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1. Introduction. Let k be an even positive integer and Si(I'(1)) be
the space of all holomorphic cusp forms of weight k with respect to the
full modular group. It is known that Sk(I'(1)) has a basis By, consisting of
normalized cusp forms f which are simultaneously eigenforms for all Hecke
operators T;,. To be specific, T, f = )\f(n)n(kfl)ﬂf, and f has the Fourier
series

Z)‘f k 1)/2 (TLZ)

where e(a) = e*™“. Note that As(1) = 1 and each As(n) is real.
Let x (mod D) be a primitive Dirichlet character. Associated with each f,
the twisted L-function is defined as

(1.1) L(f®x,5) ZX Af (Res > 1).

This L-function has the usual properties of classical L-functions. Define

(1.2) A(f ©x8) = <§)F<s " %)L(f ®X,9).

We know from [Iw, Theorem 7.6] that A(f ® x,s) can be holomorphically
continued to the whole of C, bounded on any vertical strip, and satisfies the
functional equation

(1.3) A(f @x,s) =ex(VA(f @ X, 1 — 5)

where the root factor 5 (x) equals *7(x)?/D. (7(x) is the Gaussian sum.)

The central values L(f ® x,1/2) are of particular importance and inter-
est; indeed, the non-vanishing nature of these values is linked to different
arithmetic problems (see [IS]). An interesting result about the central value
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is the non-negativity of L(f ® x,1/2) for any real character y. To get non-
vanishing results, we investigate the first and the second moments (with
mollifiers). By using (1.3) it is not hard to derive the following formula for
the first moment for large k:

(1.4) > wrL(f@x,1/2) =1+ e,(x) + Ok,
feBy
where
I'k-1) log k
<
(4m)*= 1 f11? k
by [HL] or [KS, (4)]. (The O-constant is independent of k& and x (mod D).)

In addition, for a quadratic character y (mod D), Kohnen and Sengupta
[KS] proved that for any £ > 0,

ST L(f@x.1/2) <p k' ask — oo,

fEBy
In particular, assuming the Lindel6f hypothesis L(f ® x, 1/2) <p k%, they
showed that

k

(1.6)  #{feBr: L(f®x,1/2)#0} >p log &

Aiming at the problem of non-existence of Landau—Siegel zeros, Iwaniec
and Sarnak [IS] investigated the moments (averaging over k)

Ax[Xf= ) k/K > wiXg
k even feBy
where Xy = L(f ® x,1/2) or L(f ® x,1/2)? (x is real), and h € C°(RT) is
a test function. The role of A is to localize the weight k£ within an interval of
length of order K. They got asymptotic results [IS, Theorem 1] as K — oo:
let H = {;° h(t)dt and D be the modulus of the real character y; then

(1.5) wr =

1—eo

as k — oo.

k[L(f®x,1/2)] ~ HK and AK[L(f®X,1/2)2]NQZHKlogDK

where the asymptotics are uniform for D < K?° for some positive constant J.
(But this was not sufficient for their purpose and they considered mollified
moments.)

In this paper, we establish an asymptotic formula for the second moment
of L(f®x, 1/2) for all large even k for both real and complex primitive char-
acters. As a consequence, we prove unconditionally the better lower bound
k/(log k)? in (1.6). Moreover, our result here can be viewed as a supplement
to giving an asymptotic formula for individual (large) k. Without the extra
smoothing process over k, we cannot make use of the tool in [Sa, Section 3]
or [Iw, Section 5.5].
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THEOREM 1. Let k > ko be any sufficiently large even integer. Suppose
that x is a primitive Dirichlet character of conductor D, where 1 < D <
k/(161ogk).

(a) If D=1 (i.e. x is the trivial character) and k =0 (mod4), then

S wyL(f,1/2)? = 4(?’{% Ty~ log 2w> +0A(K),
feBk

where A > 1 is arbitrary, and the O-constant depends on A.
(b) If x is real, then

> wrL(f @ x,1/2)?

feBy

o koo $(D) E 2 logp
=2(1+i*x(-1) —5~ (log2+’y+log2ﬂ+zl;p_1
p

+ O(D3k~ 2 (log k)4).
(c¢) If x is complex, then
> wrL(f ®x,1/2)?

FeBy
»(D) k D logp
=2 — ( log — log —
er(x) D og2+’y+ Og27r+EDp—l
P

+ (L(1,x°) + er(0)*L(1,X%)) + O(D*k ™ (log k)*).
The O-constants are independent of D.

THEOREM 2. Suppose that x1 and Y2 are primitive Dirichlet characters
of conductors Dy and Dy respectively, and 1 < D1Ds < k/(16logk). If

X1 # X2 and X1 # Xo, then
3" wiL(f ® x1, 1/2)L(f © x2,1/2)

feBk
= L(1, x1x2) + er(x1)er(x2) L(1, X1X2)
+ k(1) L(1, X1 x2) + ex(x2) L(1, xaXa) + O((D1D2)* 2k~ 2 (log k)*).
Here L(s,v) denotes the Dirichlet L-function for the character 1.

REMARK 1. For the trivial character x and k¥ = 2 (mod4), the central
value L(f,1/2) is zero by the functional equation (1.3).

REMARK 2. A character is said to be complex when it is not a real
character.
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REMARK 3. The error terms in the last three asymptotic formulas be-
come prominent when DDy > k/3/(logk)?. (D; = Dy = D in (b) and (c)
of Theorem 1.)

REMARK 4. Let Rt be the positively oriented rectangular contour with
vertices at +2 +47T". Taking 7" — oo and using (1.3), we have

(L7)  A(f®x,1/2)
dw

1
= - | ATex1/2+w)—

T

1 dw
= Q_M(g)A(f®X’1/2+w)?

er(x) dw
—W(_ﬁm A(f@x1/2=w)— =

d
- § a7 ex 1240 +t0Mf ox 124 0) 5]
It is apparent that A(f ® x,s) = A(f ® X, 5) for Res > 1. Hence
A(f@x,1/2) = A(f ©X,1/2).
Using (1.3), we see that
ek(A(f ® x:1/2)% = |[A(f ® x. 1/2)[%,

or equivalently, ex(Y)L(f ®x,1/2)? = |L(f ®x, 1/2)|?. Thus, for complex ¥,
Theorem 1(c) is equivalent to

(1.8) Y wilL(f®x,1/2)]
feBy
¢(D) k D log p
=22 (1og = log —
D og2+”y+ Og27r+§|l;p—1
p

+ 2Re(er(X)L(L, X)) + O(D*k 2 (log k)*),

since, for even k, e, (X)er(x) = lex(X)]? = 1.

