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1. Introduction. Extremal problems can be studied at three levels.
First you determine the optimum (maximum or minimum) of the quantity
in question. Then you characterize the structures for which the optimum is
attained. Finally, you may wonder how stable the extremal structures are:
not far from the optimum, do the structures remain close to the optimal one?
Of course, stability questions of this type are usually much harder than the
original extremum problems.

A good example is the number of 3-term arithmetic progressions in a set
of n reals. The maximum itself is not difficult to find (probably folklore; see
also Section 1.3, Case I) and the optimal structures are close to an n-term
AP. However, it is a profound, widely applicable (and, last but not least, not
at all easy) result of Additive Number Theory that near the optimum the
structure cannot change much [BS94]. Also for k ≥ 4, similar results hold.

The goal of this paper is to study the structure of n-sets which contain
an “asymptotically optimal” number of k-term arithmetic progressions, for
k large: k →∞ (together with n). As we shall see, the larger the size k, the
more stable the (nearly) optimal structure.

1.1. The problem. For H ⊂ R and 3 ≤ k ≤ |H|, we write

AP(H, k) := #{k-term AP’s in H}, AP(n, k) := max
|H|=n

AP(H, k).

A fundamental and very useful theorem of Szemerédi and Trotter [ST83]
implies the following upper bound:

AP(n, k) ≤ C · n
2

k

for an absolute constant C > 0. The proof can be found, e.g., in [Ele99b] (see
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also [Ele02, Theorem 3.13] for a more general result). Moreover, in Corollary
2.3 we also present a simple direct proof.

Can the order of magnitude |H|2/k be attained for some |H|? The answer
is “yes”, as shown by, say, arithmetic progressions of n terms. Indeed, e.g., for
H = {0, 1, . . . , n− 1}, for any difference δ ∈ {1, . . . , (n− 1)/(2k)} and every
“starting value” 0 ≤ a ≤ (n−1)/2, the k-term AP’s a, a+δ, . . . , a+(k−1)δ
are all contained in H, yielding a total of (n− 1)2/(4k) such progressions.

It is natural to ask the following.

Question 1.1. What is the structure of H if AP(H, k) attains the (op-
timal) order of magnitude |H|2/k?

1.2. The main result. For technical reasons (to be clarified later) in
certain formulas we shall use k − 1 instead of just k—which preserves the
asymptotic behavior of the functions involved—just as in the denominator
in inequality (1) below.

Theorem 1.2 (Main Theorem). Let c0 > 0 and ε0 ∈ (0, 1/3) be arbitrary
constants. Assume that H ⊂ R with n := |H| elements and

(1) AP(H, k) ≥ c0 ·
|H|2

k − 1
.

Then there exist C1 AP’s A1, . . . ,AC1 , each of length at most C2n, such that
“almost every” k-AP in H—precisely : with the exception of ≤ ε0AP(H, k)
of them—is completely contained in one of the Ai, provided that k is “not
too small”: k ≥ C3. Here the bounds Ci = Ci(c0, ε0) > 1 for i = 1, 2, 3 do
not depend on |H| = n.

For “very large” values of k we can do even better.

Theorem 1.3. If , for a c1 > 0, we consider AP’s of length k ≥ c1n
then in the statement of Theorem 1.2 we can even require that each k-term
AP (with NO exception! ) be contained in one of the C1 AP’s, each of size
at most C2n—provided that n > n0(c0, c1).

Remark 1.4. Such “total covers” cannot be expected for sublinear val-
ues of k (i.e. if n/k → ∞). Indeed, if half of H form an arithmetic pro-
gression, plus we just “drop at random” n/(2k) AP’s of length k then the
latter cannot be covered with a bounded number of AP’s (not even with
generalized AP’s).

1.3. Previous results. The structure of sets with many 3-term or longer
arithmetic progressions, as well as (more generally) of those which con-
tain many similar copies of a fixed pattern, has been studied for a long
time; see e.g. [BS94], [LR96], [EE94], [AEFM04], [ER06], and [Ele02] for
an overview. These results are closely related to some “inverse theorems”
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of Additive Number Theory and small sumsets; see Freiman [Fre66, Fre73],
Ruzsa [Ruz92, Ruz94], Bilu [Bil99].

Certain structures called “generalized arithmetic progressions” play a
central role in these investigations.

Definition 1.5. Let d and n1, . . . , nd be positive integers and ∆1, . . . ,
∆d arbitrary real or complex numbers (or vectors). A set G is a generalized
arithmetic progression (“generalized AP” or “gAP” for short) of dimension
d and size n = n1 · . . . · nd if

G =
{ d∑
i=1

ki ·∆i ; 0 ≤ ki < ni for i = 1, . . . , d
}
,

and these elements are all distinct.

