . , kn ≤ p. Then writing B = {

∑n
i=1 jivi : 0 ≤

ji < ki}, we have ∣∣∣∑
z∈B

χ(f(z))
∣∣∣ < sq1/2(1 + log p)n.

This is part of Theorem 2 in [71] (where its proof was based on A. Weil’s
theorem [70]).

Let f(x) =
∏
α∈A∪B(x + α). Then

(25) S(r) =
∑
z∈B2

γ(f(z)).

Here we may use Lemma 1, since v1,v2 is a basis of Fq over Fp, thus
kz1v1, z2v2 is also such a basis. Thus the box B2 is of the same type as
B in Lemma 1. If we prove that f(x) =

∏
α∈A∪B(x + α) ∈ Fq[x] is not of

the form cg(x)d with c ∈ Fq, g(x) ∈ Fq[x], then by Lemma 1, (24) and (25)
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we have

|S(r)| ≤ (|A|+ |B|)q1/2(1 + log p)2 ≤ (|A|+ |B|)2N(1 + log(2N))2

≤ (k − 1)(n+m)2N(1 + log(2N))2 � klN(logN)2,

so that (21) holds. Since d1, . . . ,dl are distinct, the elements of A are dis-
tinct. Similarly, the elements of B are also distinct: suppose that B has two
identical elements, i.e., for (i1, j1) 6= (i2, j2), 1 ≤ i1, i2 ≤ l and 1 ≤ j1, j2 ≤
k − 1 we have

(rz1 +d
(i1)
1 +1−j1)v1 +(d(i1)

2 +1)v2 = (rz1 +d
(i2)
1 +1−j2)v1 +(d(i2)

2 +1)v2.

Then

rz1 + d
(i1)
1 + 1− j1 ≡ rz1 + d

(i2)
1 + 1− j2 (mod p),

d
(i1)
2 ≡ d(i2)

2 (mod p).

Since 0 ≤ d(i1)
2 , d

(i2)
2 < N < p and by (23),

1 ≤ rz1 + d
(i1)
1 + 1− j1, rz1 + d

(i2)
1 + 1− j2 ≤ p,

we also have

rz1 + d
(i1)
1 + 1− j1 = rz1 + d

(i2)
1 + 1− j2,(26)

d
(i1)
2 = d

(i2)
2 .(27)

Since (rz1+d(i1)
1 +1−j1)v1+(d(i1)

2 +1)v2, (rz1+d(i2)
1 +1−j2)v1+(d(i2)

2 +1)v2

∈ B, it follows from (26) that

j2− j1 = (rz1 + d
(i1)
1 + 1)− (rz1 + d

(i2)
1 + 1) ≡ (k− 1)− (k− 1) ≡ 0 (mod k).

But 1 ≤ j1, j2 ≤ k − 1, thus

(28) j1 = j2.

From this and (26) we get

(29) d
(i1)
1 = d

(i2)
1 .

It follows from (27) and (29) that

di1 = di2 .

But then (28) yields (i1, j1) = (i2, j2), which is a contradiction.
Since A and B contain different elements,

∏
α∈A∪B(x+ α) is a constant

multiple of the perfect square of a polynomial if and only if A = B. Then
|A| = |B|, i.e., n = (k − 1)m, thus by (24),

l = n+m = km.

But in (17) we assumed that k - l. This contradiction proves that f(x) is
not of the form cg(x)2 with c ∈ Fq, g(x) ∈ Fq[x]. Thus (21) indeed holds.
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By (20) and (21),
S � k2lN(logN)2,

which was to be proved.

3. The normality measure. In one dimension consider the binary
sequence (1), and for k ∈ N, M ∈ N and X = {x1, . . . , xk} ∈ {−1,+1}k let

(30) T (EN ,M,X) = |{n : 0 ≤ n < M, {en+1, en+2, . . . , en+k} = X}|.

Definition 1 ([47]). The normality measure of order k of EN is defined
as

Nk(EN ) = max
X∈{−1,+1}k

max
0<M≤N+1−k

∣∣∣∣T (EN ,M,X)− M

2k

∣∣∣∣.
Definition 2 ([47]). The normality measure of EN is defined as

N(EN ) = max
k≤(logN)/log 2

Nk(EN ).

