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Nearest neighbor spacing distributions for
the zeros of the real or imaginary part of
the Riemann xi-function on vertical lines

by

Masatoshi Suzuki (Tokyo)

1. Introduction. Let s = σ+ it (i =
√
−1) be a complex variable, ζ(s)

be the Riemann zeta-function, and

ξ(s) = 1
2s(s− 1)π−s/2Γ (s/2)ζ(s)

be the Riemann xi-function, which is an entire function satisfying the func-
tional equations ξ(s) = ξ(1 − s) and ξ(s̄) = ξ(s). In this paper, we discuss
the distribution of zeros of the entire functions

(1.1) Aω(s) := 1
2(ξ(s+ω)+ξ(s−ω)), Bω(s) := 1

2 i(ξ(s+ω)−ξ(s−ω))

depending on a positive real parameter ω in consideration of the following
two relations with the zeros of ξ(s). Firstly, the zeros of Aω(s) and Bω(s)
on the line σ = 1/2 coincide respectively with the zeros of the real and
imaginary parts of ξ(s) on the line σ = 1/2 + ω, because

(1.2) Re ξ(1/2+ω+it) = Aω(1/2+it), Im ξ(1/2+ω+it) = −Bω(1/2+it)

by the functional equations of ξ(s). Secondly, for small ω > 0, the zeros of
Aω(s) and Bω(s) (locally) approximate the zeros of ξ(s) and ξ′(s) respec-
tively, because of the asymptotic relations

Aω(s) = ξ(s) +O(ω2), Bω(s) = iω · ξ′(s) +O(ω3) (ω → 0+)

on compact subsets of C.
The functional equations of ξ(s) imply that Aω(s) and Bω(s) satisfy

Aω(s) = Aω(1− s), Bω(s) = −Bω(1− s)
and take real values on the critical line σ = 1/2. It is known that all zeros
of Aω(s) and Bω(s) are simple zeros lying on the critical line if ω ≥ 1/2.
This also holds for 0 < ω < 1/2 if we assume the Riemann Hypothesis (RH)
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for ξ(s) [11, Theorem 2.1], or unconditionally, except for a set of zeros up
to height T of cardinality � T 1−aω(log T )2 for any a < 1 [12, Theorems 1
and 2]. In this sense, the horizontal distribution of the zeros of Aω(s) and
Bω(s) is well understood. Therefore we focus on their vertical distribution.

Let Xω(s) be Aω(s) or Bω(s). We arrange the zeros ρ = β+ iγ of Xω(s)
with γ > 0 into a sequence ρn = βn + iγn so that γn+1 ≥ γn. Then the
distribution of spacings of the normalized imaginary parts

(1.3) γ(1)
n :=

γn
2π

log
γn
2πe

converges to a limiting distribution of equal spacings of length one. This
is proved in Lagarias [11, Theorem 4.1] assuming RH if 0 < ω < 1/2, and
in Li [12, Theorem 1] unconditionally. The above result on the normalized
imaginary parts is in contrast to the Montgomery–Odlyzko conjecture and
the GUE conjecture which assert that the normalized imaginary parts of
the zeros of ξ(s) obey the distribution of eigenvalues of random hermitian
matrices from the Gaussian Unitary Ensemble (GUE). Therefore, one might
think that the zeros of Aω(s) and Bω(s) are insignificant objects at least from
the viewpoint of their vertical distribution.

However, interestingly enough, it will be proved that the second normal-
ization of the imaginary parts defined by

(1.4) γ(2)
n :=

(
γn
2π

log
γn
2πe
− n

)
%−1/2
ω

1

2π
log

γn
2πe

has a remarkable distribution which is related to the Euler product of the
Riemann zeta-function, where

%ω :=
1

2π2

∞∑
n=1

Λ(n)2

n1+2ω
,

Λ(n) is the von Mangoldt function and the series converges absolutely for
ω > 0.

In order to state the main theorem, we recall a result on the value distri-
bution of the logarithmic derivative of the Riemann zeta-function on vertical
lines. For every σ > 1/2, there exists a non-negative real valued C∞-function
Mσ(z) on C such that (2π)−1

	
CMσ(z) dz = 1 and

(1.5) lim
T→∞

1

2T

T�

−T
Φ

(
ζ ′

ζ
(σ + it)

)
dt =

1

2π

�

C

Mσ(z)Φ(z) dz

for Φ(z) being any continuous bounded function on C or the characteris-
tic function of any compact subset of C or of the complement of such a
subset. Following Ihara [3] we call Mσ(z) the M -function. Formula (1.5)
was obtained by van Kampen–Wintner [8], Kershner–Wintner [10], Guo [2],
Ihara [3] and Ihara–Matsumoto [6] (see Appendix for the construction of
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Mσ(z) and historical details). If σ > 1, formula (1.5) holds for any continu-
ous function Φ(z) on C.

Using the M -function, we define the m-function by

(1.6) mσ(u) =

∞�

−∞
Mσ(u+ iv) dv

on the real line. This is well defined because Mσ(z) is of rapid decay as
|z| → ∞ [3, Theorem 2].

Reflecting the Euler product formula of the Riemann zeta-function, the
Fourier transform M̃σ(z) has an Euler product formula M̃σ(z) =

∏
p M̃σ,p(z)

whose local factors M̃σ,p(z) are some arithmetic Dirichlet series in σ, where
p runs over all prime numbers (see Appendix). Therefore, the Fourier trans-
form of the m-function also has an Euler product, since

m̃σ(x) =
1

2π

∞�

−∞
mσ(u)eixu du =

1

2π

�

C

Mσ(u+ iv)eixu du dv = M̃σ(x).

