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Coefficients of a relative of cyclotomic polynomials
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1. Introduction. We define the height of a polynomial in Z[x] to be
the maximum absolute value of its coefficients. It has long been known that
the cyclotomic polynomials Φn(x) have a tendency to have small heights
compared to n when n is divisible by few primes. For instance, if n is di-
visible by at most two odd primes, then the height of Φn(x) is 1 (see [8]).
However, when n = pqr, where p < q < r are odd primes, the height of
Φn(x) is only bounded by a linear function in p (see [1]). On the other hand,
Gallot and Moree [4] showed that any two adjacent coefficients of Φpqr(x)
differ by at most 1, which is equivalent to saying that (1 − x)Φpqr(x) has
height 1. The heights of other cyclotomic polynomials and products of cyclo-
tomic polynomials have been studied extensively elsewhere (see, for instance,
[3, 5, 6, 7, 9, 11, 12]).

We generalize Φpq(x) and (1− x)Φpqr(x) by considering the polynomial

PN (x) =
(1− xN )

∏
1≤i<j≤n(1− xNij )∏n

i=1(1− xNi)
,

where N = p1 · · · pn is a product of n distinct primes and Ni1...im =
N/(pi1 · · · pim). In some sense, PN (x) is a toy version of the cyclotomic poly-
nomial in that ΦN (x) can be written as a rational function containing in the
numerator or denominator all (1−xNi1...im ) while PN (x) contains only those
for which m ≤ 2.

LetM(n) be the maximum height of PN (x) when N has n distinct prime
factors. Since Ppq(x) = Φpq(x) when n = 2, and Ppqr(x) = (1 − x)Φpqr(x)
when n = 3, it is already known that M(2) = M(3) = 1. We will show that
M(4) = 2 as well as that M(n) exists for all n, so that the height of PN (x)
is bounded by a function in n that does not depend on the individual primes
dividing N . We will also provide an explicit expression for the coefficients of
PN (x) that generalizes the known expressions for the coefficients of Φpq(x),
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and we will exhibit polynomials PN (x) with height 1 for any n. Finally, we
will show that although M(n) is small when n is small, in fact M(n) grows
exponentially in n2.

We begin in Section 2 with some preliminaries, including a short proof
that the height of Φpq(x) is 1. In Section 3 we prove that the coefficients of
PN (x) can be described in terms of the relative order of sums of residues
of the form p−1j (mod pi), and we then use this to give an upper bound
on M(n). In Section 4 we explicitly and pictorially describe the coeffi-
cients of PN (x) for n = 3 and prove that M(4) = 2. In Section 5 we con-
struct polynomials PN (x) with large height and thereby show that M(n) =

2n
2/2+O(n logn). Finally, in Section 6 we construct PN (x) with height 1 for

all n.

2. Preliminaries. Let n ≥ 2 be a positive integer, and let N = p1 · · · pn
be the product of n distinct primes. For ease of notation throughout, we
write Ni1···im = N/(pi1 · · · pim) for any i1, . . . , im ∈ [n].

Our main object of study is the following:

PN (x) =
(1− xN )

∏
1≤i<j≤n(1− xNij )∏n

i=1(1− xNi)
.

Remark. Essentially all of the results below regarding the coefficients
of PN (x) will hold even when the pi are not distinct primes but only pair-
wise relatively prime positive integers greater than 1. However, we will as-
sume that they are prime in order to simplify the statements of the re-
sults.

Proposition 2.1. The rational function PN (x) is a polynomial with in-
teger coefficients.

Proof. Every root of the denominator is a primitive root of unity of
degree pi1 · · · pim for some distinct i1, . . . , im ∈ [n]. Such a root appears
n − m times in the denominator and 1 +

(
n−m
2

)
times in the numerator.

Since
(
n−m
2

)
+ 1 − (n − m) = 1

2(n − m − 1)(n − m − 2) ≥ 0, PN (x) is
a polynomial, and it has integer coefficients since both the numerator and
denominator are monic integer polynomials (up to sign).

When n = 2 and N = pq, we have

Ppq(x) =
(1− xpq)(1− x)

(1− xp)(1− xq)
= Φpq(x),

where Φpq is the pqth cyclotomic polynomial. Likewise, when n = 3 and
N = pqr, we find that Ppqr(x) = (1− x)Φpqr(x).

It is well known that Φpq has all of its coefficients at most 1 in absolute
value (see, for instance, [8]), and Gallot and Moree [4] have recently shown
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that (1 − x)Φpqr(x) also has this property. We give one proof of the result
for Φpq below for illustrative purposes.

For a rational number c = a/b with b relatively prime to m, we will write
[c]m for the smallest nonnegative integer k such that kb ≡ a (mod m). Note
that 0 ≤ [c]m ≤ m− 1.

We first need the following easy lemma.

Lemma 2.2. Let p and q be distinct primes. Then

(1− xp[p−1]q) + (xpq − xq[q−1]p) ≡ 1− x (mod (1− xp)(1− xq)).
Proof. Since p[p−1]q + q[q−1]p = pq + 1, the difference between the two

sides is

x− xp[p−1]q − xq[q−1]p + xpq = x(1− xp[p−1]q−1)(1− xq[q−1]p−1),

and the two binomials are divisible by 1− xq and 1− xp, respectively.
We now derive an expression for Ppq(x) that will allow us to easily extract

its coefficients.

Proposition 2.3. Modulo 1−xpq, Ppq(x) is congruent to the polynomial

1− xpq

1− xq
1− xp[p−1]q

1− xp
+

1− xpq

1− xp
xpq − xq[q−1]p

1− xq
.

Proof. By subtracting Ppq(x) from the above expression and dividing by
1− xpq, we must show that

(1− xp[p−1]q) + (xpq − xq[q−1]p)− (1− x)

(1− xp)(1− xq)
is a polynomial. But this follows from Lemma 2.2.

Let us write

{a < b} =

{
1 if a < b,
0 otherwise

(and similarly for other inequalities).

Proposition 2.4. For 0 ≤ k < pq, the coefficient of xk in Ppq(x) is

{[kp−1]q < [p−1]q} − {[kq−1]p ≥ [q−1]p}.
Proof. The first summand in Proposition 2.3 can be written as

(1 + xp + x2p + · · ·+ x([p
−1]q−1)p)(1 + xq + x2q + · · ·+ x(p−1)q).

This has terms of the form xap+bq, where 0 ≤ a < [p−1]q and 0 ≤ b < p. But
[(ap + bq)p−1]q = a, so modulo 1 − xpq these are the terms xk, 0 ≤ k < pq,
such that [kp−1]q < [p−1]q. A similar analysis of the second summand
in Proposition 2.3 (as well as the fact that degPpq < pq) gives the re-
sult.
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One can describe Proposition 2.4 pictorially as follows. (A similar dia-
gram can be found in [3].) Construct an array with p rows and q columns
such that the entry in the (i+ 1)st row and (j + 1)st column is [pj + qi]pq.
Then to find the coefficient of xk, we add 1 if k lies in the first [p−1]q columns
and subtract 1 if it lies in the last p− [q−1]p rows. (See Figure 1.) There are
therefore [p−1]q[q

−1]p coefficients equal to 1 and (q − [p−1]q)(p − [q−1]p) =
[p−1]q[q

−1]p − 1 coefficients equal to −1.

+ + +
0 5 10 15 20 25 30
7 12 17 22 27 32 2

14 19 24 29 34 4 9
– 21 26 31 1 6 11 16
– 28 33 3 8 13 18 23

Fig. 1. Finding the coefficients of Ppq(x) = Φpq(x) when p = 5 and q = 7. Since p[p−1]q +
q[q−1]p ≡ 1 (mod pq), we draw lines directly to the left and above 1 in the table. To
find the coefficient of xk, find k and add the signs in the corresponding row and column.
Therefore the coefficient is 1 for the exponents in the northwest region, −1 for those in
the southeast region, and 0 for the other two.