In what follows, Gdn will denote the class of generalized AP’s of dimension
not exceeding d and size at most n. The most interesting property of these
structures is that, if their dimension d is constant while their size n is large
(→∞), then their sum-set G+G := {g′ + g′′ ; g′, g′′ ∈ G} is not too much
larger than G itself: |G+G| ≤ 2d|G|.

As for the structure of sets with AP(H, k) large—and for some general-
izations—the following has been shown:

Case I: k fixed. For k = 3, the exact value AP(n, 3) = b(n− 1)2/4c is
not difficult to demonstrate. On the one hand, the ith element of H can be
the middle element of at most i − 1 or n − i three-term AP’s, depending
on whether i ≤ n/2 or i ≥ n/2, respectively. Moreover, this upper bound
can really be attained, e.g., for H an AP or an AP with one or both of the
outermost elements moved one step further, as in 13457 or 123457.

Balog and Szemerédi [BS94] considered the structure of sets H which
contain a near-optimal number of 3-AP’s. They proved that if AP(H, 3) ≥
c|H|2 then a large portion of H is contained in a not-too-large gAP.

For similar copies of more general patterns, i.e. not just AP’s but a wide
class of point sets B fixed while |H| → ∞, it was shown in [AEFM04] that
if H contains ≥ c|H|2 similar (i.e. magnified/shrunk and possibly shifted)
copies of B then, again, a large part of H is contained in a suitable gAP.

Recently it was shown in [ER06] that if AP(H, 3) ≥ c|H|2 then at most
C gAP’s, each of size ≤ C|H|, contain “almost all” 3-AP’s; more precisely,
at most ε|H|2 are missing, provided that n > n0(c, ε)—see also Theorem 2.7.
(Here C = C(c, ε) does not depend on |H|.)

Case II: “medium” values of k. For k → ∞ but k/|H| → 0 (while
|H| → ∞), to our best knowledge, no structure result has been found so far;
our Theorem 1.2 is the first such example.
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Case III: “large” values of k. For k ≥ c|H| (where c > 0 is fixed
while |H| → ∞), our Theorem 1.3 will follow easily (in Section 6) from a
structure result that characterizes point sets with many similar subsets of
size k [Ele99a].

1.4. The structure of the paper. The road which leads to the proof of
Main Theorem 1.2 consists of four parts, whose details will be given in
Sections 2–5, respectively. At the beginning of Sections 2–4, rather technical
“statements” can be found that sum up what we want to achieve during that
section. On the one hand, we do not call them “theorems” since they are
not really interesting in their own right while, on the other hand, they are
far more complicated than just “lemmata”; actually, their proofs usually
require lots of (sub?)lemmata.

The four main ideas (or rather goals to achieve) can be described as
follows.

(a) first we find ∼ k small gAP’s, each of size ∼ n/k such that almost
every k-term AP in H will have ∼ k neighboring pairs of elements,
each pair contained in one of the small gAP’s (different pairs in
different gAP’s)—see Statement 2.1;

(b) from these gAP’s we build a constant number of larger gAP’s, each
of size ∼ n, such that a.e. k-term AP in H has ∼ k neighboring pairs
of elements, all within one of the new gAP’s—see Statement 3.1;

(c) then these gAP’s are “blown up” so that a.e. k-term AP in H be
completely “swallowed” (i.e. contained) in one of them—see State-
ment 4.1;

(d) finally, to prove the Main Theorem 1.2, we again blow up the gAP’s
even further so that a.e. k-term AP in H be contained in one single
“fiber”—a simple (non-generalized) arithmetic sub-progression—of
one of them.

2. Finding (small) gAP’s. To begin with, we find some gAP’s that,
together, cover not just many elements of H, but also a positive proportion
of almost all k-AP’s in question (the “good” ones will be called “regular”).
To make these gAP’s really useful in the forthcoming steps, we make sure
that they are not too independent of each other, e.g., they, together, only
have few distinct differences.

Statement 2.1. Let c0 > 0 and ε1 ∈ (0, 1/3) be arbitrary constants and
assume that , just as in Theorem 1.2, AP(H, k) ≥ c0 · |H|2/(k − 1) for some
H ⊂ R with n := |H| and k ≥ C3. Then we can select a subset R ⊆ {k-AP’s
in H}—which we shall call the set of regular AP’s—and t = C5k gAP’s

G1, . . . ,GC5k ∈ gAPdC6n/k
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(which may not be distinct) with the following properties:

(i) at most (ε1/2) · c0n2/(k − 1) of the original k-AP’s are irregular ,
i.e.

|R| ≥ (1− ε1/2) · AP(H, k);