Now our main result is stated as follows.

Theorem 1.1. Let Xω(s) be Aω(s) or Bω(s) for given ω > 0, and let γ
(2)
n

be the secondary normalized imaginary parts of the zeros of Xω(s) defined
in (1.4). Then

(1.7) lim
T→∞

1

Nω(T )

∑
0<γn≤T

φ(γ
(2)
n+1 − γ

(2)
n )

=
1

2π

∞�

−∞
π%1/2

ω m1/2+ω(π%1/2
ω u)φ(u) du

for any bounded function φ ∈ C1(R) such that φ′(x) � 1 for |x| ≤ 1,

φ′(x)� x−2 for |x| ≥ 1 and u 7→ d
duφ
(
Re ζ′

ζ (1/2+ω+ iu)
)

is bounded on R,

where Nω(T ) is the number of zeros of Xω(s) with 0 < t ≤ T .

The limit behavior of the integrand of the right-hand side of (1.7) as
ω → 0+ is obtained as follows by using a result of [4].

Theorem 1.2. We have

1

2π
lim
ω→0+

π%1/2
ω m1/2+ω(π%1/2

ω u) =
1√
2π

exp

(
−u

2

2

)
.

Note that the above two theorems are unconditional.
We now discuss the significance of Theorem 1.1 under RH if 0 < ω < 1/2.

In this case, all zeros of Xω(s) are simple zeros lying on the critical line and

(1.8) Nω(T ) =
T

2π
log

T

2πe
+ Sω(T ) +

7 + 2ω

8
+O

(
max{1, 2ω − 1}

T

)



50 M. Suzuki

for T ≥ 2 [11, Theorem 3.1], where the implied constant is independent of ω
and

Sω(t) =
1

π
arg ζ(1/2 + ω + it)

is a C∞-function on the real line obtained by continuous variation along the
straight lines joining 2, 2 + it and 1/2 + ω + it, starting with the value 0.
For fixed ω > 0, we have

1 = Nω(γn+1)−Nω(γn) = γ
(1)
n+1 − γ

(1)
n + Sω(γn+1)− Sω(γn) +O(1/γn),

by the simplicity of zeros, (1.3) and (1.8), and thus

(1.9) γ
(1)
n+1 − γ

(1)
n − 1 = −(Sω(γn+1)− Sω(γn)) +O(1/γn).

Given this formula, γ
(1)
n+1−γ

(1)
n → 1 means that the contribution of Sω(γn+1)

− Sω(γn) is smaller than 1 for any fixed ω > 0. In other words, the distri-
bution of spacings of the normalized zeros of Xω(s) is dominated by the
gamma functor of ζ(s) only.

On the other hand, it is known that the subtle behavior of the zeros
of ζ(s) as described by the Montgomery–Odlyzko conjecture is caused by
the function S(t), which is obtained by S(t) = limω→0+ Sω(t) if t is not
the ordinate of a zero of ζ(s), and S(t) = 1

2 limδ→0+(S(t + δ) + S(t − δ))
otherwise.

Therefore, from the discussion above, Theorem 1.1 shows that the sec-
ond normalization (1.4) detects the effect of the arithmetic part Sω(T ) of
the counting function Nω(T ). The Euler product formula of m̃σ(u) is a sup-
porting evidence for this observation.

A motivation of this work was L. Weng’s question posed to the author.
In 2013, Weng–Zagier [18] proved that all high-rank zeta functions for ellip-
tic curves E defined over a finite field satisfy an analogue of the Riemann
Hypothesis. Then Weng considered the distribution of the zeros of high-rank
zeta functions for E when the rank varies, and observed that the dominant
term is very simple but the second dominant term is related to the Sato–Tate
measure. He asked the author about an analogue of his observation for the
number field case ([16], where he considered another version of (1.4) but it
is simplified in [17] and shown to be compatible with (1.4)). For the rational

number field Q, high-rank zeta functions ζ̂Q,n(s) are expressed as linear com-
binations of products of the Riemann zeta-function and rational functions.
The rank one case is ζ̂Q,1(s) = ζ̂(s). The rank two case is

s(2s− 1)(2s− 2)ζ̂Q,2(s) = ξ(2s)− ξ(2s− 1) = B1/2(2s− 1/2).

Therefore, the second dominant term of the distribution of the zeros is de-
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scribed by m1(x). The rank three case is

3s(3s− 1)(3s− 2)(3s− 3)ζ̂Q,3(s) = X(s) +X(1− s),
X(s) =

(
3(2ξ(2)− 1)s− 4ξ(2) + 3

)
ξ(3s)− ξ(3s− 1).

This looks similar to A1(3s− 1) = ξ(3s) + ξ(3s− 2) in a sense. Therefore, it
is expected that the second dominant term of the distribution of the zeros
is described by m3/2(x) up to a small correction.

This paper is organized as follows. In Section 2, we prepare some lemmas
necessary for the proof of Theorem 1.1. In Section 3, we prove Theorem
1.1 under RH at first, for the simplicity of the argument. Then we prove
Theorem 1.1 unconditionally and prove Theorem 1.2. In Section 4, we give
several comments and remarks on subjects of the paper. Finally, in the
Appendix we provide a review of the construction, basic properties and
history of the M -function.

