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1. Introduction. Let k be an even positive integer and Sk(Γ (1)) be
the space of all holomorphic cusp forms of weight k with respect to the
full modular group. It is known that Sk(Γ (1)) has a basis Bk consisting of
normalized cusp forms f which are simultaneously eigenforms for all Hecke
operators Tn. To be specific, Tnf = λf (n)n(k−1)/2f , and f has the Fourier
series

f(z) =
∞

∑

n=1

λf (n)n(k−1)/2e(nz)

where e(α) = e2πiα. Note that λf (1) = 1 and each λf (n) is real.
Let χ (modD) be a primitive Dirichlet character. Associated with each f ,

the twisted L-function is defined as

L(f ⊗ χ, s) =
∞

∑

n=1

χ(n)λf (n)

ns
(Re s > 1).(1.1)

This L-function has the usual properties of classical L-functions. Define

Λ(f ⊗ χ, s) =

(

D

2π

)s

Γ

(

s+
k − 1

2

)

L(f ⊗ χ, s).(1.2)

We know from [Iw, Theorem 7.6] that Λ(f ⊗ χ, s) can be holomorphically
continued to the whole of C, bounded on any vertical strip, and satisfies the
functional equation

Λ(f ⊗ χ, s) = εk(χ)Λ(f ⊗ χ, 1 − s)(1.3)

where the root factor εk(χ) equals ikτ(χ)2/D. (τ(χ) is the Gaussian sum.)
The central values L(f ⊗ χ, 1/2) are of particular importance and inter-

est; indeed, the non-vanishing nature of these values is linked to different
arithmetic problems (see [IS]). An interesting result about the central value
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is the non-negativity of L(f ⊗ χ, 1/2) for any real character χ. To get non-
vanishing results, we investigate the first and the second moments (with
mollifiers). By using (1.3) it is not hard to derive the following formula for
the first moment for large k:

∑

f∈Bk

wfL(f ⊗ χ, 1/2) = 1 + εk(χ) +O(k−1),(1.4)

where

wf =
Γ (k − 1)

(4π)k−1‖f‖2
≪ log k

k
(1.5)

by [HL] or [KS, (4)]. (The O-constant is independent of k and χ (modD).)
In addition, for a quadratic character χ (modD), Kohnen and Sengupta
[KS] proved that for any ε > 0,

∑

f∈Bk

L(f ⊗ χ, 1/2) ≪D k1+ε as k → ∞.

In particular, assuming the Lindelöf hypothesis L(f ⊗ χ, 1/2) ≪D kε0 , they
showed that

#{f ∈ Bk : L(f ⊗ χ, 1/2) 6= 0} ≫D
k1−ε0

log k
as k → ∞.(1.6)

Aiming at the problem of non-existence of Landau–Siegel zeros, Iwaniec
and Sarnak [IS] investigated the moments (averaging over k)

AK [Xf ] =
∑

k even

h(k/K)

|Bk|
∑

f∈Bk

wfXf

where Xf = L(f ⊗ χ, 1/2) or L(f ⊗ χ, 1/2)2 (χ is real), and h ∈ C∞
0 (R+) is

a test function. The role of h is to localize the weight k within an interval of
length of order K. They got asymptotic results [IS, Theorem 1] as K → ∞:
let H =

T∞
0 h(t) dt and D be the modulus of the real character χ; then

AK [L(f ⊗ χ, 1/2)] ∼ HK and AK [L(f ⊗ χ, 1/2)2] ∼ φ(D)

D
2HK logDK

where the asymptotics are uniform for D ≤ Kδ for some positive constant δ.
(But this was not sufficient for their purpose and they considered mollified
moments.)

In this paper, we establish an asymptotic formula for the second moment
of L(f⊗χ, 1/2) for all large even k for both real and complex primitive char-
acters. As a consequence, we prove unconditionally the better lower bound
k/(log k)2 in (1.6). Moreover, our result here can be viewed as a supplement
to giving an asymptotic formula for individual (large) k. Without the extra
smoothing process over k, we cannot make use of the tool in [Sa, Section 3]
or [Iw, Section 5.5].
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Theorem 1. Let k ≥ k0 be any sufficiently large even integer. Suppose

that χ is a primitive Dirichlet character of conductor D, where 1 ≤ D ≤
k/(16 log k).

(a) If D = 1 (i.e. χ is the trivial character) and k ≡ 0 (mod4), then

∑

f∈Bk

wfL(f, 1/2)2 = 4

(

Γ ′(k/2)

Γ (k/2)
+ γ − log 2π

)

+OA(k−A),

where A ≥ 1 is arbitrary , and the O-constant depends on A.

(b) If χ is real , then
∑

f∈Bk

wfL(f ⊗ χ, 1/2)2

= 2(1 + ikχ(−1))
φ(D)

D

(

log
k

2
+ γ + log

D

2π
+

∑

p|D

log p

p− 1

)

+O(D3k−1/2(log k)4).

(c) If χ is complex , then
∑

f∈Bk

wfL(f ⊗ χ, 1/2)2

= 2εk(χ)
φ(D)

D

(

log
k

2
+ γ + log

D

2π
+

∑

p|D

log p

p− 1

)

+ (L(1, χ2) + εk(χ)2L(1, χ2)) +O(D3k−1/2(log k)4).

The O-constants are independent of D.

Theorem 2. Suppose that χ1 and χ2 are primitive Dirichlet characters

of conductors D1 and D2 respectively , and 1 ≤ D1D2 ≤ k/(16 log k). If

χ1 6= χ2 and χ1 6= χ2, then
∑

f∈Bk

wfL(f ⊗ χ1, 1/2)L(f ⊗ χ2, 1/2)

= L(1, χ1χ2) + εk(χ1)εk(χ2)L(1, χ1χ2)

+ εk(χ1)L(1, χ1χ2) + εk(χ2)L(1, χ1χ2) +O((D1D2)
3/2k−1/2(log k)4).

Here L(s, ψ) denotes the Dirichlet L-function for the character ψ.

Remark 1. For the trivial character χ and k ≡ 2 (mod4), the central
value L(f, 1/2) is zero by the functional equation (1.3).

Remark 2. A character is said to be complex when it is not a real
character.
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Remark 3. The error terms in the last three asymptotic formulas be-
come prominent when D1D2 ≫ k1/3/(log k)2. (D1 = D2 = D in (b) and (c)
of Theorem 1.)

Remark 4. Let RT be the positively oriented rectangular contour with
vertices at ±2 ± iT . Taking T → ∞ and using (1.3), we have

(1.7) Λ(f ⊗ χ, 1/2)

=
1

2πi

\
RT

Λ(f ⊗ χ, 1/2 + w)
dw

w

=
1

2πi

\
(2)

Λ(f ⊗ χ, 1/2 + w)
dw

w

− εk(χ)

2πi

\
(−2)

Λ(f ⊗ χ, 1/2 − w)
dw

w

=
1

2πi

\
(2)

(Λ(f ⊗ χ, 1/2 + w) + εk(χ)Λ(f ⊗ χ, 1/2 + w))
dw

w
.

It is apparent that Λ(f ⊗ χ, s) = Λ(f ⊗ χ, s) for Re s > 1. Hence

Λ(f ⊗ χ, 1/2) = Λ(f ⊗ χ, 1/2).

Using (1.3), we see that

εk(χ)Λ(f ⊗ χ, 1/2)2 = |Λ(f ⊗ χ, 1/2)|2,
or equivalently, εk(χ)L(f⊗χ, 1/2)2 = |L(f⊗χ, 1/2)|2. Thus, for complex χ,
Theorem 1(c) is equivalent to

(1.8)
∑

f∈Bk

wf |L(f ⊗ χ, 1/2)|2

= 2
φ(D)

D

(

log
k

2
+ γ + log

D

2π
+

∑

p|D

log p

p− 1

)

+ 2Re(εk(χ)L(1, χ2)) +O(D3k−1/2(log k)4),

since, for even k, εk(χ)εk(χ) = |εk(χ)|2 = 1.

Remark 5. Our proof is based on the Petersson trace formula, which
is different from [KS]. The approach using this trace formula and investi-
gating the contributions from the so-called diagonal and off-diagonal terms
is explored in various articles, for example, [Du], [IS], [MV] and [Sa]. (Note
that these papers do not deal with the situation of large individual weight.)

Finally, we give a direct application of Theorem 1 to the non-vanishing
of L(f ⊗ χ, 1/2).
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Corollary 3. Let k be any sufficiently large even integer. Suppose that

either

(i) χ is a real primitive character mod D where 1 ≤ D ≤ k1/6/(log k)5,

or

(ii) χ is a complex primitive character mod D with logD ≤ c0
log k

log log k for

some suitable positive constant c0.