(ii) for every regular A ∈ R of difference, say , δ, there exist at least c6k
consecutive pairs a′ ∈ A, a′′ = a′ + δ ∈ A, each pair contained in
one of the Gi, with different pairs in different Gi;

(iii) consequently , the total number of (distinct) differences of the regular
AP’s is at most C7n/k;

(iv) if x1, y1 ∈ Gj (for some j ≤ t) occur as consecutive elements of a reg-
ular A1 ∈ R, then there exist at least m = c8n/k elements y1, . . . , ym
(including the original y1) such that x1 and yi (i = 1, . . . ,m) are
consecutive elements of some Ai ∈ R,

where d = d(c0, ε1) and all ci = ci(c0, ε1) > 0 and Ci = Ci(c0, ε1) > 1 are
independent of |H| = n.

2.1. Preparations for the proof of Statement 2.1. The main idea is based
upon a method of J. Solymosi [unpublished]. We first define a graph (mul-
tiple edges allowed) on H as vertex set as follows: for each k-AP A ⊂ H
we draw k − 1 edges that connect the consecutive pairs of A. We denote
this edge set by E = E(H, k). Since a fixed pair h′, h′′ ∈ H can only be
neighboring in at most k − 1 distinct k-AP’s,

(2) each edge in E has multiplicity < k.

It is also useful to imagine a simple graph (with no multiple edges) on
the larger vertex set H × {0, 1, . . . , k − 1}: for each k-AP {a, a + δ, . . . ,
a + (k − 1)δ} ⊂ H we draw the graph of the linear function y = (x − a)/δ
(which maps A onto the set {0, 1, . . . , k − 1}) and connect the neighboring
pairs of points along this line—note that a similar idea already appears in
[Szé97]. Our original edge set E can be thought of as the projection of all
these “non-horizontal” edges to H.

This way to each edge there corresponds a unique k-AP; moreover, it
also justifies the usage of expressions like “the straight line which contains
edge e ∈ E”. However, the graph that we shall really use will be the one
defined on H (see Figure 1).

Put n := |H|. Now (1), which appears again as an assumption of State-
ment 2.1, is equivalent to

|E(H, k)| ≥ c0n2.

Here comes the essence of Solymosi’s method. First we pick a sufficiently
small ε ∈ (0, 1) (to be specified later) and cut H into εk consecutive parts
H1, . . . ,Hεk, each with n/(εk) elements (see Figure 1, which also indicates



150 G. Elekes

kε|H| = n
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Fig. 1. Some 4-term arithmetic progressions and the corresponding edges

that the cutting lines may not be equidistant). Then we delete from E
those edges which are cut (at most εk edges in each k-AP), thus defining a
subgraph with edge set

Eε = Eε(H, k) := {uncut edges of E(H, k)}.
This graph (and some of its subgraphs below) will work as our main tool(s)
for proving Statement 2.1. Technically, we shall usually count some of its
edges, instead of counting AP’s. Formally, too, we shall typically state our
results/bounds in terms of edge sets—but sometimes we also translate the
statements to the language of k-AP’s or of straight lines, if doing so is worth
the effort.

Actually, we shall (slightly) modify Solymosi’s method: instead of just
considering edges, we shall mostly be interested in pairs of consecutive edges
(which represent three-term AP’s). That is why, in each k-AP (on each line),
we divide the edges of the original E into (k − 1)/2 consecutive pairs and
even delete those whose pair is cut by one of the εk cutting lines, thus
defining yet another subgraph E∗ε (H, k).

Lemma 2.2.

(i) |Eε(H, k)| ≥ (1− ε) · (k − 1) · AP(H, k);
(ii) |E∗ε (H, k)| ≥ (1− 2ε) · (k − 1) · AP(H, k);

(iii) each of the εk Hi defined by the cutting , and having m = n/(εk)
points, contains at most

k ·
(
m

2

)
<

1
2ε2
· n

2

k

edges of Eε (counted with multiplicity < k), yielding a total of

|Eε(H, k)| ≤ 1
2ε
· n2.

As a consequence, the upper bound mentioned in the introduction is not
difficult to directly establish (with multiplicative constant C = 2—and k−1
in place of k).

Corollary 2.3.

AP(H, k) ≤ 2 · |H|
2

k − 1
.
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Proof. By (i) and (iii) of the foregoing lemma, applied to ε = 1/2, we
have

1
2
· (k − 1) · AP(H, k) ≤ |E1/2| ≤ |H|2,

whence the required inequality.

Remark 2.4. If we apply a theorem of Szemerédi and Trotter to the
straight lines and the points of the Cartesian product in Figure 1, then we
get another proof of the foregoing upper bound, via incidence geometry.