REMARK 5. Our proof is based on the Petersson trace formula, which
is different from [KS]. The approach using this trace formula and investi-
gating the contributions from the so-called diagonal and off-diagonal terms
is explored in various articles, for example, [Du], [IS], [MV] and [Sa]. (Note
that these papers do not deal with the situation of large individual weight.)

Finally, we give a direct application of Theorem 1 to the non-vanishing
of L(f ®x,1/2).
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COROLLARY 3. Let k be any sufficiently large even integer. Suppose that
either

(i) x is a real primitive character mod D where 1 < D < kY/6/(log k)®,
or
(ii) x is a complex primitive character mod D with log D < Co% for
some suitable positive constant cg.

Then

#{f € By L(f®x,1/2) # 0} > |1+ e1(x) #(D) (log k)2

where the implied constant is independent of D but depends on ¢y in case (ii).
(As e(x) = i*x(—1) for real x, both sides will equal zero if i*x(—1) = —1.)

Proof. In view of Theorem 1(b) and (1.8) (for real and complex char-
acters respectively), by using the bound L(1,%?) < logD (as X? is non-
principal) for case (ii), we obtain

Z wilL(f @ x,1/2)* < @ log k

feBy
for D in the specified ranges. By the Cauchy—Schwarz inequality and (1.4),

1+a00P < | Y wpL(f @ 1/2)]

fEB
log k
<Y wltfexipf Y 2
fEBy feBy

L(f®x,1/2)#0
by (1.5). The result follows.

2. Some preparations. The idea of our proof is to express the central
value of L(f ® x1,8)L(f ® x2,$) in terms of infinite sums via an integral
analogous to (1.7). For Res > 1, we deduce from (1.1) and the relation

Ar(m)Af(n) = 3 g mmy Af(mn/d?) that
(2.1)  L(f®x1,8)L(f ®x2,5)
S st 5 (o

mn=1 d|(m.n)

=;xl><2(d)d—2s 3 X1<m>>giin)kf<mn>

m,n=1 n)s

= L(2s, x1x2) Z M

ns
n=1
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where L(-, x1x2) is the Dirichlet L-function for the character x1x2 and

7-X1,X2 § Xl

ab=n

It turns out that the central value is represented by a sum of two rapidly
convergent series. If we average the series over all f € By with the Petersson
trace formula, the sum will consist of two types of terms: those coming from
the Kronecker delta, called the diagonal terms, and those which involve
the Kloosterman sums, the off-diagonal terms. The diagonal terms can be
easily handled, while for the off-diagonal terms, we open the Kloosterman
sums and insert the Mellin transform for the Bessel function Jj_;. After
rearrangements, one can find among all factors the (twisted) Dirichlet series
associated with 7y, y,(n),

Ey x.(s,a/c) = ZTXLXQ e(an/c)n™®  (Res > 1),

where (a,c) = 1. This series Wlll play a crucial role in our investigation.
In fact, the main contribution of the off-diagonal terms comes from its
pole.

The series Ey, y,(s,a/c) can be viewed as a generalization of E(s,a/c)
investigated by Estermann [Es] (or see [Ju]). Like E(s,a/c), it has nice
properties, as stated in Lemma 2.1 below. (The proof of this will be given
in the last section.)

LEMMA 2.1. The function Ey, y,(s,a/c) can be analytically continued
to a meromorphic function, which is holomorphic on C except possibly at
s = 1. The Laurent expansion of Ey, y,(s,a/c) at s =1 is of the form

EXl,XQ(Sv a/C) = AXl,XQ(aa C)(S - 1)_2 + BXl,XQ(a> C)(S - 1)_1 +-
When x1 = x2, we put x = x1 = x2 and D = D1 = Dy. For ¢ = Dk with
(Dv’%) =

Ay xla,c) = cr(x)x(a)x(k) ¢(é))’
B = 2 700@ () U (7~ togre+ 3 ).

In all other cases Ay, y,(a,c) =0, and we have (for x1 # x2)

)L

C

By a(a:€) = da(e)e” ()T (@)xe (p_l

+ d21(e)e T (x2)Xa(a) x1 <Di2>L(1, X1X2)

where 6;5(c) =1 if D;|c and (¢/D;, D) =1, and d;;(c) = 0 otherwise.
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In addition, Ey, y,(s,a/c) satisfies the functional equation
Eyixo(s,a/c)
= c1[D1,¢] (D, ] *(2m)* 7’ I(1 = 5)* Y x1(u)xa(v)e(uvag/c)

u (D)
v(D2)

X ((1+ x1x2(=1))ea (1 = s;u, —v)
—(e(s/2) + xaxa(—1)e(—5/2)) ¢ (1 — s;u,v))

where ¢1 divides ¢ and ag is an integral multiple of a. When Res > 1, the
functions ¢ .(s;u,v) (abbreviation for QOZ:C Dy.D,(83u,0)) are given by

najy
of(83u,0) Zn Tae(n;u,v)e <$T>

for some integer ar. Also, |7 (n;u,v)| < d(n). (d(n) = 3_4, 1 is the divisor
function.)

REMARK. The constants ag and a; depend only on a, ¢, D1 and Ds, and
the functions 7;7.(n; u,v) also depend on Dy, Dy. When Dy = Dy = 1, we
have ¢; = ¢, hg =0 (mod ¢) and

ei(s1,1) Zn *d(n)e(Fan/c) = E(s,Fa/c) for Res > 1.

Hence, the functlonal equation reduces to (see [Ju, Lemma 1]):

E(s,a/c) = 2¢'725(2m) %72 (1 — 5)?(E(1 — s,@/c) — cos(ms)E(1 — s, —@/c)).
By Lemma 2.1 and the Phragmén—Lindel6f Theorem, the function

Ey, x.(s,a/c) satisfies the convexity bound

(2.2) By, y(0+it,a/c) <p,pyece (1 +1)*F for any e > 0,

where C' > 0 is an arbitrary constant, a(c) =0 for o > 1, a(0) =1 — o for
0<o<land a(c) =1-20 for —C <o <0.