Recall that the height of a polynomial is the maximum absolute value of
its coefficients. We will write M(n) for the maximum height of PN (x) over
all N = p1 · · · pn. We have just seen that M(2) = 1.

The purpose of the next section is to provide a similar description of
PN (x) for larger n and thereby derive an upper bound onM(n) (in particular
showing that M(n) exists).

3. Coefficients of PN (x). In Section 2, we have seen that for 0 ≤ k
< pq, the coefficient of xk in Ppq(x) depends only on the relative orders of
the elements in {[kp−1]q, [p−1]q} and {[kq−1]p, [q−1]p}. In this section we will
show that a similar result holds for the coefficients of PN (x) in general. We
will also provide an exponential upper bound on M(n). This bound will be
enough to show that M(3) = 1, and we will see in Section 5 that this bound
is in fact asymptotically tight.

We first mimic the strategy of Proposition 2.3: we will write PN (x)
modulo 1 − xN as a linear combination of (1 − xN )/(1 − xNi). In fact,
we will do so in 2(n2) different ways. (We remark that this approach es-
sentially expresses PN (x) as a “coboundary” à la Question 25 of Musiker and
Reiner [10].)

Proposition 3.1. Let S ⊂ [n] × [n] be a set such that for all integers
1 ≤ i 6= j ≤ n, S contains exactly one of the ordered pairs (i, j) or (j, i).
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Then modulo 1− xN , PN (x) is congruent to the polynomial

n∑
i=1

(
1− xN

1− xNi

∏
(i,j)∈S

1− x[p
−1
i ]pjNj

1− xNj

·
∏

(j,i)∈S

xN − x[p
−1
i ]pjNj

1− xNj

∏
1≤j1<j2≤n

j1,j2 6=i

(1− xNj1j2 )

)
.

Proof. Note that the denominator of each term on the left is the same
as the denominator of PN (x). Therefore it suffices to show that, modulo the
denominator

∏n
i=1(1− xNi),

n∑
i=1

( ∏
(i,j)∈S

(1− x[p
−1
i ]pjNj )

∏
(j,i)∈S

(xN − x[p
−1
i ]pjNj )

∏
1≤j1<j2≤n

j1,j2 6=i

(1− xNj1j2 )
)

≡
∏

1≤j1<j2≤n
(1− xNj1j2 ).

Note that
∏n

i=1(1− xNi) is the least common multiple of (1− xNi1...im )m as
{i1, . . . , im} ranges over nonempty subsets of [n] because any root of order
Ni1...im appears m times. Therefore it suffices to check that the congruence
holds modulo each (1− xNi1...im )m.

Note 1 − xNi1...im divides the ith term on the left side (m − 1) +
(
m−1
2

)
=
(
m
2

)
times when i ∈ {i1, . . . , im}, and m +

(
m
2

)
=
(
m+1
2

)
times otherwise.

It also divides the right side
(
m
2

)
times.

If m = 1, then 1 − xNi1 divides all the terms on the left except when
i = i1. Reducing the exponents in that term modulo Ni, it suffices to observe
that

[p−1i ]pjNj = Ni
pi[p

−1
i ]pj − 1

pj
+Nij ≡ Nij (mod Ni),

so each factor is congruent to the corresponding factor on the right.
When m = 2, both sides are divisible by 1 − xNi1i2 , and all but the

i1th and i2th terms on the left are divisible by its square. Let y = xNi1i2 ,
and without loss of generality, assume (i1, i2) ∈ S. In the i1th term, the
factor corresponding to (i1, i2) is divisible by 1 − y, and any factor corre-
sponding to (i1, j) or (j, i1) is congruent modulo 1 − y to 1 − xNi1j by the
calculation in the previous paragraph. Similarly reducing the i2th term and
ignoring the common factors on both sides, we find that it suffices to show
that

(1− ypi1 [p
−1
i1

]pi2 ) + (ypi1pi2 − ypi2 [p
−1
i2

]pi1 ) ≡ 1− y (mod (1− y)2).

This follows from Lemma 2.2.
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When m ≥ 3, we have
(
m
2

)
≥ m, so both sides are divisible by

(1− xNi1...im )m.

Using Proposition 3.1, we may now state a result similar to Proposi-
tion 2.4. Let us write PN (x) for the reduction of PN (x) modulo 1− xN (so
PN (x) has degree less than N).

Theorem 3.2. Let S be as in Proposition 3.1, and let

fi(k) =
∏

(i,j)∈S

{[kN−1j ]pj < [p−1i ]pj}
∏

(j,i)∈S

−{[kN−1j ]pj ≥ [p−1i ]pj}.

The coefficient of xk in PN (x) is
n∑

i=1

∑
A⊂Ai

(−1)|A|fi(k −NA),

where Ai is the set consisting of two-element subsets of [n] \ {i}, and NA =∑
{ji,j2}∈ANj1j2 . In particular, if degPN < N , then this is also the coeffi-

cient of xk in PN (x).

Proof. The expression

1− xN

1− xNi

∏
(i,j)∈S

1− x[p
−1
i ]pjNj

1− xNj

∏
(j,i)∈S

xN − x[p
−1
i ]pjNj

1− xNj

is the sum of terms ±xk, where k =
∑
ajNj is such that 0 ≤ ai < pi,

0 ≤ aj < [p−1i ]pj if (i, j) ∈ S, and [p−1i ]pj ≤ aj < pj if (j, i) ∈ S, and the
sign is given by the parity of the number of j in this last case. Note that
k ≡ ajNj (mod pj), so aj ≡ [kN−1j ]pj . Thus the above expression modulo
1 − xN is just

∑N−1
k=0 fi(k)xk. The result now follows easily from Proposi-

tion 3.1.

If PN = PN , we find the following corollary.

Corollary 3.3. If degPN < N , then the coefficient of xk in PN (x)
for k < N depends only on, for each j, the relative order of the 2n−1 + 1

residues [kN−1j ]pj and [
∑

j′∈T p
−1
j′ ]pj for all T ⊂ [n] \ {j}.

Proof. First, observe that fi(k) depends only on the relative order of
[kN−1j ]pj , 0, and [p−1i ]pj , for each j. For any A ⊂ Ai as in Theorem 3.2, con-
sider k′ = k−NA. We have [Nj1j2N

−1
j ]pj = 0 if j /∈ {j1, j2}, while if instead

{j1, j2} = {j, j′}, then [Njj′N
−1
j ]pj = [p−1j′ ]pj . Let Tj = {j′ | {j, j′} ∈ A}.

Then k′N−1j ≡ kN−1j −
∑

j′∈Tj
p−1j′ (mod pj). Thus fi(k′) depends only
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on the relative order of [kN−1j ]pj , [
∑

j′∈Tj
p−1j′ ]pj , and [

∑
j′∈Tj∪{i} p

−1
j′ ]pj , for

each j. Considering all possible A and i and using Theorem 3.2 gives the
result.

In particular, these coefficients do not even depend on the specific primes
pi as long as the order of the residues is given. We will say N is generic if
degPN < N and all the [

∑
j∈T p

−1
j ]pi are distinct for any fixed i. In this case,

it follows that if we plot the integers 0 ≤ k < n at ([kN−11 ]p1 , . . . , [kN
−1
n ]pn),

there exists an analogous diagram to Figure 1 with n dimensions and 2n(n−1)

regions. (The exponents k are plotted such that they increase by Ni modulo
N in direction i.) In the next section we will investigate this diagram in more
detail for the case n = 3.