It was proved in [47] that

Theorem C. For all N , EN and k < N we have

Nk(EN ) ≤ max
1≤t≤k

Ct(EN ).

Thus the estimate of the normality measure of order k can be reduced
to the estimate of the correlation of order ≤ k.

Now we will introduce the analogous notations in two dimensions. For
k, l ∈ N let M(k, l) denote the set of k × l matrices A = (aij) with aij ∈
{−1,+1} for 1 ≤ i ≤ k, 1 ≤ j ≤ l, let η(x, y) : I2

N → {−1,+1} be a binary
lattice, and for X = (xij) ∈M(k, l) let

(31) Z(η, U, V,X) = |{(m,n) : 0 ≤ m < U, 0 ≤ n < V,

η(m− 1 + i, n− 1 + j) = xij for 1 ≤ i ≤ k, 1 ≤ j ≤ l}|.

Definition 3. The normality measure of order (k, l) of η is defined as

N(k,l)(η) = max
X∈M(k,l)

max
0<U≤N+1−k
0<V≤N+1−l

∣∣∣∣Z(η, U, V,X)− UV

2kl

∣∣∣∣.
(This definition can easily be generalized to d dimensions; then, of course,

we have to replace the matrices X ∈M(k, l) by mappings X : {1, . . . , k1}×
· · · × {1, . . . , k1} → {−1,+1}.)

Definition 4. The normality measure of η is defined as

N(η) = max
kl≤(2 logN)/log 2

N(k,l)(η).

We will prove the following 2-dimensional analog of Theorem C:
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Theorem 3. For N, k, l ∈ N with k, l < N and every binary lattice
η : I2

N → {−1,+1} we have

(32) N(k,l)(η) ≤ max
1≤t≤kl

Qt(η).

Proof. Writing N(k, l) = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ l} for X = (xij) ∈
M(k, l), 0 < U ≤ N + 1− k and 0 < V ≤ N + 1− l we have∣∣∣∣Z(η, U, V,X)− UV

2kl

∣∣∣∣
=
∣∣∣∣|{(m,n) : 0 ≤ m < U, 0 ≤ n < V, η(m− 1 + i, n− 1 + j) = xij

for 1 ≤ i ≤ k, 1 ≤ j ≤ l}| − UV

2kl

∣∣∣∣
=
∣∣∣∣ ∑
0≤m<U

∑
0≤n<V

1
2kl

k∏
i=1

l∏
j=1

xij(η(m− 1 + i, n− 1 + j) + xij)−
UV

2kl

∣∣∣∣
=
∣∣∣∣ 1
2kl

k∏
i=1

l∏
j=1

xij

kl∑
t=1

∑
(i1,j1),...,(it,jt)⊆N(k,l)

∏
(i,j)∈N(k,l)\{(i1,j1),...,(it,jt)}∑

0≤m<U

∑
0≤n<V

t∏
r=1

η(m− 1 + ir, n− 1 + jr)
∣∣∣∣,

whence writing dr = (ir, jr) and d′r = (ir − 1, jr − 1) for r = 1, . . . , t and
B = {(m,n) : 0 ≤ m < U, 0 ≤ n < V } we obtain∣∣∣∣Z(η, U, V,X)− UV

2kl

∣∣∣∣ ≤ 1
2kl

kl∑
t=1

∑
{d1,...,dt}⊆N(k,l)

∣∣∣∑
y∈B

η(y + d′1) . . . (y + d′t)
∣∣∣

≤ 1
2kl

kl∑
t=1

∑
{d1,...,dt}⊆N(k,l)

Qt(η) =
1

2kl

kl∑
t=1

(
kl

t

)
Qt(η)

≤ max
t≤kl

Qt(η),

which proves (32).