In addition we need a few lemmas. We start with some results on the
Bessel functions J,,(x) and Yy(x), which will be used later. These two Bessel
functions can be defined, for z > 0, as

B e (_1)1 T n+21 B
(2.3) Jn () _;m(§> (n=0,1,...),

2 r 2 r'i+1) 2
24 e = 2aes] 230 1>ZW(2) |

For all x > 1 (see [Le, (5.11.6) and (5.11.7)]),



238 Y. K. Lau and K. M. Tsang

Yo(x) = \/% sin(z — 7/4) + O(z=3/2),
Jn(x) = \/g COS(ZE — n7‘r/2 — 77/4) + On(SL'_S/Q)’

where the O-term in the second formula depends on n. Furthermore ([Le,
(5.10.8)]), for any positive integer n,

(2.5)

T w/2
(2.6) Jn(x) = % Scos(x sinf — nf) do = % S Re fn(0, ) do,
0 0
where f,,(0,z) = (e7™0 4 (—1)"e0)ei*sn0 Also ([Le, (5.10.2)]),
(2.7)  Jk—1(x) = ___ <£>k1 § (1 — t2)F=3/2 cos(t) dt
Vi l(k—1/2) \ 2 )

k—1
< o
2k '
with an absolute implied constant. Finally, we notice that the functions

Jp—1(z) and 2571 ((k — 1 4 5)/2)/T'((k + 1 — s)/2) are Mellin transform
pairs, that is,

1 F((k + S)/2) s,.—s—1
(2.8) T (z) = — | T gspmsl g
ot 2 (_Sl) I'((k—s)/2)
I(k+s)/2) T z\°

Our first lemma below prepares an estimate of the Gamma function. The
second one transforms two integrals of Gamma functions into integrals of
Bessel functions. The third lemma gives upper estimates for certain integrals
of Bessel functions, which we will make use of later.

LEMMA 2.2. Let s = o+ it and A > 1/2 be a fized constant. For all
sufficiently large k (> ko(A)) and 0 < o < A, we have
I'k—s)
I'(k + s)
The implied constant depends on A only.
Proof. Using Stirling’s formula [Le, (1.4.12)], we obtain
Re(log I'(k — s) —log I'(k + s))

<a (k+t)~%.

1 (k—o)?+¢2
= (k—0oc—1/2)log————
2( o /)Og(k+0)2+t2
20t
2 2 -1
—UlOg((k+U) +t )—ttan m +O(1)

= —olog((k+ )+ %) + O(1).
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LEMMA 2.3. Let k > 2 be any integer and y > 0. Suppose that 0 <
Rew < k/2 —2. Then

1 S F(k;/fz—w—z/2)F<z>2cos(ﬁ>y—2dz

2_772'(3) T(k/2+w+2/2)" \2 2

= —olt2ws S Jh1(2) Yo (yx)z ™" du,
0
1 Ik/2—w—2/2) (2\* . (72 _

_ rlz e z

omi (é) Th2twrz2) \2) sinl7 )y 4
= o1ty S 1 (x) Jo(yx)x ™2 da.

0

Proof. It can be seen that these four integrals are holomorphic in w for
0 < Rew < k/2 — 2. Thus, it suffices to show that the equalities hold in a
certain set (containing an accumulation point). Suppose that w > 1 is real.
Applying the residue theorem with (2.3) and (2.4) (or see [Ti, p. 197]), we
obtain, for x > 0,

1 s\? ,
. . — s © ins/2,.—s
2m(io(x) = Yo(x)) = 5~ | 2F<2>e x5 ds.
(1/2)
Consider the integral

1o T(k/2=w—2/2) (2\? inajo _.
Q—MSF(k/2+w+z/2)F<§> e /2y dz.

®3)

Moving the line of integration to Re z = 1/2 and using (2.9), it becomes

1 1/2+iT oo T —2w—z P 2
. imz/2, —z
Tlgrolo2—m S SJk—1($)<§> da:F<§> €2y

1/2—iT 0
00 T —2w 1 P 2 /

— - = z ad inz/2 —z

= S Jkl(x)<2> 57 S 2 F<2> e (xy) *dzdx
0 (1/2)

o0 x —2w
=21 | Ja(a)il) - Votwo) (3 ) o

0
This completes the proof by equating the real and imaginary parts.
LEMMA 2.4. Let s =0+ it and A > 1/2 be a fized constant. Set
Bo(z) = Jo(x) or Yo(x).
For all sufficiently large k (> ko(A)), and 1/2 < o < A,
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(a) if a>1, then

S Ji—1(2)Bo(az)z~° do < e™H/? a—72’
0 1-a
(b) if kY2 < a <1, then
S Je—1(z)Bo(az)z™* dz < (Jt| + 1)a 2k~ 2 (log k)2,
0
Proof. (a) For a > 1, we have the formulae ([Er, §6.8, (37)] and [WG,
§7.15, (3)):

[e.9]

S Ji—1(z)Yo(ax)z™* dz

0 _ cos(ms/2) F(k ; S)QF(k)_1F<k —s @;k,a”),

2swak—s
o0

S Jr—1(z)Jo(azx)z™* dx

0 _ sin(r(k - 5)/2) F<k—s>2p(k)_1F<k—s7$;k’a_2)’

25ak—s 2 2
where F' is the hypergeometric function, defined as

I'(v) if(a+r)F(ﬂ+r) 2"

HOBr = rar@m &~ Taen

Observe that
I'((k—s)/2+71)?
ril(k+r)
so both integrals above are
™2 S T((k—0)/2471)2
20qk—0 —~ r\C(k+7r)

I((k—0)/24+7)?  I'(k/2+71)?
= r\C(k+r) = r\C(k+r) <h

<

00
< 67r|t\/2a¢7—k Z a2 < 67r|t\/2acr—k(1 - CL—2)_1.
r=0

(b) We split the range of integration as follows:

oo k/4 2K
(2.10) =1+ > .
0 0 r>0 K

K=2r—2f
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Set I = Si(K y (2.5), Bo(az) < (ax)~? for az > 1, so

00 2K
I < a /2 J—1(x)? 2% dg V2 202 gy 1/2,
et (fanernay (o)

for aK > 1. By the formula (see [WG, §7.15, (11)])
211) | Tt at
0

I'k—1/2—-X/2
= I
we obtain the estimate
(2.12) I < a V2R~ VAR—o+1/4,

Replacing By(z) by the formulae in (2.5), we can have another estimate
for Ix. To this end we only need to consider

5 2K ‘ 2K
\/ — IS{ Je_1(z)eF @572 dp 4 O<a73/2 IS( |1 (z)|zo3/? da:).

The O-term is < a 32k 'K~ <« o Y2k~1K~—7+t1/2 by (2.11) and the
Cauchy—Schwarz inequality. Taking n = 0.01 - k/K, and applying the first-
derivative test for exponential integrals ([Hu, Lemma 5.1.2]), we see that
(from the line below (2.6)),

w/2
| f0.2)dd <k (z € [K,2K]).
m/2-n
Hence, by (2.6),
2K
S Jk_l(x)e:tiaxx—s—l/Z dr
K
2K m/2-n 2K
<kt S ™02 dr + ‘ S S Re fi,(0, 2)e % =571/2 dy: df)|.
K 0 K

The first summand is < k~'K~°11/2. Applying integration by parts or
bounding trivially, we conclude that the z-integral in the second term is
< (1+[t)) K=o~ Y2min(Ja—sin§] 71, K). After a change of variable u = sin 6,
the second summand becomes

1
(2.13) < 1+ [tHATTE 2 {min(ju — o] 7, K) du.