2.2. “Good edges” and small subsets. In an average k-AP, are the edges
concentrated, or rather spread nearly evenly among the Hi? As we shall see
immediately, concentrated edges are quite rare.

Definition 2.5. For a “badness” B > 0 (to be specified later), we call
an edge e ∈ E∗ε B-bad if the k-AP that defines it (the line which passes
through it) contains at least B edges within the Hi that contains e.

Lemma 2.6. At most
1
B
· 2n2

ε

edges of E∗ε are B-bad , which does not exceed εc0n2 if B ≥ 2/(ε2c0).

Proof. So far we have made (and, in later steps, will again make) good
use of the εk-cut. However, just for the purposes of the present proof, we
slightly alter it, defining a refinement by cutting the εk parts Hi of H (of
size n/(εk) each) into B/2 smaller parts of size 2n/(Bεk). These define a
total of Bεk/2 smaller pieces. Some simple observations follow:

— on each line, in each Hi, we have #{newly cut edges} ≤ B/2, whence

(3)
1
2
·#{B-bad edges} ≤ #{still uncut edges};

— the inequality (3) also applies to all edges of any fixed line;
— the same inequality applies even to all edges of E∗ε .

Thus, to prove Lemma 2.6, it suffices to bound (from above) the quantity
on the right hand side of (3):

#{still uncut edges} ≤ k · Bεk
2
·
( 2n
Bεk

2

)
< k · Bεk

2

2
· 1

2
·
(

2n
Bεk

)2

=
1
B
· 1
ε
· n2,

which, together with (3), yields the required inequality.
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Now we delete all B = 2/(ε2c0)-bad edges (they appear in pairs) and
call the resulting edge set Egood

ε (H, k). Thus we have

(4) |Egood
ε (H, k)| ≥ (1− 3ε) · (k − 1) · AP(H, k),

by Lemmata 2.2(ii) and 2.6.

2.3. Finding the gAP’s. In order to make use of the many three-term
AP’s determined by pairs of consecutive edges of Egood

ε , we define a new
graph, again on H as vertex set, by connecting two-step neighbors. More
precisely, for each pair of consecutive edges

(aγ , aγ+1) ∈ Egood
ε and (aγ+1, aγ+2) ∈ Egood

ε

within a k-AP, we connect aγ to aγ+2, and denote the resulting edge set by
T (short for “two-step edges”). Moreover, we also write Ti := T |Hi for the
subgraphs spanned by the Hi. Note that we consider T and the Ti as simple
graphs with no multiple edges.

Of course, for each two-step edge, its two endpoints must lie in a com-
mon Hi, and so must their midpoint.

We quote a fact from Additive Number Theory, concerning small sumsets
along graphs.

Theorem 2.7. Let (V,E) be an arbitrary graph, |V | = m. Assume that
V ⊂ R and , for each edge (x, y) ∈ E, we have

x+ y

2
∈ V.

Further , let an α ∈ (0, 1) be given. Then we can find disjoint subsets of the
vertices, say V1, . . . , Vr, such that |Vi| ≥ αm (hence r ≤ 1/α), together they
contain all but αm2 edges of E, and also some gAP’s

G1, . . . ,Gr ∈ gAPdCm

such that Vi ⊂ Gi for all i ≤ r. (Here d = d(α) and C = C(α) do not depend
on m.) Furthermore, the degree of each vertex in a spanned subgraph E|Vi

is at least α(|Vi| − 1) ≥ α(αm− 1) ≥ α2m/2 (if m ≥ 2/α).

Proof. See [ER06, Theorem 5.4] (with λ = 1 there).

Remark 2.8. Of course, the statement is only interesting if E contains
at least αm2 edges—since otherwise no Vi is necessary to reduce the number
of “leftover” edges below this bound.

For each i = 1, . . . , εk, we apply Theorem 2.7 to V = Hi, E = Ti,
α = ε2c0 and m = |Hi| = n/(εk). We get r ≤ 1/α = 1/(ε2c0) gAP’s

(5) Gij ∈ gAPdCn/k (j = 1, . . . , r)
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which, together, cover all but

α|Hi|2 = ε2 · c0 ·
(
n

εk

)2

= c0 ·
n2

k2

edges of Ti within Hi. (Recall that there are no multiple edges in T .) Sum-
ming for all i = 1, . . . , εk, we conclude that the Gij cover all but ε · c0n2/k

edges of T . For the edges of Egood
ε (and taking multiplicity < k into account)

we have

(6) #{edges of Egood
ε not covered} < 2εc0n2 ≤ 2ε(k − 1)AP(H, k).

Furthermore, each h ∈ Hi is connected to

(7) ≥ α2m

2
=
ε4c20

2
· n
k

points within the same Gij by an edge of Ti—or, perhaps, to none.
We sum up what we have achieved in the following lemma.

