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1. Introduction. For a real number z, [z] is the integral part of x, {z}
is the fractional part of x and ||z| = min({z},1 — {z}) is the distance of x
to the nearest integer.

Let 0 < § < 1and 0 < o < 1. A fraction p/q, ¢ > 0, is called a best
a-approzimation to 6 (homogeneous for o = 0) (see [4]) if

g0 — af| = [¢f — a — p],

and if
170 — afl > [lgf —af|  for 0 <j <gq.

Notice that if ||¢f — af| = 0 for some ¢ € N, then the set of all best a-
approximations to @ is finite. It is well known [4] that the best homogeneous
approximations to @ are given by the continued fraction process. Namely, the
convergents py, /g, to 6 are the best homogeneous approximations to 6, for
n>1if0<0<1/2andforn >2if1/2 <0 <1 (see Remark 3.3). The idea
of a best inhomogeneous approximation (a > 0) has been investigated by
several authors, for example Khintchine [7], Barnes and Swinnerton-Dyer [2],
Cassels [3], Sos [11], Cusick, Rockett and Sziisz [5] or Komatsu [§].

We say that an index ¢ is a critical index of a real-valued sequence G(j),
jeN,if

G(j) >G(q) for0<j<yq.

We say that sequences G(j) and H(j), j € N, are diophantine equivalent if
they have the same set of critical indices and are equal on this set. Note that
a fraction p/q is a best a-approximation to 6 iff ¢ is a critical index of the
sequence ||70 — «||, 7 € N. Hence, the sequence of the best a-approximations
to 0 is determined by any sequence diophantine equivalent to the sequence
176 —all, j € N.
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A (0, a)-billiard sequence (homogeneous for v = 0) is a sequence F(j) €
[0,1), j € N, which satisfies the following conditions:

F(1) = a/2,
FG)+F(j+1)=6or1+6 forjodd,
F(j)+F(i+1)=1o0r0 for j even.

Note that if o and 6 are rational, then F'(j) is a periodic sequence. We
consider a billiard table rectangle with the bottom left vertex labelled vy,
and the others, in a clockwise direction, v1, vo and vg. The distance from vy
to vy is /2. We describe the position of points on the perimeter by their
distance around the perimeter measured in a clockwise direction from vy, so
that vy is at position 6/2, vy at 1/2 and vs at (6+41)/2. If a billiard ball is sent
out from position F(1) = /2 at an angle of /4, then the ball will rebound
against the sides of the rectangle consecutively at points F'(2), F(3),....

Let F(j), 7 € N, be a (0, «)-billiard sequence. We define the following
sequences:

L [min{[[F(j) v : 0<i <3} for j > 1,
b) = {min{up(j)—mn ci=1,31  forj=1,
B(j) =min{||[F(j) —vill : 1<i<3}, jEN,
C() =min{||F(k) - F()|| : 1<k<li<j+1}, jeN

Since ||z —y|| = min({z —y},1 — {x — y}) is the shortest perimeter distance
between z,y € [0,1), the value A(j), 7 > 1, is the distance between the
rebound F(j) and the set of vertices of the rectangle, and C(j) is the minimal
distance between any two rebounds F'(k) and F(l) for 1 <k <l <j+ 1.

In Theorem 3.1(1) we prove that |[j60 — «f|| = ||F(j) — F(j + 1)|| for
j € N. The main aim of this paper is to prove Theorem 3.2: the sequences
l70—«l|, 2A(j) are diophantine equivalent, and so too are the sequences C(j),
min(2A(j), |F(j + 1) — F(1)|). In the homogeneous case all the above se-
quences are diophantine equivalent to the sequence 2B(j), j € N.