0
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(Note that df < n~'du for § € [0,7/2 — n].) It follows that (2.13) is
< (Jt| + 1)k 'Kt/ log K and

(2.14) Ik < a Y214 |thk ' K712 10g K.

For the sum in (2.10), we apply the estimate (2.12) for K > k3 and (2.14)
for k/4A < K < k3. The overall contribution due to Dok is

(2.15) < (1 +[t)a 2=V 2 (log k)2

(Note that the power of logk can be reduced to 1 if o > 1/2.)

The estimation of the integral 85/4 in (2.10) is easy. From (2.7) and

k/4 AN k/4 e \ k1 k/4
S < | = S |Bo(az)|z* " Vde < | — S log az|z" ="t du
2k 2k
0 0 0
e \ k1 ak/4
_ o—k k—o—1
= <E> a S llog z|x dx

0

k—1 k—o k—1 o
e orc [ Ok log(ak/4) e 4
° ary) 8RR (€ 2) logk.
< (2k> a <4> R < 3 A ogk
The proof is completed by invoking (2.10) and (2.15).

3. Proof of Theorems 1 and 2. Assume throughout k& to be a suffi-
ciently large even integer. Let

I2(A - w)[(2(A +w)) 1

)
I'(2A)2 w’

(3.1) K (w) =

where A > 2 is an arbitrary but fixed constant. Then K is an odd function
and has only a simple pole with residue 1 at w = 0 inside the strip —A <
Rew < A. Following the argument in (1.7), we apply the residue theorem
to A(f®x1,1/24+w)A(f ® x2,1/24+w)K(w) over Rr. After taking T' — oo
and using (1.3), we get

A(f @ x1,1/2)A(f @ x2,1/2)

B QLm V A(f @ x1,1/2+ w) A(f © x2,1/2 + w) K (w) dw

)

| A(f @ x1,1/2+ w)A(f ® Xo,1/2 + w)K (w) duw.
(2)

+er(x1)er(xe) i
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By (1.2) and (2.1),
L(f @ x1,1/2)L(f © x2,1/2)

S M) (D1
— vn XAXZ\ Y2

+ Ek(Xl)Ek(XZ)nZl %\/}sz(n) Vs (%)
where
2
(3.2)  W(y) = ﬁ | (%) L(1 4 2w, x) K (w)y" dw.

(2

Here we have used V, (y) = Vx(y), due to the observation that

(2mi)! | G(w) dw = (2mi)~! | G(@) duw.
) 2
By Petersson’s trace formula

S WA (M)A §(m) = G + 27" 3 1S (m,n, )k <4wm>

c
feBy c>1

(Om,n is the Kronecker delta and S(m,n,c) is the Kloosterman sum) and
Af(1) =1, we have

(33) > wyL(f ® x1,1/2)L(f ® x2,1/2)
fEB -
= S(x1,x2) +ex(x1)en(x2)S(x1, x2)

where

(34) S, x2)

_ = Txax2 (1) D1y Ds
= ;ﬁvxm(m > wiAp(n)

feEBk
D1Ds
= VX1X2 (W)
, T (n) S(n,1,¢) 4m\/n D1D,
9 k X1,X2 ) B
e ;; Vn c Ji-1 c Ve 42

DD ,
= Viixe <ﬁ> + 27mif M, say.
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Treatment of Vy,y,(D1D2/(47?)). Moving the line of integration to w =
—A/2, we have

o (22)
—tesca (G22) EH i L0+ 2 () )
: % (—}m) (1211752)“} (F(ﬁ{z/;)w)yul 2w, xuxe) K(w) dw,

by (3.2). The last integral is <4 (D1D9)A~1/2k=4 which can be seen as
follows.
Let the conductor of x1x2 be D, which divides D1Ds. Then for w =
—A/2 + it
L(1+2w,x1x2) = L(1 — A+ 2it, xax2) < (D(jt] + 1)1/
< (D1 Do(Jt] + 1))A712,

As |I'(k/2 +w)| < T'(k/2 +Rew) < k~4/2I'(k/2) by Stirling’s formula, we
have

| < (DiDy) A DA [ (1t + 1)V K (- Af2 + it)| dt

(=A/2)

< (D1 Do) A D/2=A { (J¢] + 1)5(A=1/D) =2nltl gy

o:_,ag or_/ag

< (DlDQ)(A_l)/Qk_A.
To evaluate the residue, we compute the following series expansions:

Kw) =w 4w,

DDy w_ D1Ds
I'(k/2+ w)? I'(k/2)
SN2 149 ..

T2 Tk

and if x1x2 is the principal character, then D; = Dy = D and

_ logp 1
L(1+2 = 1—pH(14+2 R N
(142w, x1x2) ||( P )( + wE p—1+ ><2w+7+ >’

p|D p|D

otherwise (i.e. X1 # Xa), L(1+2w, x1x2) = L(1, x1x2) +2L'(1, x1x2)w+- - -.
Hence, for x1 # Xa,



Twisted automorphic L-functions 245

472

and for x = x1 = Xy (D = D1 = Ds),

36 Ve[ 25

= @(?l((:// )) < —Hog— +Z logp>) + O(DAT =4,

DD
(35) Vi (—) = L(1,x1X2) + O((D1 Do) A1/~ 4),

Treatment of M. Opening the Kloostermann sum, and interchanging
the sum (over n) and the integral in M (in (3.4)), yields

weney (O ) ()

c>1

% Z e (n)e(an/c) Ji1 (@)L(l + 2w, x1x2) K (w) dw.

Z /24w
Using the Mellin transform formula (2.8), we deduce that
w2 () G) | ) ()
& 2mi) o\ dn? I(k/2)
x L(1 + 2w, x1x2) K (w)
X (_Sl) (%) %EEZ i— z;;;; Eyixo (1 +w + > —) ds dw.

We can move the line of integration of the inner integral from Res = —1 to
Res = —7 by Lemma 2.2 and (2.2). This implies, from the possible pole of
Ey, x.(-,a/c), that

(3.7) M = M + M,
DiDy\Y (T(k/2+w)\?
(5) (riem)
x L(1+4 2w, x1x2) K (w

)
)

where

05 2= 555§

C>1a c

and
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o = S (2) (1) 1 (B2 (M)
x L(1+ 2w, x1x2) K (w)

Treatment of M;. We divide into two cases according as xy; = x2 or
not.