Then

#{f ∈ Bk : L(f ⊗ χ, 1/2) 6= 0} ≫ |1 + εk(χ)|2 D

φ(D)

k

(log k)2

where the implied constant is independent of D but depends on c0 in case (ii).
(As εk(χ) = ikχ(−1) for real χ, both sides will equal zero if ikχ(−1) = −1.)

Proof. In view of Theorem 1(b) and (1.8) (for real and complex char-
acters respectively), by using the bound L(1, χ2) ≪ logD (as χ2 is non-
principal) for case (ii), we obtain

∑

f∈Bk

wf |L(f ⊗ χ, 1/2)|2 ≪ φ(D)

D
log k

for D in the specified ranges. By the Cauchy–Schwarz inequality and (1.4),

|1 + εk(χ)|2 ≪
∣

∣

∣

∑

f∈Bk

wfL(f ⊗ χ, 1/2)
∣

∣

∣

2

≪
∑

f∈Bk

wf |L(f ⊗ χ, 1/2)|2
∑

f∈Bk

L(f⊗χ,1/2) 6=0

log k

k

by (1.5). The result follows.

2. Some preparations. The idea of our proof is to express the central
value of L(f ⊗ χ1, s)L(f ⊗ χ2, s) in terms of infinite sums via an integral
analogous to (1.7). For Re s > 1, we deduce from (1.1) and the relation
λf (m)λf (n) =

∑

d|(m,n) λf (mn/d2) that

(2.1) L(f ⊗ χ1, s)L(f ⊗ χ2, s)

=
∞

∑

m,n=1

χ1(m)χ2(n)

(mn)s

∑

d|(m,n)

λf

(

mn

d2

)

=
∞

∑

d=1

χ1χ2(d)d
−2s

∞
∑

m,n=1

χ1(m)χ2(n)λf (mn)

(mn)s

= L(2s, χ1χ2)
∞
∑

n=1

λf (n)τχ1,χ2(n)

ns
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where L(·, χ1χ2) is the Dirichlet L-function for the character χ1χ2 and

τχ1,χ2(n) =
∑

ab=n

χ1(a)χ2(b).

It turns out that the central value is represented by a sum of two rapidly
convergent series. If we average the series over all f ∈ Bk with the Petersson
trace formula, the sum will consist of two types of terms: those coming from
the Kronecker delta, called the diagonal terms, and those which involve
the Kloosterman sums, the off-diagonal terms. The diagonal terms can be
easily handled, while for the off-diagonal terms, we open the Kloosterman
sums and insert the Mellin transform for the Bessel function Jk−1. After
rearrangements, one can find among all factors the (twisted) Dirichlet series
associated with τχ1,χ2(n),

Eχ1,χ2(s, a/c) =
∞
∑

n=1

τχ1,χ2(n)e(an/c)n−s (Re s > 1),

where (a, c) = 1. This series will play a crucial role in our investigation.
In fact, the main contribution of the off-diagonal terms comes from its
pole.

The series Eχ1,χ2(s, a/c) can be viewed as a generalization of E(s, a/c)
investigated by Estermann [Es] (or see [Ju]). Like E(s, a/c), it has nice
properties, as stated in Lemma 2.1 below. (The proof of this will be given
in the last section.)

Lemma 2.1. The function Eχ1,χ2(s, a/c) can be analytically continued

to a meromorphic function, which is holomorphic on C except possibly at

s = 1. The Laurent expansion of Eχ1,χ2(s, a/c) at s = 1 is of the form

Eχ1,χ2(s, a/c) = Aχ1,χ2(a, c)(s− 1)−2 +Bχ1,χ2(a, c)(s− 1)−1 + · · · .
When χ1 = χ2, we put χ = χ1 = χ2 and D = D1 = D2. For c = Dκ with

(D,κ) = 1,

Aχ,χ(a, c) = c−1τ(χ)χ(a)χ(κ)
φ(D)

D
,

Bχ,χ(a, c) = 2c−1τ(χ)χ(a)χ(κ)
φ(D)

D

(

γ − log κ+
∑

p|D

log p

p− 1

)

.

In all other cases Aχ1,χ2(a, c) = 0, and we have (for χ1 6= χ2)

Bχ1,χ2(a, c) = δ12(c)c
−1τ(χ1)χ1(a)χ2

(

c

D1

)

L(1, χ2χ1)

+ δ21(c)c
−1τ(χ2)χ2(a)χ1

(

c

D2

)

L(1, χ1χ2)

where δij(c) = 1 if Di | c and (c/Di, Dj) = 1, and δij(c) = 0 otherwise.



Twisted automorphic L-functions 237

In addition, Eχ1,χ2(s, a/c) satisfies the functional equation

Eχ1,χ2(s, a/c)

= c1[D1, c]
−s[D2, c]

−s(2π)2s−2Γ (1 − s)2
∑

u (D1)
v (D2)

χ1(u)χ2(v)e(uva0/c)

× ((1 + χ1χ2(−1))ϕ+
a,c(1 − s;u,−v)

− (e(s/2) + χ1χ2(−1)e(−s/2))ϕ−
a,c(1 − s;u, v))

where c1 divides c and a0 is an integral multiple of a. When Re s > 1, the

functions ϕ∓
a,c(s;u, v) (abbreviation for ϕ∓

a,c,D1,D2
(s;u, v)) are given by

ϕ∓
a,c(s;u, v) =

∞
∑

n=1

n−sτ∓a,c(n;u, v)e

(

∓na1

c

)

for some integer a1. Also, |τ∓a,c(n;u, v)| ≤ d(n). (d(n) =
∑

d|n 1 is the divisor

function.)

Remark. The constants a0 and a1 depend only on a, c, D1 and D2, and
the functions τ∓a,c(n;u, v) also depend on D1, D2. When D1 = D2 = 1, we
have c1 = c, h0 ≡ 0 (mod c) and

ϕ∓
a,c(s; 1, 1) =

∞
∑

n=1

n−sd(n)e(∓an/c) = E(s,∓a/c) for Re s > 1.

Hence, the functional equation reduces to (see [Ju, Lemma 1]):

E(s, a/c) = 2c1−2s(2π)2s−2Γ (1− s)2(E(1− s, a/c)− cos(πs)E(1− s,−a/c)).
By Lemma 2.1 and the Phragmén–Lindelöf Theorem, the function

Eχ1,χ2(s, a/c) satisfies the convexity bound

(2.2) Eχ1,χ2(σ + it, a/c) ≪D1,D2,c,C,ε (|t| + 1)α(σ)+ε for any ε > 0,

where C > 0 is an arbitrary constant, α(σ) = 0 for σ ≥ 1, α(σ) = 1 − σ for
0 ≤ σ ≤ 1 and α(σ) = 1 − 2σ for −C ≤ σ ≤ 0.

In addition we need a few lemmas. We start with some results on the
Bessel functions Jn(x) and Y0(x), which will be used later. These two Bessel
functions can be defined, for x > 0, as

Jn(x) =
∞

∑

l=0

(−1)l

l!(n+ l)!

(

x

2

)n+2l

(n = 0, 1, . . .),(2.3)

Y0(x) =
2

π
J0(x) log

x

2
− 2

π

∞
∑

l=0

(−1)l Γ
′(l + 1)

Γ (l + 1)3

(

x

2

)2l

.(2.4)

For all x ≥ 1 (see [Le, (5.11.6) and (5.11.7)]),
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(2.5)
Y0(x) =

√

2

πx
sin(x− π/4) +O(x−3/2),

Jn(x) =

√

2

πx
cos(x− nπ/2 − π/4) +On(x−3/2),

where the O-term in the second formula depends on n. Furthermore ([Le,
(5.10.8)]), for any positive integer n,

(2.6) Jn(x) =
1

π

π\
0

cos(x sin θ − nθ) dθ =
1

π

π/2\
0

Re fn(θ, x) dθ,

where fn(θ, x) = (e−inθ + (−1)neinθ)eix sin θ. Also ([Le, (5.10.2)]),

Jk−1(x) =
1√

π Γ (k − 1/2)

(

x

2

)k−1 1\
−1

(1 − t2)k−3/2 cos(xt) dt(2.7)

≪
(

ex

2k

)k−1

,

with an absolute implied constant. Finally, we notice that the functions
Jk−1(x) and 2s−1Γ ((k − 1 + s)/2)/Γ ((k + 1 − s)/2) are Mellin transform
pairs, that is,

Jk−1(x) =
1

2πi

\
(−1)

Γ ((k + s)/2)

Γ ((k − s)/2)
2sx−s−1 ds,(2.8)

Γ ((k + s)/2)

Γ ((k − s)/2)
=

∞\
0

Jk−1(x)

(

x

2

)s

dx (−k < Re s < −1/2).(2.9)

Our first lemma below prepares an estimate of the Gamma function. The
second one transforms two integrals of Gamma functions into integrals of
Bessel functions. The third lemma gives upper estimates for certain integrals
of Bessel functions, which we will make use of later.