In Theorem 3.3 we prove that if p/q, ¢ > 1, is a best a-approximation
to 0, then the numbers (—1)P, (—1)? determine the unique vertex v(q) such
that ||¢0 — «f| = 2||F(q) — v(q)||- In Corollaries 3.2 and 3.3 we consider
the homogeneous case: if p, /g, and a,, n € N, are the sequences of conver-
gents and partial quotients to 6 < 1/2, then the sequences v(g,) and
sgn(F(¢n) — v(gn)) are determined by the sequence (—1)*, n € N. On the
other hand,

o = [U=t01] _ [P ) ol
n = =

g0l 15 (gn) — v(gn)l|
The following theorem is known as the Steinhaus conjecture or the three

for n > 1.
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distance theorem: there are at most three lengths when the unit circle is
partitioned by the points {j#} for 1 < j < n. This theorem was first proved
by So6s [11], [12] and then by Swierczkowski [14] and Suranyi [13] (see also [1]).
Suranyi formulates this result in terms of n-Farey points. Ravenstein [10]
gives solutions in terms of “best” and “second best” rational approximations
to 0. Geelen and Simpson [6] prove the following five distance theorem: there
are at most five lengths when the unit circle is partitioned by the points {j60}
and {j# + f} for 0 < j <n.

In Theorem 2.1 we give an explicit formula for a (6, «)-billiard sequence.
It follows that the five (three) distance theorem is equivalent to the following:
there are at most five lengths (three if F'(1) = 0) when the perimeter of
the rectangle is partitioned by a finite sequence of successive rebounds of a

billiard ball.

2. Billiard and the five distance theorem. For real numbers z,y we
write

r=y iff x —y is an integral number.
THEOREM 2.1. Let 0 < 6 <1 and 0 < a < 1. A sequence F(j) € [0,1),
j €N, is a(0,a)-billiard sequence iff it satisfies the following conditions:
F(2n) = {nh — a/2} forn e N,
F2n+1)={-nb+«a/2} forneNU{0}.

Proof. 1f the above equalities are satisfied, then
F2n—1)+F(2n)=—-(n—1)0+a/24+nb —a/2 =10,
F@2n)+F2n+1)=n —a/2 —nb+ a/2=0.

Since 0 < F(2n —1) 4+ F(2n) < 2, we get F(2n — 1)+ F(2n) =60 or 1 4 6.
Since 0 < F(2n) + F(2n+1) < 2, we get F(2n) + F(2n+1) =0or 1.

Conversely, we prove, by induction, that the (6, «)-billiard sequence sat-
isfies the condition of Theorem 2.1:

F2n)=-F2n—-1)4+0=(n-1)0—a/2+60 =nb —a/2,
F2n+1)=—-F(2n)=-nl+a/2. n

This theorem shows that the set of values of a (0, a)-billiard sequence is
the union of two sets of points placed consecutively around the circle an angle
0 apart in two opposite directions. Hence the five (three) distance theorem
is equivalent to the following corollary:

COROLLARY 2.1. There are at most five lengths (three if F/(1) = 0) when
the perimeter of the rectangle is partitioned by a finite sequence of succes-
stve rebounds of a billiard ball. Here “length” means the distance around the
perimeter between adjacent rebound points.
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For a family £ of sets, a member S € L is defined to be a minimal set if
it does not contain any other member of L.

COROLLARY 2.2. The trajectory obtained by a finite sequence of succes-
stwe rebounds of a billiard ball “draws” at most 15 incongruent and minimal
rectangles: b squares and (g) non-square rectangles (at most 3 + (g) =6 if
F(1) =0).

REMARK 2.1. Consider a general case, when the initial angle of the ball’s
motion is not w/4. By a linear transformation L (compressing or stretch-
ing) we can change the billiard table rectangle, so that the general case is
transformed to the m/4 case of Corollary 2.2. Any square which appears in
Corollary 2.2 is transformed by L~! into a rhombus. By analogy, any pair
of rectangles with the perpendicular sides of the same length is transformed
into a pair of parallelograms which are mirror images of each other. Thus
we get at most 25 incongruent and minimal parallelograms: 5 rhombi and
10 pairs of parallelograms which are mirror images of each other. There are
also at most 5 incongruent triangles adjacent to the perimeter in the /4
case and 10 in the general case.