In [28], [30], [31], [40], [53], [54], 2-dimensional binary N -lattices were
constructed for which for every fixed t and N → ∞ the measure Qt(η)
is “small”. It follows from Theorem 3 that in all these cases for fixed k, l
and N → ∞ the normality measure N(k,l)(η) is also small. In particular,
in this way we deduce that the binary p-lattice constructed in [31] in the
2-dimensional case satisfies

N(k,l)(η) < klp(1 + log p)2.
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In [31] it was also shown that for a truly random n-dimensional binary
N -lattice η, Qk(η) is “small” with probability > 1 − ε. More precisely, in
the special case when the dimension is n = 2 this result gives that for
N > N0(k, ε) the inequality

Qk(η) ≤ 3(2k)1/2N logN

holds with probability > 1 − ε. By Theorem 3 this implies that if N >
N1(k, l, ε), then for a truly random 2-dimensional binary N -lattice η,

N(k,l)(η) ≤ 3(kl)1/2N logN

holds with probability > 1− ε.
Note that in [32]–[36] Levin and Smorodinsky also constructed and stud-

ied a 2-dimensional binary lattice of “small” normality. (They define “square
normality” and “rectangle normality” and they estimate these measures of
the lattice constructed by them.)

Now we will show that if k ≤ r, l ≤ s, and r, s are “small” then Nk,l

cannot be much greater than Nr,s:

Theorem 4. For N, k, l, r, s ∈ N with k ≤ r ≤ N and l ≤ s ≤ N and
every binary lattice η : I2

N → {−1,+1} we have

(33) Nk,l(η) ≤ 2((r − k) + (s− l))N +Nr,s(η)2rs−kl.

Proof. If A = (aij) (1 ≤ i ≤ r, 1 ≤ j ≤ s) is an r × s matrix and k ≤ r,
l ≤ s, then let A(k, l) denote the “truncated” k × l matrix (aij) with i ≤ k,
j ≤ l. Moreover, if η : I2

N → {−1,+1}, k, l ∈ N, m+ k ≤ N and n+ l ≤ N ,
then let D(k, l,m, n, η) = (dij) denote the k × l matrix defined by

dij = η(m+ i− 1, n+ j − 1) for 1 ≤ i ≤ k, 1 ≤ j ≤ l.
Then a pair (m,n) with 0 ≤ m < U ≤ N + 1− r, 0 ≤ n < V ≤ N + 1− s is
counted in the definition of Z(η, U, V,X) in (31) (with multiplicity 1) if and
only if D(k, l,m, n, η) = X. Then writing D(r, s,m, n, η) = Y (∈ M(r, s)),
we clearly have X = Y (k, l). Thus for U ≤ N + 1− r, V ≤ N + 1− s we get

(34) Z(η, U, V,X)

= |{(m,n) : 0 ≤ m < U, 0 ≤ n < V, D(k, l,m, n, η) = X}|

=
∑

Y ∈M(r,s)
Y (k,l)=X

|{(m,n) : 0 ≤ m < U, 0 ≤ n < V, D(k, l,m, n, η) = Y }|

=
∑

Y ∈M(r,s)
Y (k,l)=X

Z(η, U, V, Y ) =
∑

Y ∈M(r,s)
Y (k,l)=X

(
Z(η, U, V, Y )− UV

2kl

)
+
UV

2rs
∑

Y ∈M(r,s)
Y (k,l)=X

1.

If Y = (yij) ∈ M(r, s) and Y (k, l) = X = (xij) so that yij = xij for
1 ≤ i ≤ k, 1 ≤ j ≤ l, then the number of the remaining entries yij of Y with
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k < i ≤ r and/or l < j ≤ s is rs − kl, and each of them is in {−1,+1} so
that it can be chosen in two ways. It follows that Y in the last sum can be
chosen in 2rs−kl ways. Hence the last term in (34) is

UV

2rs
2rs−kl =

UV

2kl
.

Thus from (34) we get

(35)
∣∣∣∣Z(η, U, V,X)− UV

2kl

∣∣∣∣
≤

∑
Y ∈M(r,s)
Y (k,l)=X

∣∣∣∣Z(η, U, V,X)− UV

2rs

∣∣∣∣ ≤ N(r,s)(η)
∑

Y ∈M(r,s)
Y (k,l)=X

1

= N(r,s)(η)2rs−kl for U ≤ N + 1− r, V ≤ N + 1− s.