CASE 1: x1 = x2 = x. The residue inside M; can be written as

() reo((3) Tty e(+53)

By Lemma 2.1, the residue appears only when D |c and (D,c¢/D) = 1, and
equals

o artoven(5) 5 (5)

117 (k)2 — w) (k)2 +w) + T (k)2 — w)T" (k)2 + w)
% <§ (k)2 + w)?

+—?EZ?§;Z§ (v 323500

»ID
Therefore, from (3.8 (3.10) we have

(x a
(3.11) M; = —22 Z > 5

C>1 a(cD)
(e.D)=
1 Ceow (T(R/2 4+ w)\? 2
— Ul ————=) L(1+2 K

(2

" (1F’(k/2—w)[‘(k‘/2+w)+F(k:/2—w)F’(k:/2+w)
2 I'(k/2 4 w)?

I'(k/2 —w) D log p
+7F(k/2+w) (’y—l—logQ——i—zl; 1)>dw.

Interchanging the sums and the integral, we get the sum



Twisted automorphic L-functions 247

12w E)
( % a%; <CD
c, 1

3 () S ()

c>1 m(c) (D)
(e,D)=1
> P u(e)x(e)? = () L1+ 2w, x) 7,
c>1
(¢,D)=1

by first replacing @ by a and then a by mD + nc where (m,c) = (n,D) =1
(This is valid since (¢, D) = 1.) If we insert this into (3.11), M; is expressed
as

(3.12) My = T(;;)Q ¢1()€) I(k/2)72 2%” | <F’(k;/2 —w)'(k/2+ w)
2)

+I(k/2 —w)(k/2 + w)
420 (k)2 — w) (k)2 + w) (’y Flog =+ ;ng»

2 -1
p|D
x K(w) dw
_1(0)?* (D) (T'(k/2) D log p
== s (F(k/Q) +7+log——|—z )

by the residue theorem and the observation that the 1ntegrand is an odd
function.

CASE 2: x1 # Xx2- In this case, the residue in (3.8) is, by Lemma 2.1
again,

2(512<c>c—1r<xl>x1<a>><2(Dil)m,m)

Fon@e rbomn (5 )i ) () a2

We deduce from (3.8) that

(2)

X L1+ 2w, xix2) Y, ¢ 7l Y T xla)e <c1_91)dw

( CDZSL . a(cDy)
G, L2)=
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7(x2) _\ 1 ¢ I'(k/2+w)[(k/2 —w) y Dy w
+ L(1, x1X2) (2) Tk /2)? K( )( )

27 Ds o
—1-2 * a
X L(1+2w,xix2) Y, ¢ xale) Y XQ(G)Q(E) o

( CDZ)l . a(cD2)
C,UU1)=

The sum over ¢ equals

St Y e )

c>1 a(cD1)

= () Y uld) > Xl(“”(c%)

c>1 d|eDy a(cDr)
dla

_ Zc_l_m)@(C) Z w(d)x1(d) Z Xl(@e(%)

c>1 dleDy a(cD1/d)

D,
:Zc,lfszQ(C) Z u(d)Xl(d)ZXl(U)(B(DU—dC) Z e<u?d>
= e o

S o 3 e )
o>1 v (D1) '

= 7(x1)L(1 + 2w, x1x2) "

A similar argument works for the second sum on the right hand side of
(3.13). We put these into (3.13) to get

(3.14) M; = 7—2(;(11))12 L(1, X1 x2)
+ 72(:12))22 L(1, x1X)

Treatment of Ms. Changing the variable s = —(z + 2w), we have from
(3.9),
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zz()

C>]_ a (c

xm<Dz52>”<”ﬁz:/z¢>>%m»«m

<1 (5) R (1= 53) e

To bound M, we shall use the functional equation of E,, ,(-,a/c) in
Lemma 2.1, and split My into two parts

(3.15) My = My + My

according to the functions cpctc and ¢, .. It follows that

(3.16) M, = (4m)"'> " c1([Dy,d][Da ) " ( >

c>1 a(c)
X Z x1(u Je(uvag/c) Z (l;u,v)e(—la1/c)
1>1
1 DD, k:/2+w)
X o < > T (/22 L(1 4 2w, x1x2) K (w)

1 Ik/2—w—2/2) _[z\*
" omi (S) T(k/2+w+ 2/2) F(E)

(e () e () (o) e

where ¢ divides c. Write

2l
Q=—"°"
[D1, c|[D2, c|
for short. Then the inner integral over z, by Lemma 2.3, is equal to
o —2w
) T
2mx1x2(—1) § Jro1(2)(ido(21/Q) — yo(x\/@))<§) dz
0

—2w

Jk1<:c><wow§>+yow6>>(§) dx

—2w

Jk_1<w>Bo<x¢§>(§) dz,
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where By(-) = Yo() if x1x2(—1) = 1 and By(-) = iYp(-) if x1x2(—1) = —1.
Hence by moving the line of integration to 1/2 < Rew = A, < A where A,
depends on ¢, we have
(3.17) My < DDy ¢*([Dy,c|[Da, )™ ) d(l
c>1 1>1
I'(k/2 +w)? DDy \"
————L(1+2 K —
< 1 [Frarm 12 (“’)< 2
(Ac)
e ¢} z —2w
[ @) Boav/@) (5 ) dal dul
0

Now we choose A, = 1 for ¢ > k and A, = 1/2 for ¢ < k and apply
Lemma 2.4(b) to find that the contribution from those terms satisfying
Q<l1lis

(3.18) < (D1Dy)*?k~(loghk)® > c([Dy,c][Da,c]) ™!
1<c<k
2

< S

c21<[D1,c][Da2,c]

S I'(k/2+ w)?
I'(k/2)?

ayl TE/2)

+ (D1D2)*k**(logk)* Y "([D1,c][Da, c]) ™"
c>k

< > an(p)

< [D1,d][D2,c]

L+ 2w,X1X2>K<w>\<1 T u]) dul

S I'(k/2 +w)?
' I'(k/2)?

< (D1D2)3/2k’1/2(10g k)?1log(D1Ds)

( Z ¢+ (D1Dy 1/22072)

1<c<Lk c>k

L+ Qw,xlxamw)\(l T ) dul

< (D1D2)* k=12 (log k)3 log(D1 Dy).