Lemma 2.9. For simplicity of notation, let Ĝ1, . . . , Ĝt denote the gAP’s
Gij just found ; and EGε the set of those edges of Egood

ε which, together with
their twin pairs, are covered by one of the Ĝs. Then EGε and the Ĝs (s ≤ t)
have the following properties:

(i) the number t of the Ĝs satisfies

t ≤ (εk) · r = (εk) · 1
ε2c0

=
1
εc0
· k;

(ii) their dimension and size are bounded respectively by

d = d(ε2c0) and Cn/k (for C = C(ε2c0)),

by (5);
(iii) together they cover all but ε · c0n2/k edges of T ;
(iv) consequently , all but

≤ 2(k − 1) · ε · c0n
2

k
< 2ε · c0n2 ≤ 2ε · (k − 1)AP(H, k)

edges of Egood
ε are preserved in EGε ;

(v) if an h ∈ H is incident to at least one edge of T then it is connected
to at least (ε4c20/2) · n/k other points of the same gAP , by (7).

2.4. Regular lines and AP’s: the proof of Statement 2.1. To start with,
we fix

ε :=
ε1
20
.
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For simplicity, we just denote by Gi the gAP’s Ĝi found in the foregoing
Lemma 2.9. According to (i) there, their number does not exceed

1
εc0
· k =

20
ε1c0

· k = C5k,

if we pick C5 = 20/(ε1c0). Also their dimension and size will be bounded by
d := d(ε2c0) and C6 · n/k = C(ε2c0) · n/k, respectively, by Lemma 2.9(ii).

We define the set R of regular k-AP’s (with a slight abuse of notation)
in terms of their corresponding straight lines:

R := {lines with ≥ (k − 1)/2 edges of EGε },
where we use the constant factor 1/2 just for convenience; anything in (0, 1)
would do. We are left to show that they—together with the foregoing gAP’s
Gi—satisfy the requirements (i)–(iv) of Statement 2.1.

(i) Originally, every line contained k − 1 edges of E, as defined in Sec-
tion 2.1. Our EGε still contains all but

(2ε+ ε+ 2ε) · c0n2 = 5ε · c0n2

of these edges, by Lemmata 2.2(ii), 2.6 and 2.9(iv). Thus the number of
irregular lines/k-AP’s (i.e. from which more than (k−1)/2 edges are missing)
is

<
5ε · c0n2

(k − 1)/2
= 10ε · c0

n2

k − 1
=
ε1
2
· c0

n2

k − 1
,

as required.
(ii) follows from the definition of R and the fact that any such line

contains at most B = 2/(ε3c0) edges from any Hi and, therefore, from
any Gi. Thus we can choose—by k − 1 ≥ k/2—

c6 = c6(c0, ε1) :=
1

4B
=
ε3c0

8
=

ε31c0
8 · 103

.

(iii) is the only part worth describing in detail. We want to show that
the total number of distinct differences δ of the regular AP’s A ∈ R of type
a+ iδ (i = 0, 1, . . . , k − 1) is at most C7n/k.

(a) On the one hand, each such δ occurs in at least c6k of the difference-
set ∆(Gi) by (iii), whence∑

i

|∆(Gi)| ≥ (c6k) · (# of distinct δ).

(b) On the other hand, |∆(Gi)| ≤ 2d|Gi| ≤ 2dC6 · n/k for i = 1, . . . , C5k.
Hence

C5k∑
i=1

|∆(Gi)| ≤ (C5k) ·
(

2dC6 ·
n

k

)
= (C5 · 2dC6) · n.
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Putting (a) and (b) together, the number of distinct differences cannot ex-
ceed C7 · n/k (for C7 := C5 · 2dC6/c6), as required.

(iv) is obvious by Lemma 2.9(v), for

c8 = c8(c0, ε1) :=
ε4c20

2
=

ε41c
2
0

2 · 104
.

This finishes the proof of Statement 2.1.

3. Creating few large gAP’s from small ones

Statement 3.1. Let every constant , also H ⊂ R and n := |H|, and
even the set R of regular k-AP’s be as in Statement 2.1. Then we can find
few larger , but not too large gAP’s (in place of the many small ones): there
exist C10 gAP’s

G′1, . . . ,G′C10
∈ gAPd+1

C11n
,

such that , for every regular A ∈ R, at least one G′i contains c7k consecutive
pairs from A. Here, again, c7 = c7(c0, ε1) > 0 and all Ci = Ci(c0, ε1) > 1
are independent of |H| = n.