Finally, if N + 1− r < U ≤ N + 1−k and/or N + 1− s < V ≤ N + 1− l,
then using (35) with U ′ = min{U,N + 1 − r}, V ′ = min{V,N + 1 − s} in
place of U and V , respectively, we obtain∣∣∣∣Z(η, U, V,X)− UV

2kl

∣∣∣∣
≤ |Z(η, U, V,X)− Z(η, U ′, V ′, X)|

+
∣∣∣∣Z(η, U ′, V ′, Y )− U ′V ′

2kl

∣∣∣∣+
1

2kl
|U ′V ′ − UV |

≤
∣∣|{(m,n) : 0 ≤ m < U, 0 ≤ n < V, D(k, l,m, n, η) = X}|
− |{(m,n) : 0 ≤ m < U ′, 0 ≤ n < V ′, D(k, l,m, n, η) = X}|

∣∣
+N(r,s)(η)2rs−kl +

1
2kl

(|U(V − V ′)|+ |V ′(U − U ′)|)

≤ |{(m,n) : U ′ ≤ m < U, D(k, l,m, n, η) = X}|
+ |{(m,n) : V ′ ≤ n < V, D(k, l,m, n, η) = X}|

+N(r,s)(η)2rs−kl +
1

2kl
((V − V ′)N + (U − U ′)N)

≤ (U − U ′)N + (V − V ′)N +N(r,s)(η)2rs−kl

+
1

2kl
((V − V ′)N + (U − U ′)N)

≤ 2((r − k) + (s− l))N +N(r,s)(η)2rs−kl,

whence (33) follows and this completes the proof of Theorem 4.
A consequence of Theorem 4 is that if k ≤ r, l ≤ s, and k, l, r, s are all

O(1), then

(36) N(k,l)(η) = O(N(r,s)(η) +N).
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Another consequence is that for k, l = O(1), k ≥ l the estimate of
N(k,l)(η) can be reduced to the estimate of N(k,k). Thus for “small” k, l,
it suffices to estimate the normality measures N(k,k)(η).

If k ≤ r, l ≤ s, each of k, l, r, s is O(1), and N(r,s)(η) is “small”, then by
(36), Nk,l(η) is also small. One may ask whether the converse is also true:
under the same assumptions on k, l, r, s, if Nk,l(η) is small, is then N(r,s)(η)
also small?

One may ask another related question: As in [27], to any lattice η :
I2
N → {−1,+1} we may assign the binary sequences E(1)

N , . . . , E
(N)
N formed

by the row vectors of the matrix (η(i, j)) (with 0 ≤ i, j < N) so that
E

(i)
N = {e(i)1 , . . . , e

(i)
N } is defined by e

(i)
j = η(i − 1, j − 1) for i, j = 1, . . . , N .

Is it true that if Nk(E
(i)
N ) is “small” for all i for small k, then Nk,l(η) is also

small for small k and l?
The answer to both questions is negative, as the following example shows.

Example 1. Let the first row E
(1)
N = {e(1)

1 , . . . , e
(1)
N } of the matrix

(η(i, j)) be a binary sequence such that Nk(E
(1)
N ) is small for every small k;

e.g., let N = p − 1 (p prime) and e
(1)
i =

(
i
p

)
(Legendre symbol) for i =

1, . . . , N , and let E(j)
N = E

(1)
N for j = 1, . . . , N . Then it follows from [47]

that Nk(E
(i)
N ) is small for all i for small k, but N(k,l)(η) is large for small k

and l if k ≥ 2.
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Eötvös Sect. Math. 48 (2005), 173–180.

[6] I. Berkes, W. Philipp and R. F. Tichy, Pseudorandom numbers and entropy condi-
tions, J. Complexity 23 (2007), 516–527.

http://dx.doi.org/10.1016/j.dam.2006.11.021
http://dx.doi.org/10.1017/S0963548305007170
http://dx.doi.org/10.1112/plms/pdm027
http://dx.doi.org/10.1016/j.disc.2007.11.043
http://dx.doi.org/10.1016/j.jco.2006.12.002


Measures of pseudorandomness of lattices, I 311

[7] I. Berkes, W. Philipp and R. F. Tichy, Entropy conditions for subsequences of ran-
dom variables with applications to empirical processes, Monatsh. Math. 153 (2008),
183–204.

[8] N. Brandstätter and A. Winterhof, Linear complexity profile of binary sequences
with small correlation measure, Period. Math. Hungar. 52 (2006), no. 2, 1–8.

[9] J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sárközy, On finite pseu-
dorandom binary sequences. III. The Liouville function, I, Acta Arith. 87 (1999),
367–390.

[10] —, —, —, —, —, On finite pseudorandom binary sequences. IV. The Liouville
function, II, ibid. 95 (2000), 343–359.
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