3. Billiard and the best approximations. Let 0 <0< 1,0 < a <1,
let F(j) be the (6, a)-billiard sequence, and let A(j), B(j),C(j), j € N, be
the sequences defined in the Introduction.

LEMMA 3.1. For a real number x,
ol = min(2] . 2] = = 1))
Proof. If 2n < x < 2n+ 1, n € Z, then
{z} =z —2n=2|3z| and {—a}=2n-(z—1)=2|3(=-1)].
If2n — 1<z <2n,n € Z, then
{z}=z+1-2n=2|3(x+1)|| and {—z}=2n—2=2|3z|.
Hence
|z|| = min({z},{—=z}) = mln(2H%xH,2H%(m —1)]). =
Notice that ||z|| = ||y|| if x =y or x = —y.
THEOREM 3.1.
(1) 150 — all = 1F@G) = FG + D]l
(@) 1j6 — of = {min(QHF(j) —30|,2||F(j) = 5(1+0)||) for j odd,
J0 — o . : I :
mln(QHF(])H,2HF(j) - 5”) for j even.
Proof. By Theorem 2.1 we have the following equalities:
F2n+1)—F@2n+2)=-nl+a/2—[(n+1)§ —a/2]=—2n+1)0 + «,
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F22n)—F(2n+1)=nl —a/2 — (—nb + «a/2) = 2nl — a.
Hence (1) follows.
Theorem 2.1 also yields the following equalities:
2F2n+1)—0=—-2n+ 1)+, 2F(2n)=2nd — a.
Hence by Lemma 3.1 we obtain (2). =

LEMMA 3.2. Sequences G(j) and H(j), j € N, are diophantine equivalent
iff for every j € N there exist j1,jo < j such that

G(h) < H(j) and H(j2) < G(j).
Proof. Assume that G(j) and H(j), 7 € N, are diophantine equivalent.

If j is not a critical index, then there exists a critical index ¢ < j such
that H(q) = G(¢) < min{H(j),G(j)}. If j is a critical index then both

inequalities are satisfied with j; = jo = j.

Now we prove the converse. Let ¢ be a critical index for the sequence G(j).
Since G(j1) < H(j2) < G(q) for some 1 < j; < jo < g, we have j; = jo =¢q
and H(q) = G(q). If ¢ is not a critical index for the sequence H(j), then we
obtain the contradiction G(i1) < H(i2) < H(q) = G(q) for some 1 < i; <
i < q. By analogy, if ¢ is a critical index for H(j), then H(q) = G(q) and ¢
is a critical index for G(j). =

By the definition of a (6, «)-billiard sequence we obtain the following:
REMARK 3.1. For j even,
F(j)—30=30—-F(j—1) and F(j)—3(0+1)=1(0+1)—F(—1).
For j > 1 odd,
F(j)=-F(-1) and F(G)-3=5-F(G-1),

REMARK 3.2.
Fk) — F() = {F(l —1)—F(k+1) for1l<k<Iof different pari‘.cy,
F(l4+1)—F(k+1) for1<k <1 of the same parity.
LEMMA 3.3. Let j € N.
(1) There exists 1 < j; < j such that
C(7) = min(|[F(G1 +1) = FG), [[F (G +1) = F@)]).
(2) If F(1) =0, then there exists 1 < jo < j such that
CU) =FG2+1) = FG2)l  and [[F(2)ll #0  forjz > 1.
Proof. By Remark 3.2 we have
F(k+EEEDY — p(1— EEED |1 for 0 < 1 — k odd,

2
Hence (1) follows.

|F(1)— F(l—k+ 1) for 0 <1 —k even.
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Let F(1) =0. If 0 < — k is even, then by Remarks 3.2 and 3.1,
I1F(k) = FO)| =FQ) - FI-k+ 1| =[F1)—-F(l-k)|
=[P+ 58 - F(FH)]
Hence there exists the minimal number 1 < jo < j such that |F(ja + 1)
— F(j2)|| = C(4). If jo > 1 and F(j2) = 0, then by Remark 3.1 there exists

an even i < jo such that F'(i) = 0. Thus by Remark 3.2 we obtain a contra-
diction 0 = ||F(i) — F(1)|| = ||F(§i4+1) — F(3i)|| > C(j). This yields (2). =

THEOREM 3.2.