The condition that degPN < N is fairly weak in that it holds always for
small n and “most of the time” for large n.

Proposition 3.4. If
∑n

i=1 1/pi < 2n/(n− 1), then degPN < N . In
particular, this holds if either n < 176 or every prime pi is at least (n− 1)/2.

Proof. Let A =
∑n

i=1 1/pi. By Maclaurin’s inequality,

1− degPN

N
= A−

∑
1≤i<j≤n

1

pipj
> A− n− 1

2n
A2.

Thus if A < 2n/(n− 1), then N > degPN .
If every prime pi is at least (n− 1)/2, then clearly A < 2n/(n− 1).
Suppose degPN ≥ N . We claim that degPN ′ ≥ N ′, where N ′ is the

product of the first n primes. It suffices to check that A −
∑

1/(pipj) de-
creases if we reduce any pi and keep the others fixed. The coefficient of
1/pi in this expression is 1 −

∑
j 6=i 1/pj = 1 + 1/pi − A, which is nega-

tive since A ≥ 2n/(n− 1) > 2 > 1 + 1/pi, proving the claim. Therefore
it suffices to check that whenever N is the product of the first n < 176
primes, degPN < N . This follows from a straightforward computer calcula-
tion.

The smallest N for which degPN ≥ N is the product of the first 176
primes, roughly 2.4182× 10439.

One can use Theorem 3.2 to give a bound on the largest absolute value
of a coefficient of PN (x).

Corollary 3.5. If degPN < N , then every coefficient of PN (x) has
absolute value at most n · 2(n−2

2 )−1.

Proof. Let us denote by fSi the function defined in Theorem 3.2 cor-
responding to the set S. Then since the theorem holds for all fSi (and
the expression for the coefficients is linear in the fSi ), it will also hold
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for the average gi = 2−(n2)
∑

S f
S
i . Note that |gi(k)| = 2−(n−1) for all k.

Then∣∣∣ n∑
i=1

∑
A⊂Ai

(−1)|A|gi(k −NA)
∣∣∣ ≤ n · 2|Ai| · 2−(n−1) = n · 2(n−2

2 )−1.

Although this bound looks rather weak, it is in fact fairly tight as we
shall see in Section 5. As a special case, we can apply it when n = 3 to
recover the result of Gallot and Moree [4].

Corollary 3.6. We have M(3) = 1. In other words, all of the coeffi-
cients of (1− x)Φpqr(x) have absolute value at most 1.

Proof. Corollary 3.5 (along with Proposition 3.4) gives M(3) ≤ 3/2.

Applying Corollary 3.5 for n = 4 gives M(4) ≤ 4. We will show in the
next section that in fact M(4) = 2.

We will need the following alternate descriptions of the coefficients of
PN (x).

Proposition 3.7. Let p be a prime not dividing N , and let aN (k) be the
coefficient of xk in PN (x). For any T ⊂ [n], write NT =

∑
i∈T Ni. Then

apN (k)− apN (k −N) =
∑

(−1)|T |aN (p−1(k −NT )),

where the sum ranges over all T ⊂ [n] for which k ≡ NT (mod p) (or,
equivalently, for which kN−1 ≡

∑
i∈T p

−1
i (mod p)).

Proof. We can write

(1− xN )PpN (x) = PN (xp)

n∏
i=1

(1− xNi).

Computing the coefficient of xk on both sides gives the result.

Note that if pN is generic, then the sum on the right side of Propo-
sition 3.7 can have at most one term since the values [

∑
i∈T p

−1
i ]p are all

distinct.

Proposition 3.8. Let p be a prime not dividing N , and let aN (k) and
NT be defined as in Proposition 3.7. If mk = p−1(k −N [kN−1]p), then

apN (k)− apN (k − pN) =
∑
T⊂[n]

(−1)|T |aN (mk−NT
).

Proof. Expanding the left side as the telescoping sum

(apN (k)− apN (k −N)) + (apN (k −N)− apN (k − 2N)) + · · ·
+ (apN (k − (p− 1)N)− apN (k − pN))
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and using Proposition 3.7, we see that each subset T ⊂ [n] contributes to ex-
actly one term apN (k−cN)−apN (k−(c+1)N), where k−cN ≡ NT (mod p),
or equivalently c = [(k−NT )N−1]p. As mk−NT

= p−1(k −NT − cN), the re-
sult follows.

We can use this to bound the growth of M(n) without the restriction
that degPN < N .

Corollary 3.9. We have M(n) ≤ 2n
2/2+O(n log log logn).

Proof. Note that it suffices to check M(n)/M(n− 1) ≤ 2n+O(log log logn).
We may write aN (k) =

∑∞
i=0(aN (k−iN)−aN (k−(i+1)N)). By Proposi-

tion 3.8, each term on the right side is bounded by 2n−1M(n−1). Moreover,
the number of nonzero terms on the right side is bounded by⌈

degPN

N

⌉
≤ 1 +

degPN

N
< 1 +

n∑
i=1

1

pi
.

If the pi are in increasing order, then pi is at least the ith smallest prime,
which grows like i log i. Hence

∑n
i=1 1/pi = O(log log n), and the result fol-

lows.

Note that this bound grows like 2n
2/2, just like the bound found in Corol-

lary 3.5.
In a certain special case, we can simplify Proposition 3.8 to a form that

will be useful later.

Proposition 3.10. Let p be a prime not dividing N = p1 · · · pn, and
suppose that

∑n
i=1 1/pi < 1. Then for any integer k,

apN (k) =
∑
T⊂[n]

(−1)|T |aN (m′k−NT
){m′k−NT

≤ kp−1},

where m′k = [mk]N = [kp−1]N .

Proof. By telescoping the sum in Proposition 3.8, we find that

apN (k) =
∑
T⊂[n]

(−1)|T |
∞∑
j=0

aN (mk−NT
− jN).

By Proposition 3.4, since
∑n

i=1 1/pi < 1, degPN < N . Thus each infinite sum
has at most one nonzero term. This nonzero term must be aN ([mk−NT

]N ) =
aN (m′k−NT

), and it is present if and only if m′k−NT
≤ mk−NT

. Since mk−NT

was constructed to be the largest integer m such that pm ≡ k−NT (mod N)
and pm ≤ k −NT , and m′k−NT

satisfies the first condition, we deduce that
m′k−NT

≤ mk−NT
if and only if pm′k−NT

≤ k −NT . But since both sides of
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this inequality are congruent modulo N , and NT = N
∑

i∈T 1/pi < N ,
we can equivalently drop the NT on the right side, and the result fol-
lows.

In other words, to find apN (k), we find a number of terms of the form
±aN (m), order them bym, and sum some initial segment of them. Moreover,
note that increasing k by N only changes the initial segment and not the
terms. If pN is generic, then by Proposition 3.7, the sum over any initial
segment will equal apN (k′) for some k′ ≡ k (mod N).

Another consequence of Proposition 3.7 is that we can use it to show
that many coefficients must vanish.

Proposition 3.11. Suppose degPN < N and choose any pi dividing N .
Let 0 < k < Ni be an integer such that kN−1i 6≡ [

∑
j∈T p

−1
j ]pi (mod pi) for

any T ⊂ [n] \ {i}. Then aN (k) = 0.

Proof. By Proposition 3.7, aN (k) = aN (k − Ni) = 0 (since the sum on
the right hand side is empty and k −Ni < 0).

Proposition 3.11 implies that a large number of the regions defined by
Corollary 3.3 must yield coefficients of zero. Another way of stating Proposi-
tion 3.11 is to say that within a region corresponding to a nonzero coefficient,
any two exponents adjacent in the ith direction differ by Ni (as opposed to
N −Ni).

In the next section we will give a more explicit (and visual) description
of Corollary 3.3 for the case n = 3.