Proof. Of course, we first use Statement 2.1 to find some G1, . . . ,GC5k ∈
gAPdC6n/k

. Then we define certain “expansions” and “kernels” of them, which
are the subject of Section 3.1. The proof continues after these definitions, in
Section 3.2.

3.1. Expansions and kernels of gAP’s

Definition 3.2. Let G be a gAP of dimension d, differences δ1, . . . , δd
and size n1 × · · · × nd. For a positive integer r we call{ d∑

j=1

ij · (r · δj) ; ∀j = 1, . . . , d |ij | ≤ nj/r
}

the r-expansion of G.

WARNING: this expansion is not larger than G itself; rather, it is just a
subset of it (see Figure 2).

Fig. 2. A gAP and its 2-expansion (solid bullets)

Proposition 3.3. (2r− 1)d shifted copies of the r-expansion cover G.
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Definition 3.4. For any gAP G of dimension d, we also define the
c-kernel G(c) of G to be its (1/c)!-expansion.

For any set S ⊂ R, we put ∆(S) := {s′−s′′ ; s′, s′′ ∈ S} and, inductively,

∆(j) := ∆(∆(j−1)), where ∆(1) = ∆(S).

Proposition 3.5. Let C1, C2 ≥ 1 be arbitrary constants while d, t and
m positive integers. Assume we are given t sets Y0, Y1, . . . , Yt−1 ⊂ R with
|Yi| ≥ m for 0 ≤ i < t while ∣∣∣t−1⋃

i=0

Yi

∣∣∣ ≤ C1m.

Assume, moreover , that each Yi is contained in a not-too-large gAP , i.e.
there exist G0,G1, . . . ,Gt−1 such that

Yi ⊂ Gi ∈ gAPdC2m for i = 1, . . . , t− 1.

Then there exist 1+ t′ ≥ 1+ t/(8C2
1 ) of the Yi—for simplicity of notation we

may assume without loss of generality that after an appropriate permutation
of the indices they are Y0, Y1, . . . , Yt′—for which

(8)
t′⋃
i=0

G(c∗)
i ⊆ ∆(C∗)(Y0).

Consequently , if Y0 intersects one of the selected Gi (i = 1, . . . , t′), say a ∈
Y0 ∩ Gi, then for the coset a+ G(c∗)

i we have

a+ G(c∗)
i ⊆ ∆(C∗+2)(Y0)

for , e.g., C∗ = C∗(C1, C2, d) :=40C1C2 +d and c∗=c∗(C1, C2) :=1/(4C1C2)
—both independent of t and m. (Of course, the size of the G(c∗)

i will depend
on d too.)

Proof. (8) is Theorem 3.7 in [EHR09]; the rest is an obvious conse-
quence.

3.2. Promising systems of cosets and the rest of the proof of State-
ment 3.1. Put Ĉ := C7/c5 and let C∗ = C∗(Ĉ, d) be as in Proposition
3.5.

Definition 3.6. S = {C1, . . . , Cs} is a promising system of cosets if

(i) the Cj are (3Ĉ)!-cosets of distinct G1, . . . ,Gs, respectively;
(ii)

s ≥ c25c6
12C2

7

· k;
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(iii) there exists a regular AP A = {a, a+ δ, . . . , a+ (k − 1)δ} ∈ R and
indices 0 ≤ i1 < · · · < is ≤ k − 1 such that, for 1 ≤ j ≤ s,

a+ ijδ ∈ Cj ,
a+ (ij + 1)δ ∈ Cj ,

(a+ ijδ, a+ (ij + 1)δ) ∈ EGε ;

(iv) there is a 0 ≤ j ≤ s such that

(9)
s⋃
i=1

Ci ⊆ G′j := ∆(C∗+2)(Gj) + {−(k − 1)δ, . . . ,−δ, 0, δ, (k − 1)δ}.

Lemma 3.7. Consider a maximal number of disjoint promising systems
S1, . . . ,Sr of cosets—where “disjoint” does NOT mean that the COSETS
Cj in the Si are disjoint , rather , the SET–SYSTEMS Si are required to be
disjoint , i.e. no two share a common coset. Then

(i) r ≤ C10 = C10(c, ε1);
(ii) the cosets which occur in the Si, together , cover at least (c6/2)k

points of each regular A ∈ R;
(iii) consequently , so do the G′ defined in (9).

Proof. (i) Altogether there are ≤ (2 · (3Ĉ)!)d · C5k cosets, while each
promising system consists of (c25c6)/(12C7) · k of them, whence

r ≤ (2 · (3Ĉ)!)d · C5k
c25c6
12C7

· k
=

12C5C7 · (2 · (3Ĉ)!)d

c25c6
=: C10.