(1) The sequences ||j0—cl| and 2A(j), j € N, are diophantine equivalent.

(2) The sequences C(j) and min(2A(j), [|[F(j +1) — F(1)|), j € N, are
diophantine equivalent.

(3) If F(1) = 0, then the sequences ||jO|, C(j) and 2B(j), j € N, are
diophantine equivalent.

Proof. By Remark 3.1 we have:
min (2{|F(5) = 30[], 2(|F() - 31+ 0)]))
=min(2||F(j —1) — 36

2[FG=1) = 50+0)])
for j even, and

min (2[F()1,2[|F(7) = 3]|) = min(2[F(j - 11,2
for j > 1 odd. Hence by Theorem 3.1(2) we have
. { 2A(j) = min(|(j — 1)0 — a6 — al}) for j > 1,

2A(1) = |10 — ]|
Thus by Lemma 3.2 condition (1) holds.
By Theorem 3.1(1) and (i) we have

(i) C(j) < min(2A(j), [|[F(j +1) = F(1)[]) for j €N.
By Lemma 3.3(1) and Theorem 3.1, for every j € N there exists 1 < j; < j
such that
C(y) =min([|[F(jr +1) = FG)IL [FGL+1) = F()]])
min (2| F(j1) = 56|, 2(|F (1) = 5(1+ 0)[, [F(jr + 1) = F(1)])
= for j1 odd,
min (2 F G0, 2 F(r) — 3 IF G +1) = FOIl) for ji even
> min(24(j1), [|[F(j1 + 1) = F(1)]]).
Hence by Lemma 3.2 and (ii) condition (2) is satisfied.
Let F(1) = 0. By (ii) we have
(i) C(j) < 24(j) < 2B(j) forj €N,

|F(j—1) - 3])
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By Lemma 3.3(2) and Theorem 3.1, for every j € N there exists 1 < jo < j
such that

C(j) = 1F(2+1) = F(52)|l
B min(ZHF Jo) — 19H QHF jo) — 5(14+6) H) for jo odd,
min (2| F(j2)l, 2||F (j2) 2H) for jo even.
Since C(j) < ||[F'(j2)|| # 0 for jo > 1, we have
C(j) = 2B(j2)-
Hence, by Lemma 3.2, (iii) and (1), condition (3) holds. m
By Theorem 3.2(3) we obtain the following Dirichlet approximation the-
orem [4].
COROLLARY 3.1. Let 0 and © > 1 be real. Then there is an integer q
such that
0<g<O, ¢ <O
Proof. If F(1) = 0 and ¢, n € N, is the increasing sequence of all critical
indices of the sequence C(j), 7 € N, then by Theorem 3.2(3), ||g.0|| = C(qn)-
Consider n such that ¢, < @ < gu41. Since C(j) < (j +1)7! for j € N, we
have
HQnQH = C(Qn) < C(Qn-‘rl - 1) < qn+1 <O~ L

REMARK 3.3 (see [4]). Let integers py, ¢n, an be defined by

CF(l) {po = 17 qo = 07 {anrl = GnpPn + Pn—1,

p1=0,q=1, n+1 = AnQn + qn—1 forn > 1,
where
_ |:|in9 - pn1|:|
ap = | —————
|Qn9 - pn|

if ¢,0 # pp, and the process stops with py, ¢, if ¢,0 = p,. Then the p,/q,
are the best homogeneous approximations to 6 for n > 1if 0 < § < 1/2 and
for n > 2 if 1/2 < 6 < 1. Further,

CF(2) (=1)"™(gnf — pn) >0,
CF(3) Gn1Pn — qnPny1 = (=)™
It is usual to speak of the p, /g, as the nth convergents to 6 and to call the

ay, the partial quotients. Since the a,, are determined by 6 and 6 = lim p,, /gy,
we may write 0 = [0; a1, ag, . . ..