4. The cases n = 3 and n = 4. In this section, we will give a more
explicit description of PN (x) when n = 3. (A similar description was found
independently by Bzdęga [2].) We will then use this to show that M(4) = 2.

Let N = pqr. As per Corollary 3.3, we first need to determine the possible
orders of the residues in {0, [p−1]r, [q−1]r, [p−1 + q−1]r} (and the analogous
sets for the other primes). Let us write [c]+m = [c]m if [c]m 6= 0 and [c]+m = m
if [c]m = 0.

Lemma 4.1. Let p, q, and r be distinct primes. Then, up to permutation
of p, q, and r, one of the following four possibilities holds:

(1) [p−1 + q−1]+r < [p−1]r ≤ [q−1]r,
[r−1]q ≤ [p−1]q < [p−1 + r−1]+q ,
[q−1]p ≤ [r−1]p < [q−1 + r−1]+p .

(2) [p−1 + q−1]+r < [p−1]r ≤ [q−1]r,
[r−1]q ≤ [p−1]q < [p−1 + r−1]+q ,
[r−1]p ≤ [q−1]p < [q−1 + r−1]+p .
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(3) The same as (1) but with all inequalities reversed.
(4) The same as (2) but with all inequalities reversed.

Proof. Note that if ([p−1]r + [q−1]r)/r is at most 1, then [p−1 + q−1]+r
is greater than both [p−1]r and [q−1]r, while if it is greater than 1, then
these inequalities are reversed. Since p[p−1]q + q[q−1]p = pq + 1, it follows
that

(∗) 1

r
([p−1]r + [q−1]r) +

1

q
([p−1]q + [r−1]q) +

1

p
([q−1]p + [r−1]p)

= 3 +
1

pq
+

1

pr
+

1

qr
.

Thus the three terms on the left side cannot all be at most 1. Moreover,
they cannot all be greater than 1, for then the left side would be at least
3 + 1/p + 1/q + 1/r. Thus either one or two of these terms are greater
than 1.

Suppose that exactly one term on the left side of (∗) is greater than 1,
say ([p−1]r +[q−1]r)/r. We may assume without loss of generality that [p−1]r
≤ [q−1]r. If [r−1]q > [p−1]q, then

qr + 1 = q[q−1]r + r[r−1]q > q[p−1]r + r[p−1]q,

so

1 ≥ 1

r
[p−1]r +

1

q
[p−1]q = 2 +

1

pr
+

1

pq
− 1

p
([r−1]p + [q−1]p)

≥ 1 +
1

pr
+

1

pq
> 1,

which is a contradiction. It follows that [r−1]q ≤ [p−1]q, and the only possi-
bilities are then (1) and (2).

Suppose two of the three terms on the left side of (∗) are greater than 1.
We may assume without loss of generality that [q−1]r ≤ [p−1]r < [p−1+q−1]+r .
If [r−1]q < [p−1]q, then

qr + 1 = q[q−1]r + r[r−1]q < q[p−1]r + r[p−1]q,

so

1 <
1

r
[p−1]r +

1

q
[p−1]q = 2 +

1

pr
+

1

pq
− 1

p
([r−1]p + [q−1]p)

≤ 1 +
1

pr
+

1

pq
− 1

p
< 1,

which is a contradiction (since 1/r+1/q < 1). This yields either (3) or (4).

It is now a simple matter to use Theorem 3.2 to calculate the coefficients
of Ppqr. We will assume that N is generic (all other N can be obtained by
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degenerating these diagrams). For any integer 0 ≤ k < pqr, let

h(k) = ([k(qr)−1]p, [k(pr)−1]q, [k(pq)−1]r).

By Theorem 3.2, the coefficient of xk can be written as a sum of three
terms depending on the projections of h(k) onto the three coordinate planes.
If p, q, and r satisfy the first condition of Lemma 4.1 and the set S in
Theorem 3.2 is taken to be {(q, p), (r, p), (r, q)}, then we obtain Figure 2.
The coefficient of xk is then the sum of the values corresponding to each of
the three projections of h(k) (where + represents 1 and − represents −1).
This allows us to explicitly compute the coefficient of xk for each of the 64
regions as shown in Figure 2. (Note that each region is a product of three
half-open intervals that contain their lower endpoints but not their upper
endpoints.)
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0
0

0
0
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0

0
0

0
0

0
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0

0
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0
0

0
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1
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0
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p
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[q−1]r

r

+
+

−−

−

+

−

−

−

+

+
+

Fig. 2. Coefficients of Ppqr(x) in case (1) of Lemma 4.1. To find the coefficient of xk,
compute h(k) = ([k(qr)−1]p, [k(pr)

−1]q, [k(pq)
−1]r) and determine which of the 64 regions

it lies in. (All intervals contain their lower endpoints but not their upper endpoints.)
According to Theorem 3.2, the coefficient of xk can be determined by summing the +’s
and −’s from the three projections of its region as indicated. For instance, the coefficient
of x71 in P5·11·23(x) is the boxed 1, which received a contribution of +1 from the projection
along the q direction and no contributions from the other two projections.
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If p, q, and r satisfy the second condition of Lemma 4.1, the resulting
coefficients are given in Figure 3. The coefficients for when the third or fourth
condition is satisfied are given by these same two figures if we reverse the
direction of each of the axes. Note that it is evident from this that all of the
coefficients of Ppqr are at most 1 in absolute value, so M(3) = 1.
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Fig. 3. Coefficients of Ppqr(x) in case (2) of Lemma 4.1

Example. Let p = 5, q = 11, and r = 23. Then
[q−1]p = 1, [r−1]p = 2, [q−1 + r−1]p = 3,

[r−1]q = 1, [p−1]q = 9, [p−1 + r−1]q = 10,

[p−1 + q−1]r = 12, [p−1]r = 14, [q−1]r = 21,

which is part of case (1) of Lemma 4.1. To find the coefficient of x71, we first
calculate
h(71) =

(
[71 · (11 · 23)−1]5, [71 · (5 · 23)−1]11, [71 · (5 · 11)−1]23

)
= (2, 1, 13).

(Indeed, 2 · (11 · 23) + 1 · (5 · 23) + 13 · (5 · 11) = 1336 ≡ 71 (mod 5 · 11 · 23).)
Thus the coefficient corresponds to the region from [r−1]p to [q−1 + r−1]p,
from [r−1]q to [p−1]q, and from [p−1 + q−1]r to [p−1]r. Then Figure 2 shows
that the coefficient of x71 equals 1 (as indicated by the box).
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We can also use these diagrams showing the coefficients of Ppqr(x) to
prove that M(4) = 2.

Theorem 4.2. We have M(4) = 2.

Proof. Let p, q, r, and s be arbitrary distinct primes. Also let us assume
that pqr satisfies the first condition of Lemma 4.1; the other cases are similar.
For convenience, let us denote each of the 64 regions in Figure 2 by a triple
of integers from 0 to 3 denoting its position in the p, q, and r directions,
and let f(xyz) denote the coefficient corresponding to the region xyz. For
instance, 211 will refer to the region containing the coefficient of x71 in the
example above, and so f(211) = 1.

Fix a residue k̄ modulo N = pqr. By Proposition 3.10, the coefficients
of xk for k ≡ k̄ (mod N) in PNs(x) are partial sums of a signed sequence
of eight coefficients of PN (x) that when plotted into the regions of Figure 2
lie at the corners of a rectangular box. Let us denote the corresponding
exponents by k000, k001, k010, . . . , k111, and suppose that they lie in the eight
(not necessarily distinct) regions x0y0z0, . . . , x1y1z1, so the corresponding
signed term is gabc = (−1)a+b+cf(xaybzc). The order in which the gabc are
summed is given by the order of the kabc. Note that switching k0bc and k1bc
for all b and c will only swap x0 and x1 and will therefore just change the
sign of all the gabc and not the order in which we sum them. Since this will
not affect the absolute value of any partial sum, we will assume that h(k000)
is minimal in all three coordinate directions.