(ii) Assume for a contradiction that fewer than (c6/2)k points of a reg-
ular AP A = {a, a + δ, . . . , a + (k − 1)δ} ∈ R are covered by the cosets in
the Sj . By Statement 2.1(iii), at least c6k of the gAP’s Gj contain two con-
secutive elements (distinct pairs!) of A. At least half of these pairs are NOT
intersected by any of the cosets in the Sj , say—without loss of generality,
after an appropriate permutation of the indices—

x1 = a+ i1δ ∈ G1 and y1 = a+ (i1 + 1)δ ∈ G1,

...
xt = a+ itδ ∈ Gt and yt = a+ (it + 1)δ ∈ Gt,

where t ≥ (c6/2)k. Consequently, by Statement 2.1(ii) and for each j ≤ t,
there exist

m := c5
n

k

elements y1, . . . , ym ∈ Gj such that, for all i = 1, . . . ,m, the difference yi−xj
occurs as a difference of some regular A ∈ R.
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Put

Yj := {y1 − xj , y2 − xj , . . . , ym − xj} for j = 1, . . . , t,

where the yi, of course, depend on j too. According to Statement 2.1(iv),∣∣∣ t⋃
j=1

Yj

∣∣∣ ≤ C7 ·
n

k
=
C7

c5
· c5

n

k
=
C7

c5
·m = Ĉ ·m.

Thus we can use Proposition 3.5 and get a Gj0 and a C∗ = C∗(Ĉ, d) such
that ∆(C∗)(Gj0) covers the (3Ĉ)!-kernel of at least

t′ ≥ t

6Ĉ2
=
c6
2
· k · c

2
5

6C2
7

=
c25c6
12C2

7

· k

other Gj . Hence ∆(C∗+2)(Gj0) covers the cosets which contain the corre-
sponding xj . These cosets will, therefore, give yet another promising system
of cosets, disjoint from the Sj—which gives the required contradiction.

Finally, (iii) is obvious from (ii).

Now the rest of the proof of Statement 3.1 is easy. Consider a maximal
promising system of cosets. The corresponding G′1, . . . ,G′C10

—as in (iv) of
the definition of such a system—have all the required properties, by the
foregoing lemma.

4. Covering with gAP’s

Statement 4.1. In Statement 3.1 we can even find (still at most C10)
slightly larger gAP’s

G′′1 , . . . ,G′′C10
∈ gAPd+1

C12n
,

and require that every regular A ∈ R be completely contained in one of them.

We need the following.

Proposition 4.2. Let c ∈ (0, 1) and m be a positive integer. Assume
that S ⊂ {0, 1, . . . ,m} with

(10) |S| ≥ c(m+ 1) ≥ 2.

If , moreover , we also assume that the original S contains two consecutive
elements, then ∆(Ĉ)(S) ⊇ {0, 1, . . . ,m} for , e.g., Ĉ = Ĉ(c) := 10 log(1/c).

Proof. See [EHR09, Lemma 3.1(i)].
Now the proof of Statement 4.1 is easy: apply Proposition 4.2 to m =

k − 1, an arbitrary regular AP, say A, in place of {0, 1, . . . ,m}, and c = c7
and S := A ∩ G′i, where G′i was found in Statement 3.1.
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5. Transforming gAP’s into AP’s

5.1. Bijective (“unique”) representations of gAP’s

Lemma 5.1. Let G ∈ gAPd be represented by the d-dimensional parallel-
ogram lattice LG. If ∆(2)(LG) is a bijective representation of ∆(2)(G) (and
consequently LG is a bijective representation of G) then each k-AP in G is
represented by a k-AP (of d-dimensional vectors) in LG.

Proof. Consider the points a1, . . . , ak ∈ G of a k-AP, represented by
vectors v1, . . . , vk ∈ LG , respectively. We want to show that they, too, form
a k-AP.

Put δ := v2 − v1 and consider (also in Rd) the k-AP

(11)

v̂1 := v1,

v̂2 := v̂1 + δ = v2,

v̂3 := v̂2 + δ (which might not be v3 itself),
v̂4 := v̂3 + δ,

...
v̂k := v̂k−1 + δ.

This k-AP, again, represents a1, . . . , ak—though it might not be contained
in LG . We show (by induction) that this is not the case: v̂i = vi for all i ≤ k.
Indeed, this holds for i = 1, 2 by definition. For the inductive step, if v̂i = vi
then

v̂i+1 = v̂i + δ = vi + (v2 − v1) = vi − (v1 − v2) ∈ ∆(2)(LG),

and also
vi+1 ∈ LG ⊆ ∆(2)(LG),

thus v̂i+1 = vi+1 since ∆(2)(LG) is a bijective representation of ∆(2)(G). We
conclude that the k-AP defined in (11) does, indeed, work.