2. Preliminaries. Let ω > 0. We will assume RH if 0 < ω < 1/2
throughout this section. Then the imaginary parts of Aω(s) and Bω(s) are
enumerated as

· · · < γ−1(Bω) < γ−1(Aω) < γ0(Bω) = 0

< γ1(Aω) < γ1(Bω) < γ2(Aω) < γ2(Bω) < · · ·

with γ−n(Aω) = −γn(Aω) and γ−n(Bω) = −γn(Bω) for n ≥ 1. Unless stated
otherwise, in the rest of this paper we denote by γn the nth imaginary part
γn(Aω) or γn(Bω) when n ≥ 1.

Lemma 2.1. Let Ω > 0. Then

γn =
2πn

log n

(
1 +O

(
log log n

log n

))
,(2.1)

log
γn
2π

= log n

(
1 +O

(
log log n

log n

))
,(2.2)

where the implied constants are uniform in ω with 0 < ω ≤ Ω. These for-
mulas are unconditional.

Remark. In [11, p. 171] it is claimed that

γn =
2πn

log n

(
1 +O

(
1

log n

))
assuming (1.8) and Sω(t) = O(log t). However, the author does not know
how to exclude the factor log log n from (2.1).

Proof of Lemma 2.1. Suppose that γn = γn(Aω). We have Sω(T ) =
O(log T ) unconditionally by [15, Theorem 9.4], where the implied constant
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does not depend on ω. Therefore,

n = Nω(γn) =
γn
2π

log
γn
2πe

(1 +O(1/γn))

by (1.8) and the simplicity of zeros. Substituting this into 2πn/log n yields

2πn

log n
= γn

(
1 +O(1/γn)

1 +
log log γn

2πe

log γn
2π

+O
(

1
γn log γn

) +O

(
1

log γn

))

= γn

(
1 +O

(
log log γn

log γn

))
.

This implies n/log n � γn, since γn → ∞ as n → ∞, and therefore
log log γn/log γn � log log n/log n. Hence gives (2.1). Taking log of both
sides of (2.1) gives (2.2). The case of γn = γn(Bω) is proved in a similar
way.

Lemma 2.2. The gaps γn+1 − γn tend to 0 as n→∞.

Proof. We will show that Sω(t) = o(log t) for any fixed ω > 0; this
implies the conclusion by (1.8). We have

log ζ(1/2 + ω + it)�



1 if ω > 1/2,

log log t if ω = 1/2,

log log log t if ω = 1/2 under RH,

(log t)1−2ω

log log t
if 0 < ω < 1/2 under RH,

for large t > 0, where the first line is a consequence of the absolute con-
vergence of the Dirichlet series of log ζ(s), the second line is shown in [13,
Theorem 6.7] and the other cases are shown in [15, Theorem 14.5, §14.33].
These estimates imply Sω(t) = o(log t), since Sω(t)� |log ζ(1/2+ω+ it)|.

Lemma 2.3. We have

(2.3)
Sω(γn+1)− Sω(γn)

γn+1 − γn
= O(E1,ω(γn))

with

(2.4) E1,ω(t) =


1 if ω > 1/2,

log t

log log t
if ω = 1/2,

log log t if ω = 1/2 under RH,

(log t)1−2ω if 0 < ω < 1/2 under RH.

Proof. We have πS′ω(t) = Re(ζ ′/ζ)(1/2 + ω + it) by the definition of
Sω(t), since ζ(s) has no zeros in Re s > 1/2 by RH. Therefore,

π

∣∣∣∣Sω(γn+1)− Sω(γn)

γn+1 − γn

∣∣∣∣ ≤ ∣∣∣∣Re

{
ζ ′

ζ
(1/2 + ω + iξ)

}∣∣∣∣ ≤ ∣∣∣∣ζ ′ζ (1/2 + ω + iξ)

∣∣∣∣
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for some γn < ξ < γn+1 by Lemma 2.2 and the mean value theorem. On the
right-hand side, we have

(2.5)
ζ ′

ζ
(1/2 + ω + iξ)� E1,ω(ξ),

where the first line of (2.4) is a consequence of the absolute convergence of
the Dirichlet series of (ζ ′/ζ)(s), the second line is shown in [15, (5.14.7)] and
the other cases are shown in [15, §14.33]. These estimates imply (2.3), since
log ξ < log γn+1 = log γn +O(γ−1

n ) by Lemma 2.2.

Lemma 2.4. We have

(2.6)
γn+1 − γn

2π
log

γn
2πe

= 1 +O(E2,ω(γn)),

where E2,ω(t) = E1,ω(t)/log t for the function E1,ω(t) of (2.4).

Proof. We have

Nω(t+ h)−Nω(t) =
h

2π
log

t

2π
+ Sω(t+ h)− Sω(t) +O

(
1

t+ 1

)
for 0 ≤ h ≤ 1 and t ≥ 2 by [11, proof of Theorem 4.1], where the implied
constant does not depend on h. Applying this to t = γn and h = γn+1 − γn
together with Lemma 2.2, we get

1 = Nω(γn+1)−Nω(γn) =
γn+1 − γn

2π
log

γn
2πe

+Sω(γn+1)−Sω(γn)+O

(
1

γn

)
for large n. This implies

(γn+1−γn)
1

2π
log

γn
2πe

(
1+O

(
1

log γn

∣∣∣∣Sω(γn+1)− Sω(γn)

γn+1 − γn

∣∣∣∣)) = 1+O

(
1

γn

)
.

Applying (2.3) to the left-hand side, we obtain (2.6).