Lemma 2.2. Let s = σ + it and A > 1/2 be a fixed constant. For all

sufficiently large k (≥ k0(A)) and 0 ≤ σ < A, we have

Γ (k − s)

Γ (k + s)
≪A (k + |t|)−2σ.

The implied constant depends on A only.

Proof. Using Stirling’s formula [Le, (1.4.12)], we obtain

Re(logΓ (k − s) − logΓ (k + s))

=
1

2
(k − σ − 1/2) log

(k − σ)2 + t2

(k + σ)2 + t2

− σ log((k + σ)2 + t2) − t tan−1 2σt

k2 − σ2 + t2
+O(1)

= − σ log((k + σ)2 + t2) +O(1).
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Lemma 2.3. Let k > 2 be any integer and y > 0. Suppose that 0 <
Rew < k/2 − 2. Then

1

2πi

\
(3)

Γ (k/2 − w − z/2)

Γ (k/2 + w + z/2)
Γ

(

z

2

)2

cos

(

πz

2

)

y−z dz

= −21+2wπ

∞\
0

Jk−1(x)Y0(yx)x
−2w dx,

1

2πi

\
(3)

Γ (k/2 − w − z/2)

Γ (k/2 + w + z/2)
Γ

(

z

2

)2

sin

(

πz

2

)

y−z dz

= 21+2wπ

∞\
0

Jk−1(x)J0(yx)x
−2w dx.

Proof. It can be seen that these four integrals are holomorphic in w for
0 < Rew < k/2 − 2. Thus, it suffices to show that the equalities hold in a
certain set (containing an accumulation point). Suppose that w > 1 is real.
Applying the residue theorem with (2.3) and (2.4) (or see [Ti, p. 197]), we
obtain, for x > 0,

2π(iJ0(x) − Y0(x)) =
1

2πi

\
(1/2)

2sΓ

(

s

2

)2

eiπs/2x−s ds.

Consider the integral

1

2πi

\
(3)

Γ (k/2 − w − z/2)

Γ (k/2 + w + z/2)
Γ

(

z

2

)2

eiπz/2y−z dz.

Moving the line of integration to Re z = 1/2 and using (2.9), it becomes

lim
T→∞

1

2πi

1/2+iT\
1/2−iT

∞\
0

Jk−1(x)

(

x

2

)−2w−z

dxΓ

(

z

2

)2

eiπz/2y−z dz

=

∞\
0

Jk−1(x)

(

x

2

)−2w 1

2πi

\
(1/2)

2zΓ

(

z

2

)2

eiπz/2(xy)−z dz dx

= 2π

∞\
0

Jk−1(x)(iJ0(yx) − Y0(yx))

(

x

2

)−2w

dx.

This completes the proof by equating the real and imaginary parts.

Lemma 2.4. Let s = σ + it and A > 1/2 be a fixed constant. Set

B0(x) = J0(x) or Y0(x).

For all sufficiently large k (≥ k0(A)), and 1/2 ≤ σ ≤ A,
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(a) if a > 1, then

∞\
0

Jk−1(x)B0(ax)x
−s dx≪ eπ|t|/2 aσ−k

1 − a−2
,

(b) if k−1/2 ≤ a ≤ 1, then

∞\
0

Jk−1(x)B0(ax)x
−s dx≪ (|t| + 1)a−1/2k−σ−1/2(log k)2.

Proof. (a) For a > 1, we have the formulae ([Er, §6.8, (37)] and [WG,
§7.15, (8)]):

∞\
0

Jk−1(x)Y0(ax)x
−s dx

=
cos(πs/2)

2sπak−s
Γ

(

k − s

2

)2

Γ (k)−1F

(

k − s

2
,
k − s

2
; k, a−2

)

,

∞\
0

Jk−1(x)J0(ax)x
−s dx

=
sin(π(k − s)/2)

2sπak−s
Γ

(

k − s

2

)2

Γ (k)−1F

(

k − s

2
,
k − s

2
; k, a−2

)

,

where F is the hypergeometric function, defined as

F (α, β; γ, z) =
Γ (γ)

Γ (α)Γ (β)

∞
∑

r=0

Γ (α+ r)Γ (β + r)

Γ (γ + r)

zr

r!
.

Observe that
∣

∣

∣

∣

Γ ((k − s)/2 + r)2

r!Γ (k + r)

∣

∣

∣

∣

≤ Γ ((k − σ)/2 + r)2

r!Γ (k + r)
≤ Γ (k/2 + r)2

r!Γ (k + r)
< 1,

so both integrals above are

≪ eπ|t|/2

2σak−σ

∞
∑

r=0

Γ ((k − σ)/2 + r)2

r!Γ (k + r)
a−2r

≪ eπ|t|/2aσ−k
∞

∑

r=0

a−2r ≪ eπ|t|/2aσ−k(1 − a−2)−1.

(b) We split the range of integration as follows:

∞\
0

=

k/4\
0

+
∑

r≥0
K=2r−2k

2K\
K

.(2.10)
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Set IK =
T2K
K . By (2.5), B0(ax) ≪ (ax)−1/2 for ax≫ 1, so

IK ≪ a−1/2
(

∞\
0

Jk−1(x)
2x−1/2 dx

)1/2(
2K\
K

x−2σ−1/2 dx
)1/2

,

for aK ≫ 1. By the formula (see [WG, §7.15, (11)])

(2.11)

∞\
0

Jk−1(t)
2t−λ dt

= 2−λ Γ (λ)

Γ
(

λ+1
2

)2

Γ (k − 1/2 − λ/2)

Γ (k − 1/2 + λ/2)
for 0 < λ < 2k − 1,

we obtain the estimate

IK ≪ a−1/2k−1/4K−σ+1/4.(2.12)

Replacing B0(x) by the formulae in (2.5), we can have another estimate
for IK . To this end we only need to consider

√

2

πa

2K\
K

Jk−1(x)e
±iaxx−s−1/2 dx+O

(

a−3/2
2K\
K

|Jk−1(x)|x−σ−3/2 dx
)

.

The O-term is ≪ a−3/2k−1K−σ ≪ a−1/2k−1K−σ+1/2, by (2.11) and the
Cauchy–Schwarz inequality. Taking η = 0.01 · k/K, and applying the first-
derivative test for exponential integrals ([Hu, Lemma 5.1.2]), we see that
(from the line below (2.6)),

π/2\
π/2−η

fk(θ, x) dθ ≪ k−1 (x ∈ [K, 2K]).

Hence, by (2.6),

2K\
K

Jk−1(x)e
±iaxx−s−1/2 dx

≪ k−1
2K\
K

x−σ−1/2 dx+
∣

∣

∣

π/2−η\
0

2K\
K

Re fk(θ, x)e
±iaxx−s−1/2 dx dθ

∣

∣

∣
.

The first summand is ≪ k−1K−σ+1/2. Applying integration by parts or
bounding trivially, we conclude that the x-integral in the second term is
≪ (1+|t|)K−σ−1/2 min(|a−sin θ|−1,K). After a change of variable u = sin θ,
the second summand becomes

≪ (1 + |t|)λ−1K−σ−1/2
1\
0

min(|u− a|−1,K) du.(2.13)
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(Note that dθ ≪ η−1du for θ ∈ [0, π/2 − η].) It follows that (2.13) is

≪ (|t| + 1)k−1K−σ+1/2 logK and

IK ≪ a−1/2(1 + |t|)k−1K−σ+1/2 logK.(2.14)

For the sum in (2.10), we apply the estimate (2.12) for K ≥ k3 and (2.14)
for k/4 ≤ K ≤ k3. The overall contribution due to

∑

K is

≪ (1 + |t|)a−1/2k−σ−1/2(log k)2.(2.15)

(Note that the power of log k can be reduced to 1 if σ > 1/2.)

The estimation of the integral
Tk/4
0 in (2.10) is easy. From (2.7) and

B0(x) ≪ |log x|, by (2.3)–(2.5),

k/4\
0

≪
(

e

2k

)k−1 k/4\
0

|B0(ax)|xk−σ−1 dx≪
(

e

2k

)k−1 k/4\
0

|log ax|xk−σ−1 dx

=

(

e

2k

)k−1

aσ−k

ak/4\
0

|log x|xk−σ−1 dx

≪
(

e

2k

)k−1

aσ−k

(

ak

4

)k−σ log(ak/4)

k − σ
≪

(

e

8

)k−1(4

k

)σ

log k.

The proof is completed by invoking (2.10) and (2.15).