Note that the sum of all eight of the gabc is 0 since the coefficients of xk
vanish for k sufficiently large. Then in order for a partial sum of these terms
to be at least 3 in absolute value, at least six of the gabc must be nonzero.

First suppose all the xaybzc are distinct. Then by examining Figure 2 we
see that there are only two places this can occur, namely either

xaybzc ∈ {1, 3} × {0, 3} × {1, 3} or xaybzc ∈ {1, 3} × {2, 3} × {1, 3}.
In the first case, we find

(g000, g001, g010, g011, g100, g101, g110, g111) = (0,−1,−1, 1, 1, 0,−1, 1).

In order to have a coefficient of absolute value at least 3, we must make sure
that when the gabc are ordered according to the kabc, all the 1’s come before
all the −1’s or vice versa. But this cannot happen: by Proposition 3.11,
k011 < k001 (since f(133) and f(103) are both nonzero) and likewise k110 <
k100. The second case is similar.

Therefore we may suppose that not all of the xaybzc are distinct, say
x0 = x1 (the other cases are similar). Then by Proposition 3.11, we have
k0bc ≤ k1bc if g0bc = −g1bc is nonzero. So in order for some partial sum of the
gabc to have absolute value at least 3, at least three of the g0bc must have the
same sign. Then some f(x0ybzc) must differ in sign from both f(x0y1−bzc)
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and f(x0ybz1−c). But an inspection of Figure 2 shows that this cannot hap-
pen.

We have shown thatM(4) ≤ 2. Since the coefficient of x233 in P5·7·11·13(x)
is −2, we must have M(4) = 2, as desired.

Having analyzed M(n) for small values of n, we will give an asymptotic
bound for M(n) in the next section.

5. Asymptotics of M(n). In this section, we will show that, although
from the values M(2) = M(3) = 1 and M(4) = 2 it might appear that
M(n) grows slowly, in fact it grows exponentially in n2. To place a lower
bound on M(n), we will inductively construct a polynomial PN (x) with a
large coefficient by applying Proposition 3.10.

We first need to show that there exist N which yield arbitrarily large
regions. Let N = p1 · · · pn, and let Sj(N) be the multiset {[

∑
i∈T p

−1
i ]pj |

T ⊂ [n] \ {j}}. Let us write d(Sj(N)) for the smallest difference between
two elements of Sj(N) ∪ {pj} (corresponding to different subsets T ). Thus
d(Sj(N)) is the smallest length of any region in the jth direction, and N
is generic if d(Sj(N)) ≥ 1 for all j. We will examine what happens when
we add to pj a multiple of Nj . Clearly this will not change Si(N) for any
i 6= j.

Lemma 5.1. Fix T ⊂ [n] \ {j}, and define zT to be the fractional part
of
∑

i∈T (1− [p−1j ]pi/pi). Then pjzT +
∑

i∈T 1/pi is an integer congruent to∑
i∈T p

−1
i modulo pj. In particular, if

∑
i∈T 1/pi < 1 and T is nonempty,

then [
∑

i∈T p
−1
i ]+pj = dpjzT e.

Proof. Since pipj + 1 = pi[p
−1
i ]pj + pj [p

−1
j ]pi , we have

[p−1i ]pj = pj

(
1− 1

pi
[p−1j ]pi

)
+

1

pi
.

Summing over all i gives the result.

Note that zT only depends on the residue of pj modulo Nj . This means
that increasing pj by some multiple of Nj will tend to keep the residues we
care about in the same order while increasing the gaps in between them.

In particular, each zT is a rational number with denominator
∏

i∈T pi
(when written in reduced form). Hence any two zT differ by at least 1/Nj .
Thus if pj > aNj for some integer a, then d(Sj(N)) ≥ a.

Lemma 5.2. Suppose that
∑n

i=1 1/pi < 1 and N is generic. Then there
exists N ′ = p′1 · · · p′n and a positive constant c < 1 such that for all j, p′j > pj,
the corresponding elements of Sj(N) and Sj(N ′) are in the same order, and
bn/2c+ 1 < cp′j < d(Sj(N

′)).
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Proof. We first construct N ′′ = p′′1 · · · p′′n such that for all j, p′′j > pj ,
the corresponding elements of Sj(N) and Sj(N ′′) are in the same order, and
d(Sj(N

′′)) ≥ 3.
Fix some j. By Lemma 5.1, the elements of Sj(N)—which are distinct

since N is generic—are in the same order as the zT . Moreover, if we add a
multiple of Nj to any pj to get p′′j , this does not change the values (nor the
order) of the zT . By choosing p′′j sufficiently large, which is always possible
by Dirichlet’s theorem on primes in arithmetic progressions, we can ensure
that the difference between any two p′′j zT is at least 3 (or as large as needed).
Applying this process for all j gives the result.

Now choose c to be smaller than each 1/p′′j . Then, as above, replace
each p′′j with some p′j > (bn/2c+ 1)/c by adding multiples of the prod-
ucts of the other primes. We claim that the resulting N ′ satisfies the de-
sired properties. By the argument above, we need only check the desired
inequalities. Therefore it suffices to show that 1/p′′j < d(Sj(N

′))/p′j . Fix j,
and suppose that we are replacing p′′j with p′j . Let the smallest difference
d(Sj(N

′)) between two elements of Sj(N ′)∪ {p′j} occur between dp′jzT e and
dp′jzT ′e. (If the difference involves p′j , take 1 for the corresponding zT .) Then
(d(Sj(N

′)) + 1)/p′j > |zT − zT ′ |. But we know from before we replaced p′′j
that |dp′′j zT e − dp′′j zT ′e| ≥ d(Sj(N

′′)), so |zT − zT ′ | > (d(Sj(N
′′))− 1)/p′′j .

We find that

d(Sj(N
′))

p′j
> |zT − zT ′ | −

1

p′j
>
d(Sj(N

′′))− 1

p′′j
− 1

p′j
>

2

p′′j
− 1

p′′j
=

1

p′′j
.

By ensuring that d(Sj(N
′)) is large, we are guaranteed that the regions

in which the coefficients are constant are large. Recall that when we add
another prime, the coefficients of the new polynomial can be written as
signed sums of coefficients of the old polynomial. Therefore, having large
regions will allow us to use the maximum coefficient many times in these
sums, thereby generating a large coefficient in the new polynomial.

Lemma 5.3. Let N = p1 · · · pn be generic with
∑n

i=1 1/pi < 1. Then
there exists N ′ = p′1 · · · p′n and q prime such that N ′q is generic with
1/q +

∑n
i=1 1/p′i < 1 and the height of PN ′q(x) is at least

(
n−1

b(n−1)/2c
)
times

the height of PN (x).

Proof. First find N ′ and c as in Lemma 5.2, and let M be the coefficient
of maximum absolute value in PN ′(x). Then, by the Chinese Remainder
Theorem, choose q such that q > N ′ (which implies

∑
1/p′i + 1/q < 1) and

q−1 ≡ bcp′jc (mod p′j) for all j. Since q > N ′, [
∑

i∈T p
′−1
i ]q are distinct for

all T ⊂ [n] as in the discussion following Lemma 5.1. Moreover, we have
[q−1]p′j ≤ cp

′
j < d(Sj(N

′)), so N ′q is generic.
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For an integer k̄, consider the exponents [q−1(k̄−
∑

j∈T N
′
j)]N ′ for T ⊂ [n].