When D; = Dy = 1, we only consider k divisible by 4. The condi-
tion ¢l < [D1,c][D2,¢] is reduced to I = 1. In this case, ¢; = ¢ and
Tac(l;1,)e(—a1/c) = e(—a/c) (see the remark after Lemma 2.1). Thus,



Twisted automorphic L-functions 251

by Lemma 2.3, the contribution of M, is, by (3.16),

- w —2w L(k/2 4+ w)?
(3.19) —g 'o(c )27m (2)22 2 WC(l—i—Qw}K(w}
X X Jk,l(m)Yo(x)x_m dx dw
0

—w)?
= S %C@wﬂ((w) cos(mw) dw.

The last line follows from (see [Er, §6.8, (36)])

[e.9]

| Jica (o) ¥ole)a " do = —2720m ! cos(ru) s T

If we move the line of integration to Rew = A/2, it becomes apparent that
the left side in (3.19) is < k=4,

Now, we investigate the contribution from ¢l > [Dy, c|[Da, ] in (3.17).
We have 21 >[Dy, ¢|[D2, c|+c? as ¢ | [D1, ][ D2, c], and so ¢l /([ D1, c|[Da, c])
> 1+ (D1D2)7 L. If we take A. = 1, then the contribution of this part is, by
Lemma 2.4(a) and (3.1),

(320) < (D1D2)*> ¢*([D1,d][Dy, )™

2l 1=k/2
S ld(l)(ch—[D17C][D2vc])_l<m>

c21>[D1,c][D2,c]
y S I'(k/2 + w)?
3 Ty

< (D1D2)*k*(1+ (D1D2) ™1 F/23 " c=8([Dy, o] [Da, ] )

c>1
X > di?

c21>[D1,c][Da2,c]
k
D1 Dy)*k? — :

< (D1Do) exp( 4D1D2>
(Note that our choice of K(w) in (3.1) is sufficient to suppress the term
exp(|Imw|m).) This completes the evaluation of the left side of (3.17). In
view of (3.18)—(3.20), under the condition that DDy < k/(16log k), we can
write
(3.21) My < (D1D5)*?k~Y2(log k)% log(D1 D) + k4.
(Note that log(D1D2) = 0 when Dy = Dy = 1.)

T 278
(2)

L(1 4 2w, x1x2) K (w)

e\Imw|7r ]dw|
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The evaluation of My in (3.15) is much easier. As ¢ .(s;u,v) < 1 for
Res > 1, we move Rez = 3 to Rez = 4 and then Rew = 2 to Rew = 1. By
Lemma 2.2, a crude estimate gives

(322) My < (D1D2)*> ¢ (D1, d[Da, )

<

(1) (4)

w 2 —w -z z 2
I(k/2 + w)? T(k/2 mr(—) K (w)|dz]du|

T(k/2)2 T(k/2+w+ 2/2)

< (D1Dy)3k™4
Hence, for D1 Dy < k/(16logk), (3.15), (3.21) and (3.22) yield
(3.23) My < (D1 D)2k~ 2(log k) log(Dy Do) + k=4

For simplicity, let us write

=)

L1 T(R/24 w)D (k)2 — w) Di\"

and put E(1,k) = k=4 and E(D, k) = D3?k~1/2(log k)* for D > 1. One can
see that by the residue theorem,

(3.24) I(Dy, Ds) + I(Ds, Dy) = 1.

We now deduce our result. From (3.4), (3.7) and (3.23), we have

DD )
S(x1:x2) = Vyixe (ﬁ) + 2" My + O(E(D1 D3, k)).

e If x is real, then using 7(x) = x(—1)7(x) (for real x), we deduce from
(3.6) and (3.12) that

SO x) = (1 +i*x(~1))@(k, D) + O(E(D?, k).

From (3.3) and ;(x)? = 1, parts (a) and (b) of Theorem 1 follow.
e If y is complex, then from (3.5) and (3.12),

S(x.x) = L(L, x%) + e (x)8(k, D) + O(E(D?, k).

This completes part (¢) with (3.3).
e If x1 # x2 and x1 # X, then, by (3.5) and (3.14),

S(x1:x2) = L(1, x1x2) +ex(x1) L(1, X1 x2) I (D2, D1)
+ 5k(X2)L(1, lez)I(Dl, DQ) + O(E(DlDQ, ki))
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By (3.3) and using I(-,-) = I(-,-), we deduce that
> wiL(f @ x1,1/2)L(f @ x2,1/2)

feBg
= L(1,xax2) + ex(x1)er(x2) L(1, X1 X2)
+ (ex(x1) L(L, X1x2) + er(x2) L(L, xaX2)) (I (D1, D2) + I(D2, D1))
+ O(E(D1 D2, k)).
By (3.24) this completes the proof of Theorem 2.

4. Properties of E,, ,,(s,a/c). This section is independent of the pre-
vious parts. It is devoted to the study of the generalized Estermann function
which is defined, for Res > 1, as

(4.1) Eyixo(s,h/k) = ZTXL)Q e(nh/k)n~

where £ > 1 and (h,k) = 1, and 7y, y,(n) = >, x1(a)x2(b). (x1 and
X2 are primitive characters.) We change here the notation a/c into h/k and
clearly no confusion will be caused. To begin with, let us fix our notations:
(m,n) and [m,n] denote respectively the greatest common divisor and the
least common multiple of the two natural numbers m and n. We also denote
by (-,+) an ordered pair when no confusion will occur. Given h, k and D,
D5 (the moduli of x; and x2), we write

= (D1,k), k=bdr1, Di=bid,
= ((51 ), (51 = Alé, R1 = AQH,
02 = (D2, k), k =d2k2, Dy = dody,
( )

AQ = (52, K1), (52 = A2(5, R = Alli.

y K2

(4.2)

Moreover, for any two coprime integers m and n, we define m™ and ™
to be a pair of integers satisfying mm(™ + nn(™ = 1.

THEOREM A. The function Ey, y,(s,h/k) can be analytically continued
to a meromorphic function, which is holomorphic on C except possibly at

s = 1. The order of the pole is at most two. Suppose the Laurent expansion
of Ex, x2(s,h/k) at s =1 is

Evins(8,1/k) = Ay o (B k) (s — 1) 72 4+ Byy o (B k) (s — 1) 7 4o+

When x1 = xo, we put x = x1 = x2 and D = D1 = Do. For k = Dk with
(Dv'%) =
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Ay 8) = k(0w () A2,
By (. k) = 26~ ()X () () 20 ( ok Y ).

pID
In all other cases Ay, y,(h,k) =0. When x1 # x2,

By, xa (hs k) = 612(k)E™ 7 (x1)X1 (h)x2 (k1) L(L, x2X1)
+ 021 (k)™ 7 (x2) X2 (R) X1 (K2) L(1, X1X2)

where 6;5(k) = 1 if k = Dir; and (ks, Dj) = 1, and ;5(k) = 0 otherwise.
Here ¢(+) is the Euler phi function and L( ) is the Dirichlet L-function
for the character 1.