REMARK 3.4. Let 0 < 6 < 1/2. Homogeneous 6 and (1 — 6)-billiard
sequences have symmetrical interpretation in the billiard rectangle with sides
of length 16 and (1 — ). Hence by Theorem 3.2(3) the sequences [|j6|| and
l7(1—8)||, 7 € N, have the same set of critical indices. One can confirm this
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in terms of convergents to # and to 1 — 6. Let p,/q, and p,,/q,,, n € N, be

the nth convergents to 6 and 1 — 6 respectively. If = [0; a1, aq,...], a1 > 1,
then by the Lagrange formula [9], 1 — 6 = [0;a;,a2,...] = [0;1,a; — 1,
as,as, . ..|. Hence, by CF(1) and by induction we obtain

Gy =01q1 +qp=1=q1,
g3 =020+ G, = (a1 — D)1 + 1 = a1 = ¢o,
qn-i-l =anq, + ¢u_1 = @n—14n—1 + Gn—2 = Qn for n > 3.

LEMMA 34. If g0 — a = p+ 2d, where ¢ € N, p € NU {0}, then

d for p and q both even,
Flq) = 0/2—d for p even and q odd,
V= 1/24d for p odd and q even,

%(1 +0)—d forp and q both odd.
Proof. By Theorem 2.1, we obtain

F(q)E%(q@—a =p/2+d=d for p and ¢ both even,
Flg)=30—-q¢0+a)=0/2—p/2—d=6/2—d for p even and ¢ odd,
F(g)=34(q0 —a) =p/2+d=1/2+d for p odd and ¢ even,
Flg)=30—-q0+a)=0/2—-p/2—d

1

5(1+6)—d for p and ¢ both odd. =
THEOREM 3.3. Let p/q, ¢ > 1 be a best a-approzimation to 6.

(1) There exists exactly one vertex v(q) with ||¢d — o] = 2||F(q) —v(q)||,

and
vg for p and q both even,

vy for p even and q odd,
vla) = vo  for p odd and q even,
vy for p and q both odd.

(2) If F(1) =0, then

—d forp even and q odd,
F(q) =< va+d forp odd and q even,
vg —d for p and q both odd,
where 2d = qf — p.

Proof. Let g > 1. Since p/q is a best a-approximation to 6, ¢ is a critical
index of the sequence |70 — «||. By Theorem 3.2(1), ¢ is a critical index
of the Sequence A( ) ' E N, and ||¢gf0 — af| = 2A(q). Hence there exists a
vertex v(q) € {0,260, 3,1(1+6)} such that ||q9 —af = 2||F(q ) v(q)||. By
Remark3 1, |[|[F(q )H = |F(g—1)|| and ||F(q)—3| = ||[F(¢—1)—3|| for ¢ odd,
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and [ P(6)=3]) = P(a~1)~4]] an |P(6)~3140)]| = [[Fla—1)—3(1+6)]
for q even. Hence we have

n v(q) € 2, 2 1+0) } for ¢ odd,
c {07 2} for g even.
Since |[F(q) — &) + ||F(¢) = (1 + 0)|| = [IF(0)]| + || F(q) — 3|| = % and

1F(q) —v(q)| = 3llg0 — af < 310 — af| < 1, v(q) is uniquely determlned
by (i). Thus by Lemma 3.4 we obtain condition (1).

