On limit points of subsequences of uniformly distributed sequences

by
Ladislav Mišík (Ostrava)

1. Introduction. If a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is dense in the interval $[0,1]$, it is a standard exercise to prove that for any nonempty closed set $C \subset[0,1]$ there exists an increasing sequence $\left(n_{k}\right)_{k=1}^{\infty}$ of positive integers such that the set of all limit points of the subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ is equal to C. The question becomes more complicated if one imposes additional conditions on the growth of $\left(n_{k}\right)$. On the one hand, this growth can be arbitrarily rapid, on the other hand, it cannot be too slow in general. Recently Bugeaud $[B$, extending the previous result by Dubickas [D , proved the following theorem.

Theorem 1.1 ([B]). Let ξ be an irrational real number. Let S be a finite, nonempty set of distinct real numbers in $[0,1]$. Let $\left(g_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers such that $g_{n} \geq 1$ for $n \geq 1$ and $\lim _{n \rightarrow \infty} g_{n}=+\infty$. Then there exists an increasing sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive integers satisfying $a_{n} \leq n g_{n}$ for $n \geq 1$ and such that the set of limit points of the sequence of fractional parts of $\left(a_{n} \xi\right)_{n=1}^{\infty}$ is equal to S.

The purpose of this paper is to generalize this theorem in two directions. Firstly, the finite set S is replaced by an arbitrary nonempty closed subset of $[0,1]$. Secondly, the special sequence $(n \xi)$ is replaced by an arbitrary sequence uniformly distributed modulo 1 .

Recall that for a set $A=\left\{a_{1}<a_{2}<\cdots\right\} \subset \mathbb{N}$, denoting by $A(n)$ the cardinality of $A \cap\{1, \ldots, n\}$, the lower and upper asymptotic densities of A are defined respectively by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{A(n)}{n} \quad \text { and } \quad \bar{d}(A)=\underset{n \rightarrow \infty}{\limsup } \frac{A(n)}{n},
$$

or equivalently by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{n}{a_{n}} \quad \text { and } \quad \bar{d}(A)=\limsup _{n \rightarrow \infty} \frac{n}{a_{n}} .
$$

[^0]When the above values are equal, we speak about the asymptotic density of A and use the notation $d(A)$. For the Lebesgue measure of a set X of real numbers we use the symbol $\lambda(X)$, and $\{x\}$ stands for the fractional part of a real number x. A sequence $\left(x_{n}\right)$ of real numbers is uniformly distributed (u.d.) mod. 1 if for every interval $J \subset[0,1]$,

$$
\begin{equation*}
d\left(\left\{n \in \mathbb{N} ;\left\{x_{n}\right\} \in J\right\}\right)=\lambda(J) \tag{1.1}
\end{equation*}
$$

Note that the above equality then also holds for J being any finite union of disjoint intervals.

For a sequence $\left(x_{n}\right)$ and a set $A \subset \mathbb{N}$ we denote by $L\left(x_{A}\right)$ the set of all limit points of the subsequence $\left(\left\{x_{n}\right\}\right)_{n \in A}$. For simplicity, we will not distinguish infinite subsets of \mathbb{N} from the increasing sequences of all their elements, i.e. $A=\left(a_{n}\right)$ means that the set A is formed by all terms of the increasing sequence of positive integers $a_{1}<a_{2}<\cdots$.

For more references on this topic see $[\overline{K N}]$ or $[\mathbf{S P}$.

2. Results

Theorem 2.1. Let $\left(x_{n}\right)$ be a u.d. sequence mod. 1, let C be a nonempty closed subset of $[0,1]$ and let $h_{n} \rightarrow \lambda(C)$ be a sequence of positive real numbers with $h_{n} \leq 1$ for $n \geq 1$. Then there exists an increasing sequence $A=\left(a_{n}\right)_{n=1}^{\infty}$ of positive integers satisfying $a_{n} \leq n / h_{n}$ for $n \geq 1$ and such that $L\left(x_{A}\right)=C$.