3. Proof of Theorems 1 and 2. Assume throughout k to be a suffi-
ciently large even integer. Let

K(w) =
Γ (2(A− w))Γ (2(A+ w))

Γ (2A)2
1

w
,(3.1)

where A > 2 is an arbitrary but fixed constant. Then K is an odd function
and has only a simple pole with residue 1 at w = 0 inside the strip −A <
Rew < A. Following the argument in (1.7), we apply the residue theorem
to Λ(f ⊗χ1, 1/2+w)Λ(f ⊗χ2, 1/2+w)K(w) over RT . After taking T → ∞
and using (1.3), we get

Λ(f ⊗ χ1, 1/2)Λ(f ⊗ χ2, 1/2)

=
1

2πi

\
(2)

Λ(f ⊗ χ1, 1/2 + w)Λ(f ⊗ χ2, 1/2 + w)K(w) dw

+ εk(χ1)εk(χ2)
1

2πi

\
(2)

Λ(f ⊗ χ1, 1/2 + w)Λ(f ⊗ χ2, 1/2 + w)K(w) dw.
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By (1.2) and (2.1),

L(f ⊗ χ1, 1/2)L(f ⊗ χ2, 1/2)

=
∞
∑

n=1

λf (n)τχ1,χ2(n)√
n

Vχ1χ2

(

D1D2

4π2n

)

+ εk(χ1)εk(χ2)
∞

∑

n=1

λf (n)τχ1,χ2(n)√
n

Vχ1χ2

(

D1D2

4π2n

)

where

Vχ(y) =
1

2πi

\
(2)

(

Γ (k/2 + w)

Γ (k/2)

)2

L(1 + 2w,χ)K(w)yw dw.(3.2)

Here we have used Vχ(y) = Vχ(y), due to the observation that

(2πi)−1
\

(2)

G(w) dw = (2πi)−1
\

(2)

G(w) dw.

By Petersson’s trace formula

∑

f∈Bk

wfλf (n)λf (m) = δm,n + 2πik
∑

c≥1

c−1S(m,n, c)Jk−1

(

4π
√
mn

c

)

(δm,n is the Kronecker delta and S(m,n, c) is the Kloosterman sum) and
λf (1) = 1, we have

(3.3)
∑

f∈Bk

wfL(f ⊗ χ1, 1/2)L(f ⊗ χ2, 1/2)

= S(χ1, χ2) + εk(χ1)εk(χ2)S(χ1, χ2)

where

(3.4) S(χ1, χ2)

=

∞
∑

n=1

τχ1,χ2(n)√
n

Vχ1χ2

(

D1D2

4π2n

)

∑

f∈Bk

wfλf (n)

= Vχ1χ2

(

D1D2

4π2

)

+ 2πik
∑

c≥1

∑

n≥1

τχ1,χ2(n)√
n

S(n, 1, c)

c
Jk−1

(

4π
√
n

c

)

Vχ1χ2

(

D1D2

4π2n

)

= Vχ1χ2

(

D1D2

4π2

)

+ 2πikM, say.
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Treatment of Vχ1χ2(D1D2/(4π
2)). Moving the line of integration to w =

−A/2, we have

Vχ1χ2

(

D1D2

4π2

)

= Resw=0

((

D1D2

4π2

)w Γ (k/2 + w)2

Γ (k/2)2
L(1 + 2w,χ1χ2)K(w)

)

+
1

2πi

\
(−A/2)

(

D1D2

4π2

)w(

Γ (k/2 + w)

Γ (k/2)

)2

L(1 + 2w,χ1χ2)K(w) dw,

by (3.2). The last integral is ≪A (D1D2)
(A−1)/2k−A, which can be seen as

follows.
Let the conductor of χ1χ2 be D, which divides D1D2. Then for w =

−A/2 + it,

L(1 + 2w,χ1χ2) = L(1 −A+ 2it, χ1χ2) ≪ (D(|t| + 1))A−1/2

≪ (D1D2(|t| + 1))A−1/2.

As |Γ (k/2 +w)| ≤ Γ (k/2 + Rew) ≪ k−A/2Γ (k/2) by Stirling’s formula, we
have \

(−A/2)

≪ (D1D2)
(A−1)/2k−A

∞\
0

(|t| + 1)A−1/2|K(−A/2 + it)| dt

≪ (D1D2)
(A−1)/2k−A

∞\
0

(|t| + 1)5(A−1/2)e−2π|t| dt

≪ (D1D2)
(A−1)/2k−A.

To evaluate the residue, we compute the following series expansions:

K(w) = w−1 + c1w + · · · ,
(

D1D2

4π2

)w

= 1 + w log
D1D2

4π2
+ · · · ,

Γ (k/2 + w)2

Γ (k/2)2
= 1 + 2w

Γ ′(k/2)

Γ (k/2)
+ · · ·

and if χ1χ2 is the principal character, then D1 = D2 = D and

L(1 + 2w,χ1χ2) =
∏

p|D

(1 − p−1)

(

1 + 2w
∑

p|D

log p

p− 1
+ · · ·

)(

1

2w
+ γ + · · ·

)

;

otherwise (i.e. χ1 6= χ2), L(1+2w,χ1χ2) = L(1, χ1χ2)+2L′(1, χ1χ2)w+ · · · .
Hence, for χ1 6= χ2,
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Vχ1χ2

(

D1D2

4π2

)

= L(1, χ1χ2) +O((D1D2)
(A−1)/2k−A),(3.5)

and for χ = χ1 = χ2 (D = D1 = D2),

(3.6) Vχχ

(

D2

4π2

)

=
φ(D)

D

(

Γ ′(k/2)

Γ (k/2)
+

(

γ + log
D

2π
+

∑

p|D

log p

p− 1

))

+O(DA−1k−A).

Treatment of M . Opening the Kloostermann sum, and interchanging
the sum (over n) and the integral in M (in (3.4)), yields

M =
∑

c≥1

c−1
∑

∗

a (c)

e

(

a

c

)

1

2πi

\
(2)

(

D1D2

4π2

)w(

Γ (k/2 + w)

Γ (k/2)

)2

×
∑

n≥1

τχ1,χ2(n)e(an/c)

n1/2+w
Jk−1

(

4π
√
n

c

)

L(1 + 2w,χ1χ2)K(w) dw.

Using the Mellin transform formula (2.8), we deduce that

M =
1

4π

∑

c≥1

∑

∗

a (c)

e

(

a

c

)(

1

2πi

)2 \
(2)

(

D1D2

4π2

)w(

Γ (k/2 + w)

Γ (k/2)

)2

× L(1 + 2w,χ1χ2)K(w)

×
\

(−1)

(

c

2π

)sΓ ((k + s)/2)

Γ ((k − s)/2)
Eχ1,χ2

(

1 + w +
s

2
,
a

c

)

ds dw.

We can move the line of integration of the inner integral from Re s = −1 to
Re s = −7 by Lemma 2.2 and (2.2). This implies, from the possible pole of
Eχ1,χ2(·, a/c), that

M = M1 +M2(3.7)

where

M1 =
1

4π

∑

c≥1

∑

∗

a(c)

e

(

a

c

)

1

2πi

\
(2)

(

D1D2

4π2

)w(

Γ (k/2+w)

Γ (k/2)

)2

(3.8)

×L(1+2w,χ1χ2)K(w)

×Ress=−2w

((

c

2π

)sΓ ((k+ s)/2)

Γ ((k− s)/2)
Eχ1,χ2

(

1+w+
s

2
,
a

c

))

dw

and
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M2 =
1

4π

∑

c≥1

∑

∗

a (c)

e

(

a

c

)(

1

2πi

)2 \
(2)

(

D1D2

4π2

)w(

Γ (k/2 + w)

Γ (k/2)

)2

(3.9)

× L(1 + 2w,χ1χ2)K(w)

×
\

(−7)

(

c

2π

)sΓ ((k + s)/2)

Γ ((k − s)/2)
Eχ1,χ2

(

1 + w +
s

2
,
a

c

)

ds dw.

Treatment of M1. We divide into two cases according as χ1 = χ2 or
not.

Case 1: χ1 = χ2 = χ. The residue inside M1 can be written as
(

c

2π

)−2w

Resz=0

((

c

2π

)z Γ (k/2 − w + z/2)

Γ (k/2 + w − z/2)
Eχ,χ

(

1 +
z

2
,
a

c

))

.

By Lemma 2.1, the residue appears only when D | c and (D, c/D) = 1, and
equals

(3.10) 4c−1τ(χ)χ(a)χ

(

c

D

)

φ(D)

D

(

c

2π

)−2w

×
(

1

2

Γ ′(k/2 − w)Γ (k/2 + w) + Γ (k/2 − w)Γ ′(k/2 + w)

Γ (k/2 + w)2

+
Γ (k/2 − w)

Γ (k/2 + w)

(

γ + log
D

2π
+

∑

p|D

log p

p− 1

))

.