Lemma 2.5. Assume that f ∈ C1(R) and f ′ is bounded on R. Then

(2.7)
1

γN

N−1∑
n=1

f(γn)(γn+1 − γn) =
1

γN

γN�

0

f(t) dt+O

(
1

log γN

)
for large N > 0.

Proof. We have

1

γN

N−1∑
n=1

f(γn)(γn+1 − γn) =
1

γN

γN�

γ1

f(t) dt+
1

γN

N−1∑
n=1

γn+1�

γn

(f(γn)− f(t)) dt

+O(1/γN ).
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The second sum on the right-hand side is estimated as∣∣∣N−1∑
n=1

γn+1�

γn

(f(γn)− f(t)) dt
∣∣∣ ≤ N−1∑

n=1

max
γn≤ξ≤γn+1

|f ′(ξ)|
γn+1�

γn

(t− γn) dt

≤ 1

2
max

γ1≤t<∞
|f ′(t)|

N−1∑
n=1

(γn+1 − γn)2.

Here the sum on the right-hand side is estimated as

N−1∑
n=1

(γn+1 − γn)2 �
N−1∑
n=1

1

log γn
,

since γn+1 − γn � (log γn)−1 by (2.6). Using the Stieltjes integral and inte-
gration by parts, we get

N−1∑
n=1

1

log γn
�

γN�

γ1

dNω(t)

(log t)2
�

γN�

γ1

dt

log t
� γN

log γN
.

Hence we obtain (2.7).

3. Proofs. First, we prove Theorem 1.1 assuming RH if 0 < ω < 1/2
after preparing two propositions based on the results in the previous section.

Proposition 3.1. Assume that f ∈ C1(R) and is bounded on R. Then

(3.1)
1

Nω(T )

∑
0<γn≤T

f(γn) =
1

T

T�

0

f(t) dt+O(E2,ω(T ))

for large T > 0, where E2,ω(t) = E1,ω(t)/log t for the function E1,ω(t)
of (2.4).

Proof. It is sufficient to show that the left-hand side of (2.7) is equal to
the left-hand side of (3.1) up to a reasonable error term. We have

1

γN

N−1∑
n=1

f(γn)(γn+1 − γn) =
1

γN
2π log γN

2π

N−1∑
n=1

f(γn)
γn+1 − γn

2π
log

γN
2π

=
1

γN
2π log γN

2π

N−1∑
n=1

f(γn)
γn+1 − γn

2π
log

γn
2π

+
1

γN
2π log γN

2π

N−1∑
n=1

f(γn)
γn+1 − γn

2π
log

γn
2π

(
log γN

2π

log γn
2π

− 1

)
= S1 + S2,
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say. First we consider S1. We have∣∣∣∣S1 −
1

γN
2π log γN

2π

N−1∑
n=1

f(γn)

∣∣∣∣� 1
γN
2π log γN

2π

N−1∑
n=1

∣∣∣∣γn+1 − γn
2π

log
γn
2π
− 1

∣∣∣∣.
For the sum on the right-hand side,

N−1∑
n=1

∣∣∣∣γn+1 − γn
2π

log
γn
2π
− 1

∣∣∣∣� N−1∑
n=1

E2,ω(γn)�
γN�

γ1

E2,ω(t) dNω(t)

by using (2.6) and the Stieltjes integral. Here

γN�

γ1

E2,ω(t) dNω(t)�
γN�

γ1

E2,ω(t)(log t) dt� γN log γNE2,ω(γN )

by integration by parts. Hence∣∣∣∣S1 −
1

γN
2π log γN

2π

N−1∑
n=1

f(γn)

∣∣∣∣� E2,ω(γN ).

Next we consider S2. We have

|S2| �
1

γN
2π log γN

2π

N−1∑
n=1

(
log γN

2π

log γn
2π

− 1

)
by (2.6). Using partial summation for the sum on the right-hand side, we
get

1
γN
2π log γN

2π

N−1∑
n=1

(
log γN

2π

log γn
2π

− 1

)
=

2π

γN

γN�

γ1

( ∑
0<γn≤x

1
) 1

x
(
log x

2π

)2 dx+O(1/γN )

� 1

γN

γN�

γ1

x log x · 1

x(log x)2
dx+O(1/γN )

� 1

log γN
.

From the above argument, we obtain

1

γN

N−1∑
n=1

f(γn)(γn+1 − γn) =
1

γN
2π log γN

2π

N−1∑
n=1

f(γn) +O(E2ω(γN )),

since (log t)−1 � E2,ω(t) for every ω > 0. Combining this with (2.7) and

γN
2π

log
γN
2π

= Nω(γN )(1 +O(1/γN )),

we obtain (3.1).
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Proposition 3.2. Let φ ∈ C1(R). Assume that φ′(x) � 1 for |x| ≤ 1,

φ′(x)� x−2 for |x| ≥ 1 and u 7→ d
duφ
(
Re ζ′

ζ (1/2+ω+ iu)
)

is bounded on R.
Define

(3.2) γ̈n = %1/2
ω γ(2)

n =
(γn

2π
log

γn
2πe
− n

) 1

2π
log

γn
2πe

.

Then

(3.3)
1

Nω(T )

∑
0<γn≤T

φ(γ̈n+1 − γ̈n) =
1

Nω(T )

∑
0<γn≤T

φ

(
− 1

π
Re

ζ ′

ζ
(1/2 + ω + iγn)

)

+O

(
log log T

log T

)
+O(E2,ω(T ))

for large T > 0.