In addition, let hg = ho(0,k) = h(1 — 53(@}%(5)) and
Co = Co(6, dv, da, %, K1, Ka) = 68 ™™
Then Ey, (s, h/k) satisfies the functional equation
Exixa2(s, h/k)
= Ava[Da, K]7[Da, K] (20) % 20(1 — 52 3 Xl(a)xg(b)e<abh0>

k
a(Dy)
b(D2)

X {(1+ xaxa(=1))e) (1 — s;a,-b)
— (e(s/2) + xixa(—1)e(=5/2))py, (1 — s;a,b)}.

The functions ¢} . (-;a,b) are given by the analytic continuation of the Diri-
chlet series

(4'3) (pik(s;a,b) = go}q;kthDZ(S;a, b)

= Z l_ST}:Ek(l; a, b)e <$T CO>
=1
for Res > 1, of the arithmetical functions 7,7, (l;a,b). These functions are
defined by
(4.4) T;fk(h a,b) = T}:z'jk,Dl,Dg(l; a,b)
am bn
= C C
rr%;l e(Dllil 1+ DQKQ 2)
(m,n)eS(ab,F)

where
(4.5)  S(a,b,F) ={(m,n) € Nx N:m = Fbhd; (mod Ay),
n = Fahds (mod Ay)},
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and
_ _ 1 sxle) (k) 5 (k1)
Cl = Cl(h, (5, /i,dl, /ﬂ) =1 00" "hh d1d1 s
Cy = Co(h, 8, ki, do, o) = 1 — 56" BR" dod ™|
Here and in what follows, the summation ) ,n=; runs over all positive
(*)
integer pairs (m,n) with mn =1 and satisfying the constraint (x).

Proof. From (4.1),
(4.6)  Eyixa(s,h/k)

= Y xa(m)xa(n)e(mnh/k)(mn)~*
m,n=1
aBh s s
= Z x1(a)x2(b) Z e< 5 > Z m Z n
a (D) a,B (k) m>1 n>1
b(D2) m=a (D1),m=a (k) n=b(D2),n=0 (k)

for Res > 1. The pair of congruence equations m = a (mod D;) and m = «
(mod k) is solvable if and only if §; = (D1,k)|a — a. When 6; |a — «, m is
in the arithmetic progression {Djk1l + adlagm) + amﬁgdl) : 1 € Z}. Define

)\&121 € (0,1] such that
adlagm) + amﬁgdl)
Dllﬂ

(i.e. the fractional part of the right side). We have

(4.8) Byixo(s,h/k) = [D1, K] °[Da, K] ) xa(a)x2(b)

(4.7) A =

(mod 1)

a(D1)

b(D2)

afh 2
<y e(—k )g‘(s,A&{L)«s,A;},)

a=aqa ((51), ﬁEb ((52)
where ((s,a) =Y 2 ((n+a)~* (for Res > 1) is Hurwitz’s zeta function.
It is known that (s, a) is meromorphic on C with a simple pole at s = 1
of residue 1, and satisfies the functional equation

(4.9) ((s,a) = i_IF(l—8)(277)3_1(6(8/4)g0(1—s,a)—e(—s/4)g0(1—s, —a))

where for Res > 1, p(s,a) =Y, e(ma)m™°. From (4.8), the order of the
possible pole of Ey, (s, h/k) at s = 1 is at most two. Hence, Ey, (s, h/k)
is holomorphic except possibly at s = 1. Moreover, for 0 < Rew < g, we
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have when a = a (mod §y),

(4.10) Z m—l—w = [Dla ] - wC(l +w, )\Oé 21)

= [Dy, k] 't + Ci(a,a) + - -
and when 8 = b (mod ds),

Y. =Dk e+ Ca(B ) +
n>1
n=b(D2),n=0 (k)
Inserting these into (4.6) then yields

(A1) Ayah b
SRR SRONC I DR & o |

a(Dq) a8 (k
b(D2) a=a(81), B=b (62)
(4.12) By, o (h k)
= > x(a)xa(b)
a(D1)
b(D2)
Ofﬂh —1 —1
x Y el =)D KT Culaa) + (D1, KT Co(8,)).
a=a(01), S=b(62)

Denote the sum in Ay, \,(h, k) by X4, ie.

Zam X owle) Yo%)

a(D1) a,0 (k)
b(D2) a=a (1), B=b (62)

Noting the condition (h, k) = 1, we have

(413) Za= > xi(a)x2(d) > e((a—i—élu)(b—i-égv)%)

a(D1) u (K1)
b(D2) v (K2)
abh avh h

= 3 @) X o) 3 euo i )

a(D1) v (k2) u (K1)

b(D2)

abh avh
= K1 Z Xl < A ) Z €<ﬁ—2)
a(D1) v (k2)

b(D32) K1|b+d2v
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The last sum is zero if (k1,d2) > 1 (as then (b, D2) > 1). Applying the same
argument with the roles of u and v reversed, we get

(A1) Si=r Z)m(a»@(b)e(%) > (™).

a (D1 u (K1)

b(D2) Kalatd1u
Thus, X4 = 0 except possibly for (01, k2) = (d2,k1) = 1. When (61, k2) =
(02,k1) = 1, we have, in view of (4.2), k1 = k2 = K, 01 = d = ¢ and
(0,k) = 1. From (4.13) and (4.14), we have

(k)
bh 1 —466
Ya=kK Z Xl(a);g(b)e(% T)
a(D1)
b(D2)
_ 155" _
= KT (X2)X2 (dzh T) Z x1(a)Xz(a),
a(D1)
_ 155" _
Za=nrla)xa(dh———] > x2(O)x1(b),
b(D2)

by using the primitivity of x; and xs. Hence X4 is non-zero only when
dy =dy =1, x1 = x2 (so Dy = Dy) and k = Dk with (D, k) = 1. In this case,
YA = rt(x)X(h)x(k)¢(D). This completes the evaluation of Ay, y,(h,k)
with (4.11).