Therefore, from (3.8) and (3.10) we have

M1 =
τ(χ)

π

φ(D)

D2

∑

c≥1
(c,D)=1

∑

∗

a (cD)

χ(a)χ(c)e

(

a

cD

)

(3.11)

× 1

2πi

\
(2)

c−1−2w

(

Γ (k/2 + w)

Γ (k/2)

)2

L(1 + 2w,χ2)K(w)

×
(

1

2

Γ ′(k/2 − w)Γ (k/2 + w) + Γ (k/2 − w)Γ ′(k/2 + w)

Γ (k/2 + w)2

+
Γ (k/2 − w)

Γ (k/2 + w)

(

γ + log
D

2π
+

∑

p|D

log p

p− 1

))

dw.

Interchanging the sums and the integral, we get the sum
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∑

c≥1
(c,D)=1

c−1−2w
∑

∗

a (cD)

χ(a)χ(c)e

(

a

cD

)

=
∑

c≥1
(c,D)=1

c−1−2wχ(c)2
∑

∗

m (c)

e

(

m

c

)

∑

n (D)

χ(n)e

(

n

D

)

= τ(χ)
∑

c≥1
(c,D)=1

c−1−2wµ(c)χ(c)2 = τ(χ)L(1 + 2w,χ2)−1,

by first replacing a by a and then a by mD+nc where (m, c) = (n,D) = 1.
(This is valid since (c,D) = 1.) If we insert this into (3.11), M1 is expressed
as

M1 =
τ(χ)2

2π

φ(D)

D2
Γ (k/2)−2 1

2πi

\
(2)

(

Γ ′(k/2 − w)Γ (k/2 + w)(3.12)

+ Γ (k/2 − w)Γ ′(k/2 + w)

+ 2Γ (k/2 − w)Γ (k/2 + w)

(

γ + log
D

2π
+

∑

p|D

log p

p− 1

))

×K(w) dw

=
τ(χ)2

2π

φ(D)

D2

(

Γ ′(k/2)

Γ (k/2)
+ γ + log

D

2π
+

∑

p|D

log p

p− 1

)

,

by the residue theorem and the observation that the integrand is an odd
function.

Case 2: χ1 6= χ2. In this case, the residue in (3.8) is, by Lemma 2.1
again,

2

(

δ12(c)c
−1τ(χ1)χ1(a)χ2

(

c

D1

)

L(1, χ1χ2)

+ δ21(c)c
−1τ(χ2)χ2(a)χ1

(

c

D2

)

L(1, χ1χ2)

)(

c

2π

)−2wΓ (k/2 − w)

Γ (k/2 + w)
.

We deduce from (3.8) that

(3.13) M1 =
τ(χ1)

2πD1
L(1, χ1χ2)

1

2πi

\
(2)

Γ (k/2 + w)Γ (k/2 − w)

Γ (k/2)2
K(w)

(

D2

D1

)w

× L(1 + 2w,χ1χ2)
∑

c≥1
(c,D2)=1

c−1−2wχ2(c)
∑

∗

a (cD1)

χ1(a)e

(

a

cD1

)

dw
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+
τ(χ2)

2πD2
L(1, χ1χ2)

1

2πi

\
(2)

Γ (k/2 + w)Γ (k/2 − w)

Γ (k/2)2
K(w)

(

D1

D2

)w

× L(1 + 2w,χ1χ2)
∑

c≥1
(c,D1)=1

c−1−2wχ1(c)
∑

∗

a (cD2)

χ2(a)e

(

a

cD2

)

dw.

The sum over c equals

∑

c≥1

c−1−2wχ2(c)
∑

∗

a (cD1)

χ1(a)e

(

a

cD1

)

=
∑

c≥1

c−1−2wχ2(c)
∑

d|cD1

µ(d)
∑

a (cD1)
d|a

χ1(a)e

(

a

cD1

)

=
∑

c≥1

c−1−2wχ2(c)
∑

d|cD1

µ(d)χ1(d)
∑

a (cD1/d)

χ1(a)e

(

ad

cD1

)

=
∑

c≥1

c−1−2wχ2(c)
∑

d|c
(d,D1)=1

µ(d)χ1(d)

D1
∑

v=1

χ1(v)e

(

vd

D1c

)

∑

u (c/d)

e

(

ud

c

)

=
∑

c≥1

c−1−2wχ2(c)µ(c)χ1(c)
∑

v (D1)

χ1(v)e

(

v

D1

)

= τ(χ1)L(1 + 2w,χ1χ2)
−1.

A similar argument works for the second sum on the right hand side of
(3.13). We put these into (3.13) to get

M1 =
τ(χ1)

2

2πD1
L(1, χ1χ2)(3.14)

× 1

2πi

\
(2)

(

D2

D1

)wΓ (k/2 + w)Γ (k/2 − w)

Γ (k/2)2
K(w) dw

+
τ(χ2)

2

2πD2
L(1, χ1χ2)

× 1

2πi

\
(2)

(

D1

D2

)w Γ (k/2 + w)Γ (k/2 − w)

Γ (k/2)2
K(w) dw.

Treatment of M2. Changing the variable s = −(z + 2w), we have from
(3.9),
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M2 =
1

4π

∑

c≥1

∑

∗

a (c)

e

(

a

c

)

×
(

1

2πi

)2 \
(2)

(

D1D2

c2

)w(

Γ (k/2 + w)

Γ (k/2)

)2

L(1 + 2w,χ1χ2)K(w)

×
\

(3)

(

c

2π

)−z Γ (k/2 − w − z/2)

Γ (k/2 + w + z/2)
Eχ1,χ2

(

1 − z

2
,
a

c

)

dz dw.

To bound M2, we shall use the functional equation of Eχ1,χ2(·, a/c) in
Lemma 2.1, and split M2 into two parts

M2 = M+
2 +M−

2(3.15)

according to the functions ϕ+
a,c and ϕ−

a,c. It follows that

M−
2 = (4π)−1

∑

c≥1

c1([D1, c][D2, c])
−1

∑

∗

a (c)

e

(

a

c

)

(3.16)

×
∑

u (D1)
v (D2)

χ1(u)χ2(v)e(uva0/c)
∑

l≥1

τ−a,c(l;u, v)e(−la1/c)

× 1

2πi

\
(2)

(

D1D2

c2

)wΓ (k/2 + w)2

Γ (k/2)2
L(1 + 2w,χ1χ2)K(w)

× 1

2πi

\
(3)

Γ (k/2 − w − z/2)

Γ (k/2 + w + z/2)
Γ

(

z

2

)2

×
(

e

(

−z
4

)

+ χ1χ2(−1)e

(

z

4

))(

c2l

[D1, c][D2, c]

)−z/2

dz dw

where c1 divides c. Write

Q =
c2l

[D1, c][D2, c]

for short. Then the inner integral over z, by Lemma 2.3, is equal to

2πχ1χ2(−1)

∞\
0

Jk−1(x)(iJ0(x
√

Q) − Y0(x
√

Q))

(

x

2

)−2w

dx

− 2π

∞\
0

Jk−1(x)(iJ0(x
√

Q) + Y0(x
√

Q))

(

x

2

)−2w

dx

= − 4π

∞\
0

Jk−1(x)B0(x
√

Q)

(

x

2

)−2w

dx,
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where B0(·) = Y0(·) if χ1χ2(−1) = 1 and B0(·) = iY0(·) if χ1χ2(−1) = −1.
Hence by moving the line of integration to 1/2 ≤ Rew = Ac < A where Ac

depends on c, we have

(3.17) M−
2 ≪ D1D2

∑

c≥1

c2([D1, c][D2, c])
−1

∑

l≥1

d(l)

×
\

(Ac)

∣

∣

∣

∣

Γ (k/2 + w)2

Γ (k/2)2
L(1 + 2w,χ1χ2)K(w)

(

D1D2

c2

)w∣

∣

∣

∣

×
∣

∣

∣

∣

∞\
0

Jk−1(x)B0(x
√

Q)

(

x

2

)−2w

dx

∣

∣

∣

∣

|dw|.

Now we choose Ac = 1 for c > k and Ac = 1/2 for c ≤ k and apply
Lemma 2.4(b) to find that the contribution from those terms satisfying
Q ≤ 1 is

≪ (D1D2)
3/2k−3/2(log k)2

∑

1≤c≤k

c([D1, c][D2, c])
−1(3.18)

×
∑

c2l≤[D1,c][D2,c]

d(l)

(

c2l

[D1, c][D2, c]

)−1/4

×
\

(1/2)

∣

∣

∣

∣

Γ (k/2 + w)2

Γ (k/2)2
L(1 + 2w,χ1χ2)K(w)

∣

∣

∣

∣

(1 + |w|) |dw|

+ (D1D2)
2k−5/2(log k)2

∑

c≥k

([D1, c][D2, c])
−1

×
∑

c2l≤[D1,c][D2,c]

d(l)

(

c2l

[D1, c][D2, c]

)−1/4

×
\

(1)

∣

∣

∣

∣

Γ (k/2 + w)2

Γ (k/2)2
L(1 + 2w,χ1χ2)K(w)

∣

∣

∣

∣

(1 + |w|) |dw|

≪ (D1D2)
3/2k−1/2(log k)2 log(D1D2)

×
(

∑

1≤c≤k

c−1 + (D1D2)
1/2

∑

c>k

c−2
)

≪ (D1D2)
3/2k−1/2(log k)3 log(D1D2).