Proof. On the right-hand side of (1.9), we have

Sω(γn+1)− Sω(γn) =
1

π
Re

ζ ′

ζ
(1/2 + ω + iξn)(γn+1 − γn)

for some ξn ∈ (γn, γn+1) by the mean value theorem. Therefore,

(3.4) (γ
(1)
n+1 − γ

(1)
n − 1)

1

2π
log

γn
2πe

= − 1

π
Re

ζ ′

ζ
(1/2 + ω + iξn)

γn+1 − γn
2π

log
γn
2πe

+O

(
log γn
γn

)
by (1.9). On the other hand,

γ̈n+1 − γ̈n = (γ
(1)
n+1 − γ

(1)
n − 1)

1

2π
log

γn
2πe

+ (γ
(1)
n+1 − (n+ 1))

1

2π

(
log

γn+1

2πe
− log

γn
2πe

)
by the definitions (1.3) and (3.2). The second term of the right-hand side is
estimated as

(γ
(1)
n+1 − (n+ 1))

1

2π

(
log

γn+1

2πe
− log

γn
2πe

)
= (γ

(1)
n+1 − (n+ 1))

1

2π
log

(
1 +

γn+1 − γn
γn

)
� n

log log n

log n
· γn+1 − γn

γn
� γn log log γn ·

1

γn log γn
=

log log γn
log γn

by (2.1), (2.2) and (2.6).
By the above argument, we get

(3.5) γ̈n+1 − γ̈n = (γ
(1)
n+1 − γ

(1)
n − 1)

1

2π
log

γn
2πe

+O

(
log log γn

log γn

)
.
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Combining (3.4) and (3.5), we obtain

γ̈n+1 − γ̈n = − 1

π
Re

ζ ′

ζ
(1/2 + ω + iξn)

γn+1 − γn
2π

log
γn
2πe

(3.6)

+O

(
log log γn

log γn

)
for some ξn ∈ (γn, γn+1). Therefore,

φ(γ̈n+1 − γ̈n)

= φ

(
− 1

π
Re

ζ ′

ζ
(1/2 + ω + iξn)

γn+1 − γn
2π

log
γn
2πe

+O

(
log log γn

log γn

))
= φ

(
− 1

π
Re

ζ ′

ζ
(1/2 + ω + iξn)

γn+1 − γn
2π

log
γn
2πe

)
+O

(
log log γn

log γn

)
= φ

(
− 1

π
Re

ζ ′

ζ
(1/2 + ω + iξn)(1 + E2,ω(γn))

)
+O

(
log log γn

log γn

)
by the mean value theorem and (2.6), since φ′(x) is bounded.

Now we take T0 > 0 such that the error term O(E2,ω(t)) of Lemma 2.4

is less than 1/2 for every t ≥ T0. We set r(t) = −Re ζ′

ζ (1/2 + ω + it),

I1(T ) = {t ∈ [T0, T ] : |r(t)| ≤ 2/3} and I2(T ) = {t ∈ [T0, T ] : |r(t)| > 2/3}
so that [T0, T ] = I1(T ) ∪ I2(T ).

If γn ≥ T0 and ξn ∈ I1(T ), we have

φ
(
r(ξn)(1 +O(E2,ω(γn)))

)
− φ(r(ξn)) = ±

r(ξn)(1+O(E2,ω(γn)))�

r(ξn)

φ′(u) du

� |r(ξn)|E2,ω(γn) ≤ E2,ω(γn),

since |r(ξn)| ≤ 1 and |r(ξn)(1 +O(E2,ω(t)))| ≤ 1.

If γn ≥ T0 and ξn ∈ I2(T ), we have

φ
(
r(ξn)(1 +O(E2,ω(γn)))

)
− φ(r(ξn)) = ±

r(ξn)(1+O(E2,ω(γn)))�

r(ξn)

φ′(u) du

�
∣∣∣∣ E2,ω(γn)

r(ξn)(1 +O(E2,ω(γn)))

∣∣∣∣� E2,ω(γn),

since |r(ξn)(1 +O(E2,ω(γn)))| ≥ 1/3. Therefore,

φ
(
r(ξn)(1 + E2,ω(γn))

)
= φ(r(ξn)) +O(E2,ω(γn))

for every γn ≥ T0 and ξn ∈ [T0, T ]. Moreover, we have

φ
(
r(ξn)(1 + E2,ω(γn))

)
= φ(r(γn)) +O

(
1

log γn

)
+O(E2,ω(γn))
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by the mean value theorem, since d
duφ(r(u)) is bounded on R, γn < ξn <

γn+1 and γn+1 − γn � (log γn)−1. Therefore,

1

Nω(T )

∑
0<γn≤T

φ(γ̈n+1 − γ̈n) =
1

Nω(T )

∑
0<γn≤T

φ

(
− 1

π
Re

ζ ′

ζ
(1/2 + ω + iγn)

)

+O

(
1

Nω(T )

∑
0<γn≤T

log log γn
log γn

)
+O

(
1

Nω(T )

∑
0<γn≤T

E2,ω(γn)

)
.

By the Stieltjes integral and integration by parts, we get∑
0<γn≤T

log log γn
log γn

=

T�

γ1

log log t

log t
dNω(t)�

T�

γ1

log log t

log t
(log t) dt� T log log T

and∑
0<γn≤T

E2,ω(γn) =

T�

γ1

E2,ω(t) dNω(t)�
T�

γ1

E2,ω(t)(log t) dt� Nω(T )E2,ω(T ).

Hence we obtain (3.3).