Since [
q−1
(
k̄ −

∑
j∈T

N ′j

)]
N ′
≡ [q−1k̄]N ′ −

∑
j∈T

([q−1]p′jN
′
j) (mod N ′),

these exponents will be plotted at the corners of a rectangular box with side
lengths [q−1]p′j . Since [q−1]p′j < d(Sj(N

′)), this box is smaller than the region
corresponding to M , so we can find an integer k̄ such that the coefficients of
PN ′(x) corresponding to exponents [q−1(k̄−

∑
j∈T N

′
j)]N ′ are all equal toM .

(In fact, we may take k̄ = qk′, where k′ is the maximum exponent whose
coefficient in PN ′(x) is M .) Since M 6= 0, by Proposition 3.11,[
q−1
(
k̄−
∑
j∈T

N ′j

)]
N ′

= [q−1k̄]N ′−
∑
j∈T

([q−1]p′jN
′
j) = [q−1k̄]N ′−

∑
j∈T

(bcp′jcN ′j).

Observe that

cN ′ −N ′j = (cp′j − 1)N ′j < bcp′jcN ′j ≤ cp′jN ′j = cN ′.

Let s = bn/2c, and suppose T1, T2 ⊂ [n] with |T1| ≤ s and |T2| > s. Without
loss of generality, assume p′1 is the smallest p′j . Then, since cp

′
1 > s+ 1,∑

j∈T2

(bcp′jcN ′j) > (s+ 1)(cN ′ −N ′1) = csN ′ + (cp′1 − s− 1)N ′1

> csN ′ ≥
∑
j∈T1

(bcp′jcN ′j).

Thus all the exponents corresponding to sets T1 of size at most s are greater
than those corresponding to sets T2 of size at least s + 1. Choose k ≡ k̄
(mod N ′) such that[

q−1
(
k̄ −

∑
j∈T1

N ′j

)]
N ′
> kq−1 >

[
q−1
(
k̄ −

∑
j∈T2

N ′j

)]
N ′

for all T1 and T2. (Such a k exists because q−1N ′ < 1.) But now by Propo-
sition 3.10,

aqN ′(k)

=
∑
T⊂[n]

(−1)|T |aN ′
([
q−1
(
k̄ −

∑
j∈T

N ′j

)]
N ′

)
·
{[
q−1
(
k̄ −

∑
j∈T

N ′j

)]
N ′
≤ kq−1

}

=
∑
T⊂[n]
|T |>s

(−1)|T |M =

n∑
i=s+1

(−1)i
(
n

i

)
M = (−1)s+1

(
n− 1

n− s− 1

)
M.

Thus we have found the desired coefficient with large absolute value.
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By iterating this procedure, we can construct PN (x) with large height.
We obtain the following result.

Theorem 5.4. We have M(n) = 2n
2/2+O(n logn).

Proof. By Lemma 5.3,M(n) is bounded below by
∏n−2

i=1

(
i
bi/2c

)
. It is well

known that log
(

i
bi/2c

)
= i log 2 +O(log i). Summing this over the first n− 2

values of i gives (log 2)n2/2 +O(n log n), so exponentiating leads to the de-
sired lower bound. Combining this with the upper bound from Corollary 3.9,
we get the result.

6. PN (x) with height 1. While we have shown that the maximum
height of a polynomial PN (x) with n distinct prime factors grows exponen-
tially in n2, we will now prove that the minimum height of such a polynomial
is in fact 1. We first describe how to construct such an N .

Recall that if N = p1 · · · pn, then Sj(N) is the multiset {[
∑

i∈T p
−1
i ]pj |

T ⊂ [n]\{j}}, and d(Sj(N)) is the smallest difference between two elements
of Sj(N) ∪ {pj}.

Lemma 6.1. There exist primes p1 < · · · < pn satisfying the following
conditions for all u and v such that 1 ≤ u < v ≤ n:

(a) [p−1v ]pu < d(Su(p1 · · · pv−1));
(b) pv − [p−1u ]pv < d(Sv(pv · p1 · · · pu−1));
(c)

∑n
i=1 p

−1
i < 1.

Note that conditions (a) and (b) are equivalent to specifying a particular
ordering of Si(p1 · · · pn) for each i.

Proof of Lemma 6.1. For n = 2, take p1 < p2 to be any distinct primes.
Suppose that we have constructed p1, . . . , pn−1 satisfying the given con-

ditions. As in Lemma 5.2, we can, in order, increase each pi by a multi-
ple of the others so that the orders of all the Si(p1 · · · pn−1) are preserved,
d(Si(p1 · · · pn−1)) > 1 for all i, and pi+1 > 2pi for 1 ≤ i ≤ n− 2.

Now let pn ≡ 1 (mod p1 · · · pn−1) be a prime large enough to satisfy (c).
We need only check (a) and (b) when v = n. Condition (a) is obviously
satisfied. For (b), since pi[p−1i ]pn + pn[p−1n ]pi = pipn + 1, we have

pn − [p−1i ]pn =
pn[p−1n ]pi − 1

pi
=
pn − 1

pi
= bp−1i pnc.

Then
d(Sn(p1pn)) = min{bp−11 pnc, b(1− p−11 )pnc} = bp−11 pnc.

Since
bp−12 pnc ≤

⌊
1
2p
−1
1 pn

⌋
≤ 1

2bp
−1
1 pnc,
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we see that d(Sn(p1p2pn)) = bp−12 pnc. Continuing in this manner, we get
d(Sn(p1p2 . . . pipn)) = bp−1i pnc < bp−1i−1pnc = d(Sn(p1p2 . . . pi−1pn))

for all i, as desired.

For the remainder of this section, we will assume that N = p1 · · · pn
as in Lemma 6.1. Note that the lemma implies that N is generic since
d(Sj(N)) > 0 for all j. We claim that if we let N = p1 · · · pn as in Lemma 6.1,
then the height of PN (x) will be 1. The following lemma will allow us to work
with the ordering of the Si(p1 · · · pn) more explicitly.

Let hNi (k) = hi(k) = [kN−1i ]pi , and let xNi (k) = xi(k) be the ith coor-
dinate of the region containing k. In other words, xi(k) + 1 is the number
of elements of Si(N) that are at most hi(k), so that xi(k) ranges from 0 to
2n − 1. (We will sometimes think of hi(k) as a residue modulo pi.)

For subsets V,W ⊂ [n] \ {i}, let us write V ≺i h ≺i W (and V ≺i W ) if[∑
j∈V

p−1j

]
pi
≤ h <

[ ∑
j∈W

p−1j

]+
pi
.

Then let V N
i (k) = Vi(k) and WN

i (k) = Wi(k) be the subsets of [n] \ {i}
such that for any k′, xi(k′) = xi(k) if and only if Vi(k) ≺i hi(k

′) ≺i Wi(k).
In other words, Vi(k) and Wi(k) are the subsets of [n] \ {i} such that the
corresponding elements of Si(N) bound the region containing k.

Lemma 6.2. Let N = p1 · · · pn be defined as in Lemma 6.1. For i = n,
n− 1, or n− 2, the set Vi(k)∩ {n− 2, n− 1, n} is determined by the residue
of xi(k) modulo 4. Specifically, suppose V and W are subsets of [n−3] such
that V ≺i W .

(i) If i = n− 2, then

V ≺n−2 V ∪ {n} ≺n−2 V ∪ {n− 1} ≺n−2 V ∪ {n− 1, n} ≺n−2 W.

(ii) If i = n− 1, then

V ≺n−1 V ∪ {n} ≺n−1 W ∪ {n− 2} ≺n−1 W ∪ {n− 2, n} ≺n−1 W.

(iii) If i = n, then

V ≺n W ∪ {n− 2, n− 1} ≺n W ∪ {n− 2} ≺n W ∪ {n− 1} ≺n W.