When D1 = D2 = 1, we only consider k divisible by 4. The condi-
tion c2l ≤ [D1, c][D2, c] is reduced to l = 1. In this case, c1 = c and
τ−a,c(1; 1, 1)e(−a1/c) = e(−a/c) (see the remark after Lemma 2.1). Thus,
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by Lemma 2.3, the contribution of M−
2 is, by (3.16),

(3.19) −
∑

c≥1

c−1φ(c)
1

2πi

\
(2)

22wc−2w Γ (k/2 + w)2

Γ (k/2)2
ζ(1 + 2w)K(w)

×
∞\
0

Jk−1(x)Y0(x)x
−2w dx dw

=
1

π

1

2πi

\
(2)

Γ (k/2 − w)2

Γ (k/2)2
ζ(2w)K(w) cos(πw) dw.

The last line follows from (see [Er, §6.8, (36)])
∞\
0

Jk−1(x)Y0(x)x
−2w dx = −2−2wπ−1 cos(πw)

Γ (k/2 − w)2

Γ (k/2 + w)2
.

If we move the line of integration to Rew = A/2, it becomes apparent that
the left side in (3.19) is ≪ k−A.

Now, we investigate the contribution from c2l > [D1, c][D2, c] in (3.17).
We have c2l≥ [D1, c][D2, c]+c

2 as c2 | [D1, c][D2, c], and so c2l/([D1, c][D2, c])
≥ 1 + (D1D2)

−1. If we take Ac = 1, then the contribution of this part is, by
Lemma 2.4(a) and (3.1),

≪ (D1D2)
2
∑

c≥1

c2([D1, c][D2, c])
−1(3.20)

×
∑

c2l>[D1,c][D2,c]

ld(l)(c2l − [D1, c][D2, c])
−1

(

c2l

[D1, c][D2, c]

)1−k/2

×
\

(1)

∣

∣

∣

∣

Γ (k/2 + w)2

Γ (k/2)2
L(1 + 2w,χ1χ2)K(w)

∣

∣

∣

∣

e|Imw|π |dw|

≪ (D1D2)
2k2(1 + (D1D2)

−1)4−k/2
∑

c≥1

c−6([D1, c][D2, c])
2

×
∑

c2l>[D1,c][D2,c]

d(l)l−2

≪ (D1D2)
3k2 exp

(

− k

4D1D2

)

.

(Note that our choice of K(w) in (3.1) is sufficient to suppress the term
exp(|Imw|π).) This completes the evaluation of the left side of (3.17). In
view of (3.18)–(3.20), under the condition that D1D2 ≤ k/(16 log k), we can
write

M−
2 ≪ (D1D2)

3/2k−1/2(log k)3 log(D1D2) + k−A.(3.21)

(Note that log(D1D2) = 0 when D1 = D2 = 1.)
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The evaluation of M+
2 in (3.15) is much easier. As ϕ+

a,c(s;u, v) ≪ 1 for
Re s > 1, we move Re z = 3 to Re z = 4 and then Rew = 2 to Rew = 1. By
Lemma 2.2, a crude estimate gives

(3.22) M+
2 ≪ (D1D2)

2
∑

c≥1

c−4([D1, c][D2, c])

×
\

(1)

\
(4)

∣

∣

∣

∣

Γ (k/2 + w)2

Γ (k/2)2
Γ (k/2 − w − z/2)

Γ (k/2 + w + z/2)
Γ

(

z

2

)2

K(w)

∣

∣

∣

∣

|dz||dw|

≪ (D1D2)
3k−4.

Hence, for D1D2 ≤ k/(16 log k), (3.15), (3.21) and (3.22) yield

M2 ≪ (D1D2)
3/2k−1/2(log k)3 log(D1D2) + k−A.(3.23)

For simplicity, let us write

Φ(k,D) =
φ(D)

D

(

Γ ′(k/2)

Γ (k/2)
+

(

γ + log
D

2π
+

∑

p|D

log p

p− 1

))

,

I(D1, D2) =
1

2πi

\
(2)

Γ (k/2 + w)Γ (k/2 − w)

Γ (k/2)2
K(w)

(

D1

D2

)w

dw,

and put E(1, k) = k−A and E(D, k) = D3/2k−1/2(log k)4 for D > 1. One can
see that by the residue theorem,

I(D1, D2) + I(D2, D1) = 1.(3.24)

We now deduce our result. From (3.4), (3.7) and (3.23), we have

S(χ1, χ2) = Vχ1χ2

(

D1D2

4π2

)

+ 2πikM1 +O(E(D1D2, k)).

• If χ is real, then using τ(χ) = χ(−1)τ(χ) (for real χ), we deduce from
(3.6) and (3.12) that

S(χ, χ) = (1 + ikχ(−1))Φ(k,D) +O(E(D2, k)).

From (3.3) and εk(χ)2 = 1, parts (a) and (b) of Theorem 1 follow.
• If χ is complex, then from (3.5) and (3.12),

S(χ, χ) = L(1, χ2) + εk(χ)Φ(k,D) +O(E(D2, k)).

This completes part (c) with (3.3).
• If χ1 6= χ2 and χ1 6= χ2, then, by (3.5) and (3.14),

S(χ1, χ2) = L(1, χ1χ2) + εk(χ1)L(1, χ1χ2)I(D2, D1)

+ εk(χ2)L(1, χ1χ2)I(D1, D2) +O(E(D1D2, k)).
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By (3.3) and using I(·, ·) = I(·, ·), we deduce that
∑

f∈Bk

wfL(f ⊗ χ1, 1/2)L(f ⊗ χ2, 1/2)

= L(1, χ1χ2) + εk(χ1)εk(χ2)L(1, χ1χ2)

+ (εk(χ1)L(1, χ1χ2) + εk(χ2)L(1, χ1χ2))(I(D1, D2) + I(D2, D1))

+O(E(D1D2, k)).

By (3.24) this completes the proof of Theorem 2.

4. Properties of Eχ1,χ2(s, a/c). This section is independent of the pre-
vious parts. It is devoted to the study of the generalized Estermann function
which is defined, for Re s > 1, as

Eχ1,χ2(s, h/k) =
∞
∑

n=1

τχ1,χ2(n)e(nh/k)n−s(4.1)

where k ≥ 1 and (h, k) = 1, and τχ1,χ2(n) =
∑

ab=n χ1(a)χ2(b). (χ1 and
χ2 are primitive characters.) We change here the notation a/c into h/k and
clearly no confusion will be caused. To begin with, let us fix our notations:
(m,n) and [m,n] denote respectively the greatest common divisor and the
least common multiple of the two natural numbers m and n. We also denote
by (·, ·) an ordered pair when no confusion will occur. Given h, k and D1,
D2 (the moduli of χ1 and χ2), we write

(4.2)

δ1 = (D1, k), k = δ1κ1, D1 = δ1d1,

∆1 = (δ1, κ2), δ1 = ∆1δ, κ1 = ∆2κ,

δ2 = (D2, k), k = δ2κ2, D2 = δ2d2,

∆2 = (δ2, κ1), δ2 = ∆2δ, κ2 = ∆1κ.

Moreover, for any two coprime integers m and n, we define m(n) and n(m)

to be a pair of integers satisfying mm(n) + nn(m) = 1.

Theorem A. The function Eχ1,χ2(s, h/k) can be analytically continued

to a meromorphic function, which is holomorphic on C except possibly at

s = 1. The order of the pole is at most two. Suppose the Laurent expansion

of Eχ1,χ2(s, h/k) at s = 1 is

Eχ1,χ2(s, h/k) = Aχ1,χ2(h, k)(s− 1)−2 +Bχ1,χ2(h, k)(s− 1)−1 + · · · .

When χ1 = χ2, we put χ = χ1 = χ2 and D = D1 = D2. For k = Dκ with

(D,κ) = 1,
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Aχ,χ(h, k) = k−1τ(χ)χ(h)χ(κ)
φ(D)

D
,

Bχ,χ(h, k) = 2k−1τ(χ)χ(h)χ(κ)
φ(D)

D

(

γ − log κ+
∑

p|D

log p

p− 1

)

.

In all other cases Aχ1,χ2(h, k) = 0. When χ1 6= χ2,

Bχ1,χ2(h, k) = δ12(k)k
−1τ(χ1)χ1(h)χ2(κ1)L(1, χ2χ1)

+ δ21(k)k
−1τ(χ2)χ2(h)χ1(κ2)L(1, χ1χ2)

where δij(k) = 1 if k = Diκi and (κi, Dj) = 1, and δij(k) = 0 otherwise.