If F(1) =0, then by CF(3) of Remark 3.3, p, q are relatively prime. Since
lg0—p| = ||q0]| < ||0]|, we obtain 3(1+60+|g0—p|) < 1 and 1(6—|g0—p|) > 0.
Hence by Lemma 3.4 we obtain Cond1t1on (2). =

EXAMPLE 3.1. Let F'(1) =0 and 6 = t/m be a fraction in lowest terms.
Since m is the last critical index of the sequence ||jt/m||, j € N, Theo-
rem 3.2(3) implies that C(j) > 0 and B(j) > 0 for 1 < j < m. Hence by
Theorem 2.1 we obtain the following conditions (1) and (2). Theorem 3.3(2)
yields (3).

(1) {F(1), F(2),. }_{O’m""’mTl}

(2) min([|F () *%!LHFJ =31+ = g 15 <m,
ﬁ for t even,

(3) F(m) =X % for m even,
%(1 + %) for t and m both odd.

By condition CF(1) one may state the results of Theorem 3.3 in terms
of partial quotients.

COROLLARY 3.2. Let F(1) =0 and 0 = [0;a1,az,...] < 1/2. If gy, is the
increasing sequence of all critical indices of the sequence |70, 7 € N, and
v(gn), n € N, is the sequence of vertices such that ||gn0] = 2||F (gn) —v(gn)||,
then

1 fOT' ay even,
B _ )2
(1) v(q1) =0/2, v(q2) = { %(1 +0)  for ay odd,

(2) U(Qn+2) = U(qn) iff any1 is even,
(3) v(gn+t1) # vign).

Proof. Let p,/q, be the nth convergent to . By CF(1), p1 =0, po =1
and ¢2 = a1. Hence by Theorem 3.3 we obtain (1).

If apqq1 is even, then by CF(1), ppi2 = pn and gpi2 = gn. Thus, by
Theorem 3.3, v(gn+2) = v(qn). If any1 is odd, then CF(1) yields ppio =
Pn+1+Pn and gni2 = @1 +qn. Since ppy1 O gy is odd, we have p,12 # py
Or ¢nt2 Z qn. Thus, v(gn42) # v(g) by Theorem 3.3.
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We prove (3) by induction. Notice that v(g2) # v(q1). Assume that

0(gns1) # 0(an)- T Gy is even, then v(gnra) = (gn) £ v(gns1) by (2).
If ap4q is odd, then by CF(1) we have v(gn+2) # v(gn+1) analogously as
in (2) ]

COROLLARY 3.3. Let F(1) =0 and let 6 < 1/2 be irrational. If gy, is an
increasing sequence of critical indices of the sequence ||j0||, 7 € N, and v(gy)
is a sequence of vertices such that ||gn0| = 2||F(gn) — v(qn)|, then
(1) sgn(F(gnt1) = v(gn+1)) = sgn(F(gn) —v(gn)) iff

0(dns1) = 1/2 o7 v(ga) = 1/2.

Proof. By Corollary 3.2(3), v(gn+1) # v(gn). Hence by Theorem 3.3(2)

and condition CF(2) we obtain (x). m

This corollary shows that a billiard ball, starting from vertex 0, changes
the orientation of its trajectory at the points F'(g,) by the rule (x).
EXAMPLE 3.2. Suppose F (1) =0, 6 = [0;a1,a9,...] < 1/2, a; is even
and a, is odd for n > 2. If ¢,, n € N, is the increasing sequence of all critical
indices of the sequence ||70||, j € N, then by Corollary 3.2 the sequence v(qgy,),
n € N, is 3-periodic:
o(q) =0/2,  v(g) =1/2, w(gs) = 3(1+6),

and by Corollary 3.3 the sequence sgn(F'(gy,) — (qn)

sgn(F(q1) — v(q1)) = sgn(F(g2) — v(gz)) = sgn(
sgn(F(qs) — v(qa)) = sgn(F(gs) — v(gs)) = sgn(

), n € N, is 6-periodic:
F(g3) —v(as)) = —1,
F(gs) —v(ge)) = 1.
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