For instance, if xi(k) ≡ 0 (mod 4) for i = n, n − 1, or n − 2, then
Vi(k) ∩ {n− 2, n− 1, n} = ∅.

Proof of Lemma 6.2. This follows easily from Lemma 6.1: (i) follows from
condition (a) when (u, v) = (n−2, n−1) and (n−2, n); (ii) follows from (b)
when (u, v) = (n− 2, n− 1) and from (a) when (u, v) = (n− 1, n); and (iii)
follows from (b) when (u, v) = (n− 2, n) and (n− 1, n).

We will also need the following result (which holds for general N) in the
style of Proposition 3.1.
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Proposition 6.3. Let pi and pj be distinct primes dividing N . Then
modulo xN − 1,

PN (x) ≡ 1− x[p
−1
j ]piNi

1− xNi
PNi(x

pi)
∏
k 6=i,j

(1− xNik)

+ x[p
−1
j ]piNi

xN − x[p
−1
i ]pjNj

1− xNj
PNj (x

pj )
∏
k 6=i,j

(1− xNjk).

Proof. The right side can be factored as
PN (x)

1− xNij

(
(1− x[p

−1
j ]piNi) + x[p

−1
j ]piNi(xN − x[p

−1
i ]pjNj )

)
.

Subtracting this from the left side and multiplying by 1−xNij , we therefore
need that

PN (x)
(
1− xNij − (1− x[p

−1
j ]piNi)− x[p

−1
j ]piNi(xN − x[p

−1
i ]pjNj )

)
is divisible by (1− xN )(1− xNij ).

Since [p−1j ]piNi + [p−1i ]pjNj = Nij([p
−1
j ]pipj + [p−1i ]pjpi) = N + Nij , we

have

(1− x[p
−1
j ]piNi) + x[p

−1
j ]piNi(xN − x[p

−1
i ]pjNj )

= x[p
−1
j ]piNi(xN − 1) + 1− xN+Nij

= (1− xNij ) + (xN − 1)(x[p
−1
j ]piNi − xNij ).

Thus we just need that PN (x)(1 − xN )(x[p
−1
j ]piNi − xNij ) is divisible by

(1− xN )(1− xNij ), which is clear because both exponents in the final term
are divisible by Nij .

Let 0 ≤ k̄i < Ni be the integer such that

pik̄i +
∑

j∈Vi(k)
Nij ≡ k (mod Ni).

Dividing by Nj modulo pj gives

hNi
j (k̄i) ≡ hj(k)− [p−1i ]pj{j ∈ Vi(k)} (mod pj),

where {j ∈ Vi(k)} equals 1 if j ∈ Vi(k) and 0 otherwise. Then V Ni
j (k̄i) and

WNi
j (k̄i) are, as in the definition of Vj(k) andWj(k), the subsets defining the

interval containing hj(k) − [p−1i ]pj{j ∈ Vi(k)} except that we only consider
subsets not containing i.

Lemma 6.4. Let N = p1 · · · pn be as constructed in Lemma 6.1. Then for
0 ≤ k < N ,

aN (k) = (−1)|Vn−1(k)|aNn−1(k̄n−1){n 6∈ Vn−1(k)}
+ (−1)|Vn(k)|aNn(k̄n){n− 1 ∈ Vn(k)}.
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Proof. Consider the right side of Proposition 6.3. For any 0 ≤ k̄i < Ni,
the product

1− x[p
−1
j ]piNi

1− xNi
PNi(x

pi) =
(
1 + xNi + x2Ni + · · ·+ x([p

−1
j ]pi−1)Ni

)
PNi(x

pi)

contributes aNi(k̄i) to the coefficient of aN (k) for k = pik̄i + cNi for 0 ≤
c < [p−1j ]pi . Considering all possible k̄i, the resulting values of k are exactly
those for which 0 ≤ hi(k) < [p−1j ]pi . Then the entire first term on the
right side of Proposition 6.3 contributes, for each subset V ⊂ [n] \ {i, j},
(−1)|V |aNi(k̄i) to each aN (k) for which hi(k) lies in the half-open cyclic
interval from [

∑
s∈V p

−1
s ]pi to [

∑
s∈V ∪{j} p

−1
s ]pi . Now let i = n−1 and j = n.

By Lemma 6.2(ii), the aN (k) that receive a contribution from this first term
are those for which n 6∈ Vn−1(k), and there can only be one such contribution,
namely from V = Vn−1(k). This yields the first term on the right side of the
lemma’s statement.

Similarly, the product

x[p
−1
j ]piNi

xN − x[p
−1
i ]pjNj

1− xNj
PNj (x

pj )

contributes, for each 0 ≤ k̄j < Nj , −aNj (k̄) to those aN (k) for which

k ≡ [pj
−1]piNi + [p−1i ]pjNj + cNj + pj k̄j = pj k̄j +N +Nij + cNj

≡ pj k̄j +Nij + cNj (mod N)

for 0 ≤ c < pj − [pi
−1]pj . Over all k̄j , these are those k for which [p−1i ]pj ≤

hj(k) < pj . Then the entire second term on the right side of Proposition 6.3
contributes, for each subsetW ⊂ [n]\{i, j}, (−1)|W |+1aNj (k̄j) to each aN (k)

for which hj(k) lies in the half-open cyclic interval from [
∑

s∈W∪{i} p
−1
s ]pj

to [
∑

s∈W p−1s ]pj . When i = n − 1 and j = n, by Lemma 6.2(iii), there can
again be at most one contribution to any aN (k), namely when n−1 ∈ Vn(k)
and Vn(k) = W ∪ {n− 1}, which yields the second term above, completing
the proof.

Note that this lemma implies that if n ∈ Vn−1(k) and n − 1 6∈ Vn(k),
then aN (k) = 0.

We can also prove a slightly different version of Lemma 6.4.

Lemma 6.5. Let N = p1 · · · pn be as constructed in Lemma 6.1. For
0 ≤ k < N ,

aN (k) = (−1)|Vn−1(k)|aNn−1([k̄n−1 −Nn−1,n]Nn−1){n 6∈ Vn−1(k)}
+ (−1)|Vn(k)|aNn([k̄n +Nn−1,n]Nn){n− 1 ∈ Vn(k)}.
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Proof. As in Proposition 6.3,

PN (x) ≡ xN − x[p
−1
j ]piNi

1− xNi
PNi(x

pi)
∏
k 6=i,j

(1− xNik)

+ x[p
−1
j ]piNi

1− x[p
−1
i ]pjNj

1− xNj
PNj (x

pj )
∏
k 6=i,j

(1− xNjk)

modulo xN − 1. Now apply the same argument as in Lemma 6.4 with i = n
and j = n− 1.

(Alternatively, one can use Proposition 3.7 to compare the corresponding
terms in Lemmas 6.4 and 6.5.)

We are now ready to prove the main theorem of this section.

Theorem 6.6. Let N = p1 · · · pn be as constructed in Lemma 6.1. Then
|aN (k)| ≤ 1 for all k.

Proof. We proceed by induction on n, having proven the cases n ≤ 3
previously. Note that if p1, . . . , pn satisfy the conditions of Lemma 6.1, then
so does any subset of them.

By the induction hypothesis, we may assume that none of the four terms
on the right sides of Lemmas 6.4 and 6.5 vanish. In particular, this implies
that n 6∈ Vn−1(k), so xn−1(k) is even, and similarly n− 1 ∈ Vn(k), so xn(k)
is odd.

Suppose xn(k) ≡ 1 (mod 4), so that n− 2, n− 1 ∈ Vn(k). We claim that
xn−1(k) ≡ 2 (mod 4) and xn−2(k) ≡ 2 (mod 4). Indeed, suppose xn−1(k) ≡ 0
(mod 4), so that n− 2, n 6∈ Vn−1(k).