Here φ(·) is the Euler phi function and L(s, ψ) is the Dirichlet L-function

for the character ψ.

In addition, let h0 = h0(δ, κ) = h(1 − δδ
(κ)
hh

(κ)
) and

C0 = C0(δ, d1, d2, κ, κ1, κ2) = δδ
(κ)
d

(κ1)
1 d

(κ2)
2 .

Then Eχ1,χ2(s, h/k) satisfies the functional equation

Eχ1,χ2(s, h/k)

= ∆1κ1[D1, k]
−s[D2, k]

−s(2π)2s−2Γ (1 − s)2
∑

a (D1)
b (D2)

χ1(a)χ2(b)e

(

abh0

k

)

× {(1 + χ1χ2(−1))ϕ+
h,k(1 − s; a,−b)

− (e(s/2) + χ1χ2(−1)e(−s/2))ϕ−
h,k(1 − s; a, b)}.

The functions ϕ∓
h,k(·; a, b) are given by the analytic continuation of the Diri-

chlet series

ϕ∓
h,k(s; a, b) = ϕ∓

h,k,D1,D2
(s; a, b)(4.3)

=
∞

∑

l=1

l−sτ∓h,k(l; a, b)e

(

∓ lh
(κ)

k
C0

)

for Re s > 1, of the arithmetical functions τ∓h,k(l; a, b). These functions are

defined by

τ∓h,k(l; a, b) = τ∓h,k,D1,D2
(l; a, b)(4.4)

=
∑

mn=l
(m,n)∈S(a,b,∓)

e

(

am

D1κ1
C1 +

bn

D2κ2
C2

)

where

(4.5) S(a, b,∓) = {(m,n) ∈ N × N : m ≡ ∓bhd1 (mod∆2),

n ≡ ∓ahd2 (mod∆1)},
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and

C1 = C1(h, δ, κ, d1, κ1) = 1 − δδ
(κ)
hh

(κ)
d1d

(κ1)
1 ,

C2 = C2(h, δ, κ, d2, κ2) = 1 − δδ
(κ)
hh

(κ)
d2d

(κ2)
2 .

Here and in what follows, the summation
∑

mn=l
(∗)

runs over all positive

integer pairs (m,n) with mn = l and satisfying the constraint (∗).

Proof. From (4.1),

(4.6) Eχ1,χ2(s, h/k)

=
∞

∑

m,n=1

χ1(m)χ2(n)e(mnh/k)(mn)−s

=
∑

a (D1)
b (D2)

χ1(a)χ2(b)
∑

α,β (k)

e

(

αβh

k

)

∑

m≥1
m≡a (D1), m≡α (k)

m−s
∑

n≥1
n≡b (D2), n≡β (k)

n−s

for Re s > 1. The pair of congruence equations m ≡ a (modD1) and m ≡ α
(modk) is solvable if and only if δ1 = (D1, k) | a− α. When δ1 | a− α, m is

in the arithmetic progression {D1κ1l + αd1d
(κ1)
1 + aκ1κ

(d1)
1 : l ∈ Z}. Define

λ
(1)
α,a ∈ (0, 1] such that

λ(1)
α,a ≡ αd1d

(κ1)
1 + aκ1κ

(d1)
1

D1κ1
(mod1)(4.7)

(i.e. the fractional part of the right side). We have

Eχ1,χ2(s, h/k) = [D1, k]
−s[D2, k]

−s
∑

a (D1)
b (D2)

χ1(a)χ2(b)(4.8)

×
∑

α,β (k)
α≡a (δ1), β≡b (δ2)

e

(

αβh

k

)

ζ(s, λ(1)
α,a)ζ(s, λ

(2)
β,b)

where ζ(s, a) =
∑∞

n=0(n+ a)−s (for Re s > 1) is Hurwitz’s zeta function.
It is known that ζ(s, a) is meromorphic on C with a simple pole at s = 1

of residue 1, and satisfies the functional equation

(4.9) ζ(s, a) = i−1Γ (1−s)(2π)s−1(e(s/4)ϕ(1−s, a)−e(−s/4)ϕ(1−s,−a))

where for Re s > 1, ϕ(s, a) =
∑∞

m=1 e(ma)m
−s. From (4.8), the order of the

possible pole of Eχ1,χ2(s, h/k) at s = 1 is at most two. Hence, Eχ1,χ2(s, h/k)
is holomorphic except possibly at s = 1. Moreover, for 0 < Rew < ε, we
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have when α ≡ a (mod δ1),
∑

m≥1
m≡a (D1), m≡α (k)

m−1−w = [D1, k]
−1−wζ(1 + w, λ(1)

α,a)(4.10)

= [D1, k]
−1w−1 + C1(α, a) + · · ·

and when β ≡ b (mod δ2),
∑

n≥1
n≡b (D2), n≡β (k)

n−1−w = [D2, k]
−1w−1 + C2(β, b) + · · · .

Inserting these into (4.6) then yields

(4.11) Aχ1,χ2(h, k)

= [D1, k]
−1[D2, k]

−1
∑

a (D1)
b (D2)

χ1(a)χ2(b)
∑

α,β (k)
α≡a (δ1), β≡b (δ2)

e

(

αβh

k

)

,

(4.12) Bχ1,χ2(h, k)

=
∑

a (D1)
b (D2)

χ1(a)χ2(b)

×
∑

α,β (k)
α≡a (δ1), β≡b (δ2)

e

(

αβh

k

)

([D2, k]
−1C1(α, a) + [D1, k]

−1C2(β, b)).

Denote the sum in Aχ1,χ2(h, k) by ΣA, i.e.

ΣA =
∑

a (D1)
b (D2)

χ1(a)χ2(b)
∑

α,β (k)
α≡a (δ1), β≡b (δ2)

e

(

αβh

k

)

.

Noting the condition (h, k) = 1, we have

ΣA =
∑

a (D1)
b (D2)

χ1(a)χ2(b)
∑

u (κ1)
v (κ2)

e

(

(a+ δ1u)(b+ δ2v)
h

k

)

(4.13)

=
∑

a (D1)
b (D2)

χ1(a)χ2(b)e

(

abh

k

)

∑

v (κ2)

e

(

avh

κ2

)

∑

u (κ1)

e

(

u(b+ δ2v)
h

κ1

)

= κ1

∑

a (D1)
b (D2)

χ1(a)χ2(b)e

(

abh

k

)

∑

v (κ2)
κ1|b+δ2v

e

(

avh

κ2

)

.
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The last sum is zero if (κ1, δ2) > 1 (as then (b,D2) > 1). Applying the same
argument with the roles of u and v reversed, we get

ΣA = κ2

∑

a (D1)
b (D2)

χ1(a)χ2(b)e

(

abh

k

)

∑

u (κ1)
κ2|a+δ1u

e

(

auh

κ1

)

.(4.14)

Thus, ΣA = 0 except possibly for (δ1, κ2) = (δ2, κ1) = 1. When (δ1, κ2) =
(δ2, κ1) = 1, we have, in view of (4.2), κ1 = κ2 = κ, δ1 = δ2 = δ and
(δ, κ) = 1. From (4.13) and (4.14), we have

ΣA = κ
∑

a (D1)
b (D2)

χ1(a)χ2(b)e

(

abh

δ

1 − δδ
(κ)

κ

)

= κτ(χ2)χ2

(

d2h
1 − δδ

(κ)

κ

)

∑

a (D1)

χ1(a)χ2(a),

ΣA = κτ(χ1)χ1

(

d1h
1 − δδ

(κ)

κ

)

∑

b (D2)

χ2(b)χ1(b),

by using the primitivity of χ1 and χ2. Hence ΣA is non-zero only when
d1 = d2 = 1, χ1 = χ2 (soD1 = D2) and k = Dκ with (D,κ) = 1. In this case,
ΣA = κτ(χ)χ(h)χ(κ)φ(D). This completes the evaluation of Aχ1,χ2(h, k)
with (4.11).

In view of (4.12), we shall evaluate the sum ΣB(χ1, χ2), given by

(4.15) ΣB(χ1, χ2) =
∑

a (D1)
b (D2)

χ1(a)χ2(b)
∑

α,β (k)
α≡a (δ1), β≡b (δ2)

e

(

αβh

k

)

C1(α, a),

and we have

Bχ1,χ2(h, k) = [D2, k]
−1ΣB(χ1, χ2) + [D1, k]

−1ΣB(χ2, χ1).(4.16)

We define, for Re s > 1,

F (s;χ1, χ2)

=
∑

a (D1)
b (D2)

χ1(a)χ2(b)
∑

α,β (k)
α≡a (δ1), β≡b (δ2)

e

(

αβh

k

)

∑

m≥1
m≡a (D1), m≡α (k)

m−s.