Proof. The conclusion definitely holds if $\lambda(C)=1$, i.e. $C=[0,1]$, thus we assume $\lambda(C)<1$. Set $h_{0}=1$ and denote by k_{0} the smallest positive integer such that $h_{k}<1$ for all $k \geq k_{0}$. First we show that we can assume that $h_{n}>h_{n+1}$ for all $n \geq k_{0}$. If this is not the case, set $h_{i}^{\prime}=1$ for all $i=1, \ldots, k_{0}-1$ and for $\varepsilon=1-\sup \left\{h_{k} ; k \geq k_{0}\right\}$ define

$$
h_{n}^{\prime}=\sup \left\{h_{k} ; k \geq n\right\}+\varepsilon / 2^{n}
$$

for $n=k_{0}, k_{0}+1, \ldots$, and note that
(i) $h_{n}^{\prime} \rightarrow \lambda(C)$,
(ii) $h_{n}^{\prime}>h_{n+1}^{\prime}$ for all $n \geq k_{0}$,
(iii) $h_{n}^{\prime} \geq h_{n}$, consequently $a_{n} \leq n / h_{n}^{\prime}$ implies $a_{n} \leq n / h_{n}$ for every $n \in \mathbb{N}$.

This shows that it is sufficient to prove the theorem for the sequence $\left(h_{n}^{\prime}\right)$, thus we can assume from the outset that the original sequence is decreasing for $n \geq k_{0}$.

Our proof will involve an inductive construction of an increasing sequence $\left(n_{k}\right)$ of positive integers as well as a nonincreasing sequence $\left(C_{k}\right)$ of closed sets, each being a union of finitely many disjoint closed intervals, such that $\bigcap_{k=1}^{\infty} C_{k}=C$.

We start from the construction of $\left(C_{k}\right)$. Set $C_{k}=[0,1]$ for each $k=$ $0, \ldots, k_{0}$ and for each $k>k_{0}$ let $C_{k} \subset C_{k-1}$ be a finite union of disjoint closed intervals, each intersecting C, and such that $C_{k} \supset C$ and

$$
\begin{equation*}
\lambda\left(C_{k}\right)=h_{k-1} \tag{2.1}
\end{equation*}
$$

The existence of such a set is guaranteed by elementary topological properties of the real line and closedness of C. Also notice that $\bigcap_{k=0}^{\infty} C_{k}=C$ by the convergence of $\left(h_{k}\right)$ to $\lambda(C)$.

Now we construct $\left(n_{k}\right)$. First, set $n_{k}=k$ for all nonnegative integers $k<k_{0}$. Further, assume that n_{k} has already been defined for all $k<m$ where $m \geq k_{0}$. We choose $n_{m}>n_{m-1}$ satisfying the following two conditions: for all $n \geq n_{m}$ we have

$$
\begin{equation*}
\frac{\#\left\{j \leq n ;\left\{x_{j}\right\} \in C_{m+1}\right\}}{n}>h_{m+1} \tag{2.2}
\end{equation*}
$$

and for each $c \in C$ there exists an $i \in\left[n_{m-1}, n_{m}\right)$ such that

$$
\begin{equation*}
\left\{x_{i}\right\} \in C_{m+1} \quad \text { and } \quad\left|\left\{x_{i}\right\}-c\right|<\frac{1}{m+1} \tag{2.3}
\end{equation*}
$$

The existence of such an n_{m} is guaranteed by (2.1), 1.1) and the note following it, and uniform distribution of $\left(x_{n}\right)$.