3.1. Proof of Theorem 1.1 under RH. Set σ = 1/2 + ω. By Propo-
sitions 3.1 and 3.2,

1

Nω(T )

∑
0<γn≤T

φ(γ̈n+1 − γ̈n) =
1

2T

T�

−T
φ

(
− 1

π
Re

ζ ′

ζ
(σ + it)

)
dt(3.7)

+O

(
log log T

log T

)
+O(E2,ω(T ))

for large T > 0, since Re(ζ ′/ζ)(σ + it) is an even function of t ∈ R.

For any continuous and bounded function φ(x) on R, φ(Re z) is a con-
tinuous and bounded function on C, because z 7→ 1

2(z + z̄) is a continuous
function from C into R. Therefore, by applying formula (1.5) to Φ(z) =
φ
(
− 1
π Re z

)
, we have

lim
T→∞

1

2T

T�

−T
φ

(
− 1

π
Re

ζ ′

ζ
(σ + it)

)
dt =

1

2π

∞�

−∞
πmσ(πu)φ(u) du,

since the m-function mσ(u) of (1.6) is even. Hence we obtain

lim
T→∞

1

Nω(T )

∑
0<γn≤T

φ(γ̈n+1 − γ̈n) =
1

2π

∞�

−∞
πmσ(πu)φ(u) du,

since limT→∞E2,ω(T ) = 0 for any fixed ω > 0. This implies (1.7) by γ
(2)
n =

%
−1/2
ω γ̈n.
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3.2. Unconditional proof of Theorem 1.1. Let Xω(s) be Aω(s) or
Bω(s). We arrange the zeros ρ = β + iγ of Xω(s) with γ > 0 in a sequence
ρn = βn + iγn so that γn+1 ≥ γn. Firstly, we recall that the number of
zeros of Xω(s) up to height T and outside the line σ = 1/2 is bounded by
T 1−aω(log T )2 for any a < 1 [12, Theorem 1]. In addition, for given 0 < δ < 1
and B > 0, we can take an open subset E ⊂ (0,∞) such that

• the measure of [T, 2T ]∩E is bounded by T/(log T )B for every T ≥ 2,
• the number of zeros of Xω(1/2 + it) for t ∈ [T, 2T ] ∩E is bounded by
T/(log T )B for every T ≥ 2,
• the zeros of Xω(1/2 + it) for t ∈ [T, 2T ] \ E are simple,
• [γn, γn+1] ⊂ [T, 2T ] \ E if γn ∈ [T, 2T ] \ E,
• γn+1 − γn = O(1/log T ) if γn ∈ [T, 2T ] \ E,
• Sω(t) is of class C∞ in (0,∞) \ E,
• the estimate

(3.8)
ζ ′

ζ
(1/2 + ω + it)� (log T )1−δ

holds for t ⊂ [T, 2T ] \ E,

by [12, Theorem 1] and the proof of [12, Theorem 2]. Therefore, we have

lim
T→∞

1

Nω(T )

∑
0<γn≤T

f(γn) = lim
T→∞

1

Nω(T )

∑
0<γn≤T
γn 6∈E

f(γn).

Using (3.8) instead of (2.5) to calculate the right-hand side, we obtain (3.1),
(3.3) and (3.7) by replacing E2,ω(t) by (log t)−δ in a way similar to the
conditional proof of Theorem 1.1. Hence we obtain Theorem 1.1.

3.3. Proof of Theorem 1.2. Let µσ be the variance of Mσ(z):

(3.9) µσ =
1

2π

�

C

Mσ(z)|z|2 du dv.

Then

%ω =
1

2π2
µσ

for σ = 1/2 + ω by [5, (4.1.8), (4.2.1)] or [4, (1.2.17), (1.2.21)]. Thus, by
using the Fourier inversion formula

Mσ(u+ iv) =
1

2π

�

C

M̃σ(x+ iy)e−i(xu+yv) dx dy,
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we obtain

lim
ω→0+

π%1/2
ω m1/2+ω(π%1/2

ω u) = lim
ω→0+

1

2

∞�

−∞
µσMσ

(
µ1/2
σ

u+ iv√
2

)
dv

= lim
ω→0+

∞�

−∞
M̃σ(
√

2µ−1/2
σ x)e−ixu dx.

The integrand of the right-hand side is estimated as

|M̃σ(
√

2µ−1/2
σ z)| ≤ exp(−

√
2 |z|/8)

by [4, (2.4.2)] if σ is sufficiently close to 1/2. Therefore, by applying Lebes-
gue’s convergence theorem to the right-hand side together with

lim
σ→1/2

M̃σ(µ−1/2
σ z) = exp(−|z|2/4),

which is a special case of [4, Lemma A], we obtain

lim
σ→1/2

∞�

−∞
M̃σ(
√

2µ−1/2
σ x)e−ixu dx =

∞�

−∞
exp(−x2/2)e−ixu dx

=
√

2π exp(−u2/2).

This implies Theorem 1.2.

4. Concluding remarks. Before concluding the main part of the pa-
per, we give several comments and remarks.

4.1. On the range of test functions. In order to extend the range of
test functions in formula (1.7), we need to extend the range of test functions
in (1.5). An optimistic expectation is that formula (1.5) holds for any con-
tinuous function Φ(z) on C and the characteristic function of any compact
subset of C or the complement of such a subset if we assume RH. However,
the range of test functions in (1.5) could be a much more delicate problem.
In fact, if we apply (1.5) formally to the test function Φ(w) = |w|2 together
with (A.3) below, we obtain

lim
T→∞

1

2T

T�

−T

∣∣∣∣ζ ′ζ (σ + it)

∣∣∣∣2 dt =

∞∑
n=1

Λ(n)2

n2σ
= µσ.