If xn−2(k) ≡ 0 (mod 4), then letm′ = [k̄n+Nn−1,n]Nn . Since n−2 ∈ Vn(k)

and Wn−2(k) contains n but not n − 1, it follows that WNn
n−2(k̄n) \ {n} =

Wn−2(k) does not contain n− 1, so n− 1 ∈ V Nn
n−2(k̄n) = V Nn

n−2(m
′). Similarly,

since n − 1 ∈ Vn(k) and Wn−1(k) contains n but not n − 2, we see that
n − 2 ∈ V Nn

n−1(k̄n). Then since xNn
n−1(m

′) = xNn
n−1(k̄n) + 1, n − 2 6∈ V Nn

n−1(m).
But then applying Lemma 6.4 to aNn(m′) implies that it equals 0, which we
assumed was not the case.

Likewise, if xn−2(k) 6≡ 0 (mod 4), then let ` = k̄n−1. A similar argu-
ment to the above implies that n − 2 6∈ V

Nn−1
n (`) and n ∈ V

Nn−1

n−2 (`), so
that again by Lemma 6.4, aNn−1(`) = 0, which we assumed was not the
case. It follows that if xn(k) ≡ 1 (mod 4), then xn−1(k) ≡ 2 (mod 4).
Then we still have n − 2 6∈ V

Nn−1
n (`), but now n ∈ V

Nn−1

n−2 (`) if and only
if xn−2(k) 6≡ 2 (mod 4). Therefore if aNn−1(`) 6= 0, then we must have
xn−2(k) ≡ 2 (mod 4).
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Assume then that xn(k) ≡ 1 (mod 4) and xn−1(k) ≡ xn−2(k) ≡ 2
(mod 4), and let m = k̄n and ` = k̄n−1 so that

aN (k) = (−1)|Vn−1(k)|aNn−1(`) + (−1)|Vn(k)|aNn(m).

From the above, n− 2 6∈ V Nn−1
n (`) and n 6∈ V Nn−1

n−2 (`), so

aNn−1(`) = (−1)|V
Nn−1
n−2 (`)|aNn−1,n−2(¯̀

n−2),

where ¯̀
n−2 is defined as in Lemma 6.4 applied to aNn−1(`). Similarly,

n− 2 6∈ V Nn
n−1(m) and n− 1 6∈ V Nn

n−2(m), so

aNn(m) = (−1)|V
Nn
n−2(m)|aNn,n−2(m̄n−2).

Since V Nn−1

n−2 (`) = V Nn
n−2(m) = Vn−2(k) ∩ [n− 3], we have

(∗) ±aN (k) = (−1)|Vn−1(k)|aNn−1,n−2(¯̀
n−2) + (−1)|Vn(k)|aNn,n−2(m̄n−2).

Let s = [k̄n−2 −Nn,n−2]Nn−2 . We claim that the right side of (∗) equals
−aNn−2(s), which will complete the proof in this case by the inductive hy-
pothesis.

It is straightforward to check that V Nn−2
n (s) = Vn(k) \ {n− 2} and that

V
Nn−2

n−1 (s) = Vn−1(k) \ {n− 2}. Then by Lemma 6.4,

aNn−2(s) = (−1)|V
Nn−2
n−1 (s)|aNn−1,n−2(s̄n−1) + (−1)|V

Nn−2
n (s)|aNn,n−2(s̄n)

= −
(
(−1)|Vn−1(k)|aNn−1,n−2(s̄n−1) + (−1)|Vn(k)|aNn,n−2(s̄n)

)
.

Therefore it suffices to show that aNn−1,n−2(¯̀
n−2) = aNn−1,n−2(s̄n−1) and

aNn,n−2(m̄n−2) = aNn,n−2(s̄n).
For all i ∈ [n] \ {n− 1, n− 2},

h
Nn−1,n−2

i (s̄n−1) = h
Nn−2

i (s)− [p−1n−1]pi{i ∈ V
Nn−2

n−1 (s)}.

When also i 6= n, we have hNn−2

i (s) = h
Nn−2

i (k̄n−2), so since

V
Nn−1

n−2 (`) = Vn−2(k) \ {n− 1},
we get

h
Nn−1,n−2

i (s̄n−1) = h
Nn−2

i (k̄n−2)− [p−1n−1]pi{i ∈ V
Nn−2

n−1 (s)}

= hNi (k)− [p−1n−2]pi{i ∈ Vn−2(k)} − [p−1n−1]pi{i ∈ V
Nn−2

n−1 (s)}

= hNi (k)− [p−1n−1]pi{i ∈ Vn−1(k)} − [p−1n−2]pi{i ∈ V
Nn−1

n−2 (`)}

= h
Nn−1

i (`)− [p−1n−2]pi{i ∈ V
Nn−1

n−2 (`)} = h
Nn−1,n−2

i (¯̀
n−2).

When i = n,

h
Nn−1,n−2
n (s̄n−1) = hNn−2

n (s) = hNn−2
n (k̄n−2)− [p−1n−2]pn = hNn (k)− [p−1n−2]pn

= hNn−1
n (`)− [p−1n−2]pn = h

Nn−1,n−2
n (¯̀

n−2)− [p−1n−2]pn .
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But since xn(k) ≡ 1 (mod 4), Lemma 6.2 implies that even with the shift
of [p−1n−2]pn , s̄n−1 and ¯̀

n−2 still lie in the same region for Nn−1,n−2, proving
that aNn−1,n−2(¯̀

n−2) = aNn−1,n−2(s̄n−1). A similar argument gives

h
Nn,n−2

n−1 (s̄n) = h
Nn,n−2

n−1 (m̄n−2)−[p−1n−2]pn−1 = hNn−1(k)−[p−1n−2]pn−1−[p−1n ]pn−1 ,

while hNn,n−2

i (s̄n) = h
Nn,n−2

i (m̄n−2) for i ∈ [n−3], and Lemma 6.2 once again
shows that s̄n and m̄n−2 lie in the same region for Nn,n−2. This completes
the proof in the case that xn(k) ≡ 1 (mod 4).

The only case remaining is when xn(k) ≡ 3 (mod 4). This follows by
essentially the same argument as in the previous case: first, in order for the
four terms on the right sides of Lemmas 6.4 and 6.5 not to vanish, we must
have xn−1(k) ≡ xn−2(k) ≡ 0 (mod 4). Then let `′ = [k̄n−1 − Nn−1,n]Nn−1

and m′ = [k̄n +Nn−1,n]Nn as in Lemma 6.5. Once again, we find that n−2 6∈
V

Nn−1
n (`′) = Vn(k)\{n−1} and n 6∈ V Nn−1

n−2 (`′) = Vn−2(k), so by Lemma 6.4,

aNn−1(`′) = (−1)|V
Nn−1
n−2 (`′)|aNn−1,n−2(¯̀′

n−2).

Similarly
aNn(m′) = (−1)|V

Nn−2
n−2 (m)|aNn,n−2(m̄′n−2).

Then, since V Nn−1

n−2 (`′) = V Nn
n−2(m

′) = Vn−2(k), we have

aN (k) = (−1)|Vn−1(k)|aNn−1(`′) + (−1)|Vn(k)|aNn(m′)(∗∗)
= ±

(
(−1)|Vn−1(k)|aNn−1,n−2(¯̀′

n−2) + (−1)|Vn(k)|aNn,n−2(m̄′n−2)
)
.

An analogous argument to the previous case now shows that the two terms
on the right side of (∗∗) equal the two terms on the right side of Lemma 6.5
when applied to aNn−2(k̄n−2), which completes the proof by induction.
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