For each $k \in \mathbb{N}$ denote $I_{k}=\left\{i \in \mathbb{N} ;\left\{x_{i}\right\} \in C_{k}\right\}=\left\{i_{1}^{k}<i_{2}^{k}<\cdots\right\}$. As each C_{k} is a finite union of disjoint closed intervals, (2.1) shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n / i_{n}^{k}=h_{k-1} \quad \text { for each } k \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

and moreover

$$
\begin{equation*}
n / i_{n}^{k}>h_{k} \quad \text { for every } i_{n}^{k} \geq n_{k-1} \tag{2.5}
\end{equation*}
$$

which follows from (2.2) by setting $m=k-1$ and noting that

$$
\#\left\{j \leq i_{n}^{k} ;\left\{x_{j}\right\} \in C_{k}\right\}=n
$$

Define

$$
\begin{equation*}
A=\left\{1, \ldots, n_{k_{0}}\right\} \cup\left(\bigcup_{k=k_{0}+1}^{\infty}\left(I_{k} \cap\left(n_{k-1}, n_{k}\right]\right)\right)=\left\{a_{1}<a_{2}<\cdots\right\} \tag{2.6}
\end{equation*}
$$

We are going to show that

$$
a_{n} \leq n / h_{n}
$$

for every $n \in \mathbb{N}$. This is definitely true for every $n \leq n_{k_{0}}$, as $a_{n}=n$. Now let $n>n_{k_{0}}$. There are unique $k, j \in \mathbb{N}$ such that $a_{n}=i_{j}^{k}$. As all $I_{k} \cap\left(n_{k-1}, n_{k}\right]$ are nonempty and $I_{k} \subset I_{k-1}$ for all $k \in \mathbb{N}$, by 2.6 we have $k \leq n$ and $j \leq n$. Using (2.5) and monotonicity of $\left(h_{n}\right)$ we obtain

$$
a_{n}=i_{j}^{k}<j / h_{k} \leq n / h_{n}
$$

Now we are going to show that $L\left(x_{A}\right)=C$. The inclusion $L\left(x_{A}\right) \subset C$ is evident since $L\left(x_{A}\right) \subset C_{k}$ for all $k \in \mathbb{N}$ and $\bigcap_{k=0}^{\infty} C_{k}=C$. Conversely, $C \subset L\left(x_{A}\right)$ follows easily from 2.3 .

Remark 2.2. Note that Theorem 1.1 can be deduced from the previous one directly taking $S=C$ a finite set and setting $g_{n}=1 / h_{n}$ and $x_{n}=\xi n$.

The following theorem says that the bound on the growth of a_{n} in the previous theorem cannot be relaxed.

Theorem 2.3. Let $\left(x_{n}\right)$ be a u.d. sequence mod. 1 and $A \subset \mathbb{N}$. Then $\bar{d}(A) \leq \lambda\left(L\left(x_{A}\right)\right)$.

Proof. Suppose $\bar{d}(A)>\lambda\left(L\left(x_{A}\right)\right)$. Then $L\left(x_{A}\right)$, being compact, can be covered by finitely many mutually disjoint open intervals whose union D fulfils $\lambda(D)<\bar{d}(A)$. Denote $I=\left\{n \in \mathbb{N} ;\left\{x_{n}\right\} \in D\right\}$. Then $d(I)=\lambda(D)$, and consequently A contains infinitely many elements outside of I, contradicting $L\left(x_{A}\right) \subset D$.

The last theorem of this paper says that there are no other bounds on the asymptotic density except that stated in the previous theorem.

Theorem 2.4. Let $\left(x_{n}\right)$ be a u.d. sequence mod. 1, let C be a nonempty closed subset of $[0,1]$ and $0 \leq \alpha \leq \beta \leq \lambda(C)$. Then there exists $A \subset \mathbb{N}$ with $\underline{d}(A)=\alpha, \bar{d}(A)=\beta$ and $L\left(x_{A}\right)=C$.

The proof will be based on three simple lemmas. By $\lfloor x\rfloor$ we denote the integer part of a real x.

Lemma 2.5. Let $A=\left\{a_{1}<a_{2}<\cdots\right\} \subset \mathbb{N}$ be such that $d(A)=d$. For every $\eta \in(0,1)$ let $A_{\eta}=\left\{a_{\lfloor n / \eta\rfloor} ; n \in \mathbb{N}\right\} \subset A$. Then $d\left(A_{\eta}\right)=\eta d$.