This agrees with the asymptotic formula

1

T

T�

0

∣∣∣∣ζ ′ζ (σ + it)

∣∣∣∣2 dt ∼ ∞∑
n=1

Λ(n)2

n2σ

for (σ − 1/2) log T → ∞, which is a consequence of the estimate S(T ) =
O(log T/log log T ) of Selberg [14, (1.2)], where f ∼ g means that the ratio
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f/g tends to one. It is easy to see that µσ ∼ 1/(2σ− 1)2 as σ → 1/2. Thus,
we obtain the asymptotic formula

1

T

T�

0

∣∣∣∣ζ ′ζ
(

1

2
+

a

log T
+ it

)∣∣∣∣2 dt ∼ 1

4a2
(log T )2

as a → ∞ and T → ∞ with a = o(log T ). On the other hand, Goldston–
Gonek–Montgomery [1] discovered that, assuming RH,

1

T

T�

0

∣∣∣∣ζ ′ζ
(

1

2
+

a

log T
+ it

)∣∣∣∣2 dt ∼ 1− e−2a

4a2
(log T )2

as T → ∞ for any fixed a > 0 is equivalent to the Montgomery–Odlyzko
conjecture. The above facts do not contradict each other, but they suggest
a need for a careful consideration of the range of test functions when σ is
close to 1/2.

4.2. On the second normalization. Applying (1.5) formally to the
test function Φ(w) = |Rew|2 = w2 + 2ww̄ + w̄2 together with (A.3) below,
we obtain

lim
T→∞

1

2T

T�

−T

∣∣∣∣Re
ζ ′

ζ
(σ + it)

∣∣∣∣2 dt =
1

2

∞∑
n=1

Λ(n)2

n2σ
.

Therefore, by (2.1), (2.2) and (3.6), we find that the average size of γ̈n+1−γ̈n
is %σ−1/2 in spite of (2.5). This is the reason for the normalizing factor %

−1/2
ω

of (1.4). The factor (1/(2π)) log(γn/(2πe)) of (1.4) is a kind of technical
adjustment to establish a bridge between the nearest neighbor spacing of
normalized zeros and the M -function.

4.3. On a relation to the Montgomery–Odlyzko conjecture. The
functions Aω(s) and Bω(s) are holomorphic in (ω, s) as functions of two
complex variables, and all their zeros are simple under RH if ω is a non-zero
real number. Hence the sets {γn(ω) |ω > 0} of the imaginary parts of the
nth zeros are analytic loci in (0,∞) × (0,∞), and they do not intersect
each other. Moreover, assuming the simplicity of zeros of ξ(s), we have
limω→0 γn+1(ω) 6= limω→0 γn(ω) for each n ≥ 1. Therefore, we expect that

the distribution of γ
(1)
n+1(ω) − γ(1)

n (ω) approximates well the distribution of

the nearest neighbor spacings γ
(1)
n+1(0) − γ(1)

n (0) if ω > 0 is small enough.
In this sense, the distribution of γ̈n+1(ω) − γ̈n(ω) should approximate the

distribution of γ
(1)
n+1(0)− γ(1)

n (0)− 1 up to a correction factor, since

γ̈n+1(ω)− γ̈n(ω) ∼ (γ
(1)
n+1(ω)− γ(1)

n (ω)− 1)
1

2π
log

γn(ω)

2πe
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for large n by (3.5). Moreover, we have

γ
(2)
n+1(ω)− γ(2)

n (ω) ∼ γ(1)
n+1(ω)− γ(1)

n (ω)− 1

when
√

2ω log γn(ω) ∼ 1 as ω → 0+, since ρω ∼ 1/(8π2ω2) as ω → 0+.

Therefore, for small ω > 0, the distribution of γ
(2)
n+1(ω)− γ(2)

n (ω) around the
height exp(1/ω) approximates the −1 shift of the nearest neighbor spacing

distribution of γ
(1)
n+1(0) − γ

(1)
n (0) − 1 in the same range. Conversely, the

distribution of γ
(1)
n+1(0)− γ(1)

n (0)− 1 around a height T > 0 is approximated

by the distribution of γ
(2)
n+1(ω)− γ(2)

n (ω) for ω ∼ 1/(
√

2 log T ).

However, the limit of the density function in Theorem 1.2 is quite differ-
ent from a shift of the density function p(u) of the nearest neighbor spac-
ing distribution for GUE predicted in the Montgomery–Odlyzko conjecture,
where we recall that the density function p(u) is well approximated by the
Wigner surmise pW (u) = (32u2/π2) exp(−4u2/π) for GUE [9, Appendix]. In
order to fill this gap, we may need a detailed study of the second error term
of (3.7), which tends to O(1) as ω → 0+, and the effect of the normalizing
factor %ω of (1.4).

4.4. On a possible generalization. Let L(s, f) be a self-dual
L-function in the sense of Iwaniec–Kowalski [7, Chap. 5] which includes
Dedekind zeta-functions, Dirichlet L-functions associated to real primitive
characters, Hecke L-functions associated to self-dual Hecke characters, au-
tomorphic L-functions associated to self-dual primitive holomorphic/Maass
cusp forms, etc. For such an L-function, the family of functions Aω(s, f)
and Bω(s, f) corresponding to (1.1) is defined as well, and it is established
in a way similar to [11] that the distribution of spacings of the normalized
imaginary parts of the zeros of Aω(s, f) and Bω(s, f) converges to a lim-
iting distribution of equal spacings of length one if we assume the Grand
Riemann Hypothesis and the Ramanujan–Petersson conjecture for L(s, f).
A key ingredient is an analogue of (2.5) and other standard analytic prop-
erties of L-functions (see [7, Chap. 5]). Therefore, an analogue of the second
normalization (1.4) is defined as well.