From (4.10) and (4.15), ΣB(χ1, χ2) equals the constant term in the series
expansion of F (s;χ1, χ2) at s = 1. This function F (·;χ1, χ2) can be written
as
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F (s;χ1, χ2)

=
∑

a (D1)

χ1(a)
∑

α (k)
α≡a (δ1)

∑

m≥1
m≡a (D1), m≡α (k)

m−s
∑

b (D2)

χ2(b)
∑

β (k)
β≡b (δ2)

e

(

αβh

k

)

=
∑

a (D1)

χ1(a)
∑

α (k)
α≡a (δ1)

∑

m≥1
m≡a (D1), m≡α (k)

m−s
∑

b (D2)

χ2(b)
∑

z (κ2)

e

(

hα(b+ zδ2)

k

)

= κ2

∑

a (D1)

χ1(a)
∑

α (k)
α≡a (δ1), α≡0 (κ2)

∑

m≥1
m≡a (D1), m≡α (k)

m−s
∑

b (D2)

χ2(b)e

(

bh

δ2

α

κ2

)

= κ2τ(χ2)χ2(d2h)
∑

a (D1)

χ1(a)
∑

α (k)
α≡a (δ1), α≡0 (κ2)

χ2

(

α

κ2

)

∑

m≥1
m≡a (D1), m≡α (k)

m−s.

Thus, if d2 6= 1 or (κ2, δ1) > 1, then F (s;χ1, χ2) ≡ 0; otherwise from (4.2),
we have δ2 = D2, ∆1 = 1 (so k = D2κ2 = D2κ, δ1 = δ) and

F (s;χ1, χ2)

= κτ(χ2)χ2(h)
∑

a (D1)

χ1(a)
∑

b (D2)
κb≡a (δ)

χ2(b)
∑

m≥1
m≡a (D1), m≡κb (κD2)

m−s

= κ1−sτ(χ2)χ2(h)
∑

a (D1)

χ1(a)
∑

b (D2)
κb≡a (δ)

χ2(b)
∑

m≥1
κm≡a (D1), m≡b (D2)

m−s,

after replacing m by κm. Therefore, F (s;χ1, χ2) ≡ 0 also if (κ,D1) > 1.
When (κ,D1) = 1, we see that δ = δ1 = (D1, D2κ) = (D1, D2), and by
replacing a by κa,

(4.17) F (s;χ1, χ2)

= κ1−sτ(χ2)χ2(h)χ1(κ)
∑

a (D1)

χ1(a)
∑

b (D2)
b≡a (D1,D2)

χ2(b)
∑

m≥1
m≡a (D1)
m≡b (D2)

m−s

= κ1−sτ(χ2)χ2(h)χ1(κ)L(s, χ1χ2).

When χ1 = χ2 (= χ) and k = Dκ with (κ,D) = 1, we have

F (s;χ, χ) = κ1−sτ(χ)χ(h)χ(κ)ζ(s)
∏

p|D

(1 − p−s)

and hence the constant term in its series expansion at s = 1 is
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ΣB(χ1, χ2) = τ(χ)χ(h)χ(κ)
φ(D)

D

(

γ − log κ+
∑

p|D

log p

p− 1

)

.

When k = D2κ, (κ,D1) = 1 but χ1 6= χ2, from (4.17) we have

ΣB(χ1, χ2) = τ(χ2)χ2(h)χ1(κ)L(1, χ1χ2).

By (4.16), the evaluation of Bχ1,χ2(h, k) is complete.
We proceed now to show the functional equation. Applying (4.9) to (4.8),

we get

(4.18) Eχ1,χ2(s, h/k)

= − [D1, k]
−s[D2, k]

−s(2π)2s−2Γ (1 − s)2
∑

a (D1)
b (D2)

χ1(a)χ2(b)

×
∑

α,β (k)
α≡a (δ1), β≡b (δ2)

e

(

αβh

k

)(

e

(

s

2

)

ϕ(1 − s, λ(1)
α,a)ϕ(1 − s, λ

(2)
β,b)

+ e

(

−s
2

)

ϕ(1 − s,−λ(1)
α,a)ϕ(1 − s,−λ(2)

β,b)

− ϕ(1 − s, λ(1)
α,a)ϕ(1 − s,−λ(2)

β,b) − ϕ(1 − s,−λ(1)
α,a)ϕ(1 − s, λ

(2)
β,b)

)

.

Our task is then to simplify the last four sums which we write accordingly

(4.19)
∑

α,β (k)
α≡a (δ1)
β≡b (δ2)

e

(

αβh

k

)

ϕ(s,±λ(1)
α,a)ϕ(s,±λ(2)

β,b)

=
∑

m,n≥1

(mn)−sTh,k(±m,±n; a, b)

for Re s > 1. For simplicity, we write T (m,n; a, b) for Th,k(m,n; a, b), that
is,

T (m,n; a, b) = Th,k(m,n; a, b)(4.20)

=
∑

α,β (k)
α≡a (δ1)
β≡b (δ2)

e

(

αβh

k
+mλ(1)

α,a + nλ
(2)
β,b

)

.

Let us take α = a + xδ1 and β = b + yδ2 where x and y run over
residue classes mod κ1 and mod κ2 respectively. From (4.7) and (4.20),
a rearrangement of terms gives
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(4.21) T (m,n; a, b)

= e

(

abh

k
+

am

D1κ1
+

bn

D2κ2

)

∑

y (κ2)

e

(

y(ah+ nd
(κ2)
2 )

κ2

)

×
∑

x (κ1)

e

(

x(h(b+ yδ2) +md
(κ1)
1 )

κ1

)

= κ1e

(

abh

k
+

am

D1κ1
+

bn

D2κ2

)

∑

y (κ2)

h(b+δ2y)+md
(κ1)
1 ≡0 (κ1)

e

(

y(ah+ nd
(κ2)
2 )

κ2

)

.

(Recall the definition of m(n) in (4.2).) The congruence h(b+ δ2y) +md
(κ1)
1

≡ 0 (modκ1) is solvable if and only if ∆2 | bh + md
(κ1)
1 . Subject to this

condition, we have

y ≡ −δ(κ)
h

(κ)
(

bh+md
(κ1)
1

∆2

)

(modκ),

so that the sum in (4.21) equals

e

(

−δ
(κ)
h

(κ)

κ

ah+ nd
(κ2)
2

∆1

bh+md
(κ1)
1

∆2

)

∑

z (∆1)

e

(

z

∆1
(ah+ nd

(κ2)
2 )

)

.

Hence, T (m,n; a, b) is non-zero only if ∆1 | ah+nd
(κ2)
2 and ∆2 | bh+md

(κ1)
1 .

In this case, these two conditions can be expressed as

m ≡ −bhd1 (mod∆2) and n ≡ −ahd2 (mod∆1),(4.22)

and then

(4.23) T (m,n; a, b)

= ∆1κ1e

(

abh

k
+

am

D1κ1
+

bn

D2κ2
− δ

(κ)
h

(κ)

κ

ah+ nd
(κ2)
2

∆1

bh+md
(κ1)
1

∆2

)

= ∆1κ1e

(

ab

k
h0 +

am

D1κ1
C1 +

bn

D2κ2
C2 −

mnh
(κ)

k
C0

)

where h0 = h(1 − δδ
(κ)
hh

(κ)
), C1 = 1 − δδ

(κ)
hh

(κ)
d1d

(κ1)
1 , C2 = 1 −

δδ
(κ)
hh

(κ)
d2d

(κ2)
2 and C0 = δδ

(κ)
d
(κ1)
1 d

(κ2)
2 .

In view of (4.4), (4.5), (4.22) and (4.23), we have

∑

mn=l

T (±m,±n; a, b) = ∆1κ1τ
(∓)
h,k (l;±a,±b)e

(

abh0

k
+ (∓)

lh
(κ)

k
C0

)
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corresponding to the four cases in (4.19). The ± signs attached to a and b
are chosen to be the same as the pair of ± signs in ±m,±n; while (∓) = −
if both signs taken are equal, and (∓) = + otherwise. From (4.19) and (4.3),
we obtain

(4.24)
∑

α,β (k)
α≡a (δ1)
β≡b (δ2)

e

(

αβh

k

)

ϕ(1 − s,±λ(1)
α,a)ϕ(1 − s,±λ(2)

β,b)

= ∆1κ1e

(

abh0

k

)

ϕ
(∓)
h,k (s;±a,±b).

Here, again (∓) takes the − or + sign according as the two signs taken from

±λ(1)
α,a,±λ(2)

β,b are the same or not. Inserting (4.24) into (4.18) we see that

Eχ1,χ2(s, h/k) consists of four multiple sums corresponding to the possible
± signs in the right side of (4.24). It is apparent that the left side of (4.24)
is, by (4.7), independent of the choices of representatives a (mod D1) and
b (mod D2). Replacing a, b by −a and −b in the two cases (−,−) and (−,+),
we deduce the desired functional equation.
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