Proof. We calculate

$$
d\left(A_{\eta}\right)=\lim _{n \rightarrow \infty} \frac{n}{a_{\lfloor n / \eta\rfloor}}=\lim _{n \rightarrow \infty} \frac{n}{\lfloor n / \eta\rfloor} \lim _{n \rightarrow \infty} \frac{\lfloor n / \eta\rfloor}{a_{\lfloor n / \eta\rfloor}}=\eta d
$$

Lemma 2.6. Let $\alpha<\beta$ and $A, B \subset \mathbb{N}$ be such that $d(A)=\alpha$ and $d(B)=\beta$. Define

$$
C=\left(\bigcup_{k=1}^{\infty}((2 n-1)!,(2 n)!] \cap A\right) \cup\left(\bigcup_{k=1}^{\infty}((2 n)!,(2 n+1)!] \cap B\right)
$$

Then $\underline{d}(C)=\alpha$ and $\bar{d}(C)=\beta$.
Proof. Obviously, for every sufficiently large $n \in \mathbb{N}$,

$$
\frac{A((2 n)!)}{(2 n)!} \leq \frac{C((2 n)!)}{(2 n)!} \leq \frac{A((2 n)!)-A((2 n-1)!)+(2 n-1)!}{(2 n)!}
$$

As the limits of both the leftmost and rightmost terms are equal to α, also $\lim _{n \rightarrow \infty} C((2 n)!) /(2 n)!=\alpha$. In a similar way one can easily show
that $\lim _{n \rightarrow \infty} C((2 n+1)!) /(2 n+1)!=\beta$. Finally, for every sufficiently large $k \in \mathbb{N}$ we have

$$
\frac{A(k)}{k} \leq \frac{C(k)}{k} \leq \frac{B(k)}{k}
$$

thus $\lim _{n \rightarrow \infty} C\left(k_{n}\right) / k_{n} \in[\alpha, \beta]$ provided the limit exists, which proves the lemma.

Lemma 2.7. Let $\left(t_{n}\right)$ be a dense sequence in $[0,1]$ and let C be a nonempty closed subset of $[0,1]$. Then there is a set $A \subset \mathbb{N}$ such that $d(A)=0$ and $L\left(t_{A}\right)=C$.

Proof. For every $n \in \mathbb{N}$ there exist unique nonnegative integers $k(n)$ and $l(n)$ such that $l(n)<2^{k(n)}$ and $n=2^{k(n)}+l(n)$. Define

$$
J_{n}=\left[\frac{l(n)}{2^{k(n)}}, \frac{l(n)+1}{2^{k(n)}}\right], \quad n=2,3, \ldots
$$

Denote by $\left(I_{n}\right)$ the subsequence of $\left(J_{k}\right)$ consisting of all J_{k} intersecting C, arranged in the same order as they appear in $\left(J_{k}\right)$. Note that this sequence is infinite, as C is nonempty and for each $k \in \mathbb{N}$ the finite sequence $J_{2^{k}}, J_{2^{k}+1}, \ldots, J_{2^{k+1}-1}$ covers $[0,1]$. Let $A=\left\{a_{1}<a_{2}<\cdots\right\} \subset \mathbb{N}$ be any sequence such that

$$
\begin{array}{ll}
t_{a_{n}} \in I_{n} & \text { for all } n \in \mathbb{N}, \\
a_{n+1} \geq 2 a_{n} & \text { for all } n \in \mathbb{N} . \tag{2.8}
\end{array}
$$

Denseness of $\left(t_{n}\right)$ guarantees that there are many such sets A.
First we show that $d(A)=0$. Indeed, it follows immediately from (2.8) that $a_{n} \geq 2^{n-1}$, and consequently

$$
d(A)=\lim _{n \rightarrow \infty} \frac{n}{a_{n}} \leq \lim _{n \rightarrow \infty} \frac{n}{2^{n-1}}=0 .
$$