However, an analogue of the M -function Mσ(z) is not known except for
the case of Dedekind zeta functions. It is an interesting problem to find an
analogue of Mσ(z) for L(s, f); however, it is not obvious what it is, even if it
may not be hard to find an analogue ofMσ(z) in a way similar to [3] for degree
oneL-functions like Dirichlet/HeckeL-functions for real/self-dual characters.

Appendix. M-function. In this part, we review the construction and
basic properties of the M -function Mσ(z) in formula (1.5) according to Ihara
[3, 4] and Ihara–Matsumoto [5]. See these references for details.
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Let Λ : N → R be the von Mangoldt function, that is, Λ(n) = log p if
n = pk for some prime number p and integer k ≥ 1, and Λ(n) = 0 otherwise.
We define arithmetic functions Λk : N→ R by(

−ζ
′

ζ
(s)

)k
=

( ∞∑
n=1

Λ(n)

ns

)k
=
∞∑
n=1

Λk(n)

ns

for k ≥ 1, and Λ0(n) = 1 if n = 1, and Λ0(n) = 0 otherwise. For a positive
integer n and z ∈ C, we define

λz(n) =
∞∑
k=0

(−i/2)k
Λk(n)

k!
zk.

The series converges absolutely and uniformly on every compact subset of C,
and it is a polynomial of z by [3, (3.8.5), (3.8.6)]. Moreover, we have

(A.1) λz(mn) = λz(m)λz(n) if (m,n) = 1

(see [3, Prop. 3.8.11(i)]). For a prime number p and complex numbers s, z ∈ C,
we define

M̃s,p(z) =
∞∑
j=0

λpj (z)λpj (z̄)

p2js
.

The series converges absolutely for all s with Re s > 0 and z in a compact
subset of C by [3, Prop. 3.9.4(i)]. Using M̃s,p(z), we define M̃s(z) by the
Euler product

(A.2) M̃s(z) =
∏
p

M̃s,p(z),

where p runs over all prime numbers. The product converges for all s with
Re s > 1/2 and z in a compact subset of C [3, Theorem 5]. We have the
Dirichlet series expansion

M̃s(z) =

∞∑
n=1

λz(n)λz̄(n)

n2s

by (A.1), and the series on the right-hand side converges absolutely for all
s with Re s > 1/2 and z in a compact subset of C by [3, Prop. 3.9.4(ii)].

For σ > 1/2 and z ∈ C, M̃σ(z) is a real analytic function of σ and z

which does not vanish identically, and satisfies M̃σ(z) = M̃σ(z̄) = M̃σ(−z̄)
and M̃σ(z) = O((1+ |z|)−n) for any n ≥ 1. The M -function in formula (1.5)
is defined by the Fourier transform

Mσ(z) =
1

2π

�

C

M̃σ(w)ψ−z(w) dw,

where ψz(w) = exp(i · Re(z̄w)). In addition, the M -function is real valued,
decays rapidly as |z| → ∞, and the Fourier inversion formula

M̃σ(z) =
1

2π

�

C

Mσ(w)ψz(w) dw
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holds with M̃σ(0) = 1 [3, Theorems 2 and 3, Remark 3.4.6]. In particular,
(2π)−1Mσ(w)dw is a probability measure on C. Corresponding to the Eu-
ler product (A.2), the M -function has a convolution Euler product whose
p-factor is a certain distribution.

We have

(A.3)
1

2π

�

C

waw̄bMσ(w) dw =
∞∑
n=1

Λa(n)Λb(n)

n2σ

unconditionally together with the absolute convergence of the series if σ > 1
[3, Theorem 6]. Moreover, we have the limit formula

lim
σ→1/2

µσMσ(µ1/2
σ z) = 2e−|z|

2
,

and the convergence is uniform on |z| ≤ R for any R > 0, where µσ is the
variance in (3.9) [4, Theorem 2]. Theorem 2 is a formal consequence of this
formula.

Historically, formula (1.5) was first obtained in 1936 by Kershner–Wint-
ner [10] for σ > 1/2 in terms of asymptotic distribution functions as an
analogue of a 1935 work of Jessen–Wintner for log ζ(s). However, they did
not explicitly give the density function. The density function Mσ(z) was
constructed in 1937 by van Kampen–Wintner [8] for σ > 1 as an infinite
convolution Euler product. Then formula (1.5) was rediscovered by Guo [2]
in 1993. He constructed Mσ(z) for σ > 1/2 as the Fourier transform of
the Euler product

∏
p M̃σ,p(z) but with the test functions in (1.5) restricted

to smooth and compactly supported functions. This restriction was relaxed
by Ihara–Matsumoto [6] in 2011 which was the culmination of a series of
works of Ihara and Matsumoto based on Ihara [3]. In 2008, Ihara [3] studied
analytic and arithmetic properties of Mσ(z) and M̃σ(s) systematically and
in detail for σ > 1/2, motivated by a study on Euler–Kronecker constants
of global fields. This work was refined in Ihara [4]. The formulation of (1.5)
in the introduction depends on [3, Theorem 6] and [6].
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