In view of (4.12), we shall evaluate the sum X'p(x1, x2), given by

h
419 Zabaw) = ¥ oa@e) X 2
a(Dy) a,0 (k)
b(D2) a=a (61), B=b(d2)

and we have

(4.16) By, xo(h, k) = [Da, k] 7 Zp(x1, x2) + [D1, k]~ ZB(x2, x1)-
We define, for Res > 1,

F(s;x1, x2)
afh
= Z x1(a)x2(b) Z e(%) Z m=S.
a(Dq) a,B (k) m>1
b(D2) a=a (01), 8=b (d2) m=a (D1), m=a (k)

From (4.10) and (4.15), Xp(x1, x2) equals the constant term in the series
expansion of F(s;x1,x2) at s = 1. This function F(+; x1, x2) can be written
as
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F(s;x1,x2)
s afh
SDIRTOID SRS SENESD SETCID St )
a (D) a (k) m>1 b(D2) B (k)
a=a (6;) m=a(D1),m=a (k) B=b(52)
s ha(b+ z6
SPORUCID SRS MENETED DRUD SR Gy
a (D7) a (k) m>1 b(D2) z (k2)

a=a (6,) m=a(D1), m=a (k)

e Y ae Y > Y ey )
a(D1)

a=a (81),a=0 (k2) m=a(D1), m=a (k) ’

—arlwn@h Sue Y w(2) X e

a (D) a (k) m>1
' a=a (61),a=0 (k2) m=a (D1), m=a (k)

Thus, if dy # 1 or (k2,01) > 1, then F(s;x1, x2) = 0; otherwise from (4.2),
we have 02 = Do, A} =1 (so k = Dake = Dok, 51 = §) and
F(s;x1, x2)
= rT(x2)X2(h) D xala) > Xa(b) > m=*

a (D b(D m>1
- nbéaQ&) m=a (D1),m=kb (kD2)

=K' (x2)Xa(h) Z x1(a) Z X2(b) Z m”s,
a(D1) b(D2) m>1
kb=a () km=a (D1), m=b(D2)

after replacing m by wkm. Therefore, F(s;x1,x2) = 0 also if (k, D7) > 1.
When (x,D1) = 1, we see that 6 = 6, = (D1, Dak) = (D1, D2), and by
replacing a by ka,

(417)  F(s;x1,x2)

= ' T Mxa(k) D xale) Y X)) >, m

= /77 (2)Xa(h)xa (k) L(s, X1%0):

When x1 = x2 (= x) and k = Dk with (k, D) = 1, we have
F(s;x,x) = &' 00X ()x(R)¢(s) [ (1 = p7%)
p|D

and hence the constant term in its series expansion at s = 1 is
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Zaaoxa) = rCOx) U7 (3~ togre 3 ),
p|D

When k = Dk, (k,D1) =1 but x1 # X2, from (4.17) we have

Yp(x1;x2) = T(x2)X2(h)x1(k) L(1, x1X2)-

By (4.16), the evaluation of By, y,(h,k) is complete.
We proceed now to show the functional equation. Applying (4.9) to (4.8),
we get

(4.18) By, x.(s,h/k)
= — [Dy, K] 7*[Da, K] 5(2m)* 72 I (1= 5)° > xa(a)xa(b)

R A S

Oé,ﬁ (k:)
a=a (1), B=b(d2)

#e( =5 )l = s 2ot -5, A

2 2
- 90(1 -5 )‘a1,21)90(1 -5, _)‘(ﬁ%) - 90(1 ey _)‘al,z)@(l -, )‘(ﬁ,l)))>
Our task is then to simplify the last four sums which we write accordingly

@19) 5 e U )els et 21D
a=a(61)
B=b (d2)
= Z (mn) Ty, (£m, £n; a, b)

m,n>1

for Res > 1. For simplicity, we write T'(m,n;a,b) for T}, (m,n;a,b), that
is,

(4.20) T(m,n;a,b) = Tp 1 (m,n;a,b)
aﬁh 2
— Z e <—k: + m)\alzl + n)\(ﬁ,))>
a=a(01)
B=b (d2)

Let us take @« = a + zd; and 8 = b+ ydo where z and y run over
residue classes mod k1 and mod ko respectively. From (4.7) and (4.20),
a rearrangement of terms gives
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(4.21)  T(m,n;a,b)
. @+ am n bn
B k Dik1  Dsokg
y(k2)

Z h(b+ yba) + md™)
K1

z (K1

—(r2)
B abh ~ am bn y(ah + ndy ")
= /116( 2 + Diry + D2’£2> Z e( P :

y(k2)
h(b+62y) +md " =0 (k1)

6< y(ah +n d“”))

K2

(Recall the definition of ("™ in (4.2).) The congruence h(b+ do3) + mEY“)

= 0 (modkq) is solvable if and only if As|bh + magm). Subject to this

condition, we have

y = _5OF0 <4bh - mdy"

) (mod ),

so that the sum in (4.21) equals

(k)7 (k) —(k2) —(k1)
0" "h" ah+ndy " bh + md; z —(k2)
e(— - A A, ) (EA )e(A—l (ah +ndy™") ).
E 1

Hence, T'(m,n;a,b) is non-zero only if A | ah+ naém) and Ag | bh + magm).

In this case, these two conditions can be expressed as

(4.22) m = —bhdy (mod Ay) and n = —ahds (mod 4y),
and then

(4.23) T(m,n;a,b)

abh am  bn SR ah 4 nds™ bh+ mE§“1)>

— A _— —
1’“( K " Dimi " Dors 3 A Ay

7(x)
bn mnh
=A h -
1/11(3( 0o+ —— Dl 1 1+ Dores Cy 7 C[)>

where ho = h(1 — 66 RR"™), ¢1 = 1 — 3" rRWa @™, ¢ = 1 -
53" R dod™ and 00 — gaW g2

In view of (4.4), (4.5), (4.22) and (4.23), we have
abho e )

> T(em, tra) = v o, 20)e( 0+ (97 G

mn=|
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corresponding to the four cases in (4.19). The + signs attached to a and b
are chosen to be the same as the pair of + signs in +m, +n; while (F) = —
if both signs taken are equal, and (F) = + otherwise. From (4.19) and (4.3),
we obtain

(4.24) > e<o‘7ﬂh)¢(1 — 5, EA)(L — 5, £AF)
a,B (k)
a=a(01)
B=b(d2)

abh[)

k

= Amw( )(pﬁjg)(s; +a,+b).

Here, again (F) takes the — or + sign according as the two signs taken from
:I:)\S’ZL, :l:)\(;’l)) are the same or not. Inserting (4.24) into (4.18) we see that
Ey. - (s, h/k) consists of four multiple sums corresponding to the possible
+ signs in the right side of (4.24). It is apparent that the left side of (4.24)
is, by (4.7), independent of the choices of representatives a (mod D;) and
b (mod D). Replacing a, b by —a and —b in the two cases (—, —) and (—, +),
we deduce the desired functional equation.
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