Now we show $L\left(t_{A}\right)=C$. For each $x \in C$ there are infinitely many n_{k} such that $x \in I_{n_{k}}$. As $\lim _{k \rightarrow \infty}\left|I_{n_{k}}\right|=0$, the relation (2.7) implies that $\lim _{k \rightarrow \infty} t_{a_{n_{k}}}=x$, thus $C \subset L\left(t_{A}\right)$. On the other hand, as C is closed, for every $x \notin C$ there is a $k \in \mathbb{N}$ such that $\left(x-1 / 2^{k}, x+1 / 2^{k}\right) \cap C=\emptyset$. Consequently, $t_{n} \notin\left(x-1 / 2^{k}, x+1 / 2^{k}\right)$ for all $n>2^{k+1}$, thus $x \notin L\left(t_{A}\right)$ and $L\left(t_{A}\right) \subset C$.

Proof of Theorem 2.4. The case $\lambda(C)=0$ being straightforward, we assume $\lambda(C)>0$. The proof will consist of several short steps, each using some previous statement.

In the first step we find a set $A^{\prime} \subset \mathbb{N}$ guaranteed by Theorem 2.1, i.e. $d\left(A^{\prime}\right)=\lambda(C)$ and $L\left(x_{A^{\prime}}\right)=C$.

If $\alpha=\lambda(C)$, the proof is complete, otherwise use Lemma 2.5 twice, with $\eta_{1}=\alpha / \lambda(C)$ and $\eta_{2}=\beta / \lambda(C)$ respectively, to produce subsets $A_{1} \subset A^{\prime}$ and $A_{2} \subset A^{\prime}$ such that $d\left(A_{1}\right)=\eta_{1} \lambda(C)=\alpha$ and $d\left(A_{2}\right)=\eta_{2} \lambda(C)=\beta$.

In the next step we use Lemma 2.6 to find that the set

$$
B=\left(\bigcup_{k=1}^{\infty}((2 n-1)!,(2 n)!] \cap A_{1}\right) \cup\left(\bigcup_{k=1}^{\infty}((2 n)!,(2 n+1)!] \cap A_{2}\right)
$$

has $\underline{d}(B)=\alpha$ and $\bar{d}(B)=\beta$. As $B \subset A^{\prime}$, the relation $L\left(x_{B}\right) \subset C$ also holds.
In the last step we use Lemma 2.7 to find $D \subset \mathbb{N}$ such that $d(D)=0$ and $L\left(x_{D}\right)=C$.

To finish the proof, set $A=B \cup D$. Obviously $\underline{d}(A)=\underline{d}(B)=\alpha, \bar{d}(A)=$ $\bar{d}(B)=\beta$ and $L\left(x_{A}\right)=C$, so the proof is complete.

Acknowledgements. This work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), by the project P201/12/2351 of GAČR, and by VEGA Grant No.1/1022/12.

References

[B] Y. Bugeaud, On sequences $\left(a_{n} \xi\right)_{n=1}^{\infty}$ converging modulo 1, Proc. Amer. Math. Soc. 137 (2009), 2609-2612.
[D] A. Dubickas, On the limit points of $\left(a_{n} \xi\right)_{n=1}^{\infty} \bmod 1$ for slowly increasing integer sequences $\left(a_{n}\right)_{n=1}^{\infty}$, Proc. Amer. Math. Soc. 137 (2009), 449-456.
[KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974; reprint: Dover Publ., Mineola, NY, 2006.
[SP] O. Strauch and Š. Porubský, Distribution of Sequences: A Sampler, Peter Lang, Frankfurt-am-Main, 2005.

Ladislav Mišík
Centre of Excellence IT4Innovations - Division UO - IRAFM
University of Ostrava
70103 Ostrava 1, Czech Republic
and
J. Selye University
Komárno, Slovak Republic
E-mail: ladislav.misik@osu.cz

Received on 2.8.2013 and in revised form on 5.5.2014

[^0]: 2010 Mathematics Subject Classification: Primary 11J71; Secondary 11B05.
 Key words and phrases: uniform distribution, limit points, Lebesgue measure.