Lemma 5.2. Let d and k be positive integers, α > 0, and L ⊂ Rd an
m1 × · · · ×md parallelogram lattice. Assume that L contains at least

α · m2

k − 1
k-term AP’s, for m =

∏
mi. Then L is the union of at most 1/α AP’s—

provided that k ≥ k0 = k0(α) := 1 + 4/α.

Proof. Without loss of generality assume that m1 ≥ · · · ≥ md. Let mr

be the last mi ≥ k, i.e.

m1 ≥ · · · ≥ mr ≥ k > mr+1 ≥ · · · ≥ md.

Note that r ≥ 1, since otherwise L contains no k-term AP at all.
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The differences δ of the possible k-term AP’s must all be of the form δ =
(δ1, . . . , δr, 0, . . . , 0) with |δi| < (mi − 1)/(k − 1) for i = 1, . . . , r. Moreover,
for each δ, every element of L can be the starting value of at most one k-AP
(in L) of difference δ, which implies the second inequality in the formula
below. Assume r ≥ 2, i.e. 2(r − 1) ≥ r. Then

α · m2

k − 1
≤ H(L, k) ≤ m ·#{δ} < m · 2r · m1 · . . . ·mr

(k − 1)r

<
m2

k − 1
·
(

4
k − 1

)r−1

· 1
mr+1 · . . . ·md

,

whence

(12)
(
k − 1

4

)r−1

·mr+1 · . . . ·md <
1
α
.

Now if k ≥ k0(α) := 1 + 4/α then r − 1 > 0 is impossible, i.e. r = 1. In
this case, on the one hand, all k-term AP’s in L must be parallel to the first
coordinate direction—since the other dimensions are too short: mi < k. On
the other hand, again by (12), m2 · . . . · md < 1/α. We conclude that L
can, indeed, be covered by this few fibers, each an m1-term AP in the first
coordinate direction.

5.2. Proof of the Main Theorem 1.2. Assume that, just as in State-
ment 4.1, every regular AP A ∈ R is contained in one of C10 gAP’s

G′′1 , . . . ,G′′C10
∈ gAPd+1

C12n
.

Of course, we would like to use the foregoing two lemmata; however, the rep-
resentation of the G′′i —let alone that of the ∆(2)(G′′i )—may not be bijective.
The following result will help overcome this difficulty.

Theorem 5.3. If G ∈ gAPd and t is a positive integer then G is con-
tained in a G+ ∈ gAPd of size |G+| ≤ C13|G| such that the representation
of ∆(t)(G+) is unique (hence so are those of the ∆(i)(G+) for i ≤ t), where
C13 = C13(d, t) does not depend on |G|.

Proof. See Green [Gre05, Theorem 2.1]. The statement is also contained
implicitly in Bilu’s “strong Freiman theorem” [Bil99] and the details of the
proof on p. 82 of Bilu’s paper.

Now we apply Theorem 5.3 to t = 2 and the G′′i to get some G′′′i := (G′′i )+

for i ≤ C10 such that the representation of each ∆(2)(G′′′i ) is bijective. Thus
we can apply Lemmata 5.1 and 5.2 (the latter for α = (ε1/2)c0/C10) to show
that at most (ε1/2)c0n2/(k − 1) of the k-AP’s can be covered by those G′′′i
whose dimension is larger than one.
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The rest, i.e. ≥ (1− ε1)-proportion of the k-AP’s, are contained in d = 1
dimensional, proper arithmetic progressions, provided that k is sufficiently
large: k > 1 + 4/α = 1 + 8C10/(ε1c0).

6. Proof of Theorem 1.3. Let
A1 = {a1, a1 + δ1, . . . , a1 + (k − 1)δ1},

...
At = {at, at + δt, . . . , at + (k − 1)δt}

be the k = c1n-term AP’s in H, where |H| = n and

t = α · |H|
2

k
=
α

c1
· n.

We consider the set of linear functions

Φ := {ϕi : x 7→ δix+ ai ; i = 1, . . . , t},
which map X := {0, 1, . . . , k − 1} onto the Ai. The following fact involves
gGP’s which can be defined quite similarly to gAP’s.

Proposition 6.1. Let C ≥ 1 be an arbitrary constant , n a positive
integer , moreover X ⊂ R and Φ a set of non-constant linear functions as
above. Assume that |X|, |Φ| ≥ n while∣∣∣⋃

ϕ∈Φ
ϕ(X)

∣∣∣ ≤ Cn,
where ϕ(X) denotes {ϕ(x) ; x ∈ X}. Then there exist ≤ C∗ reals s1, . . . , sC∗
such that one of the following two possibilities must hold :

(i) either one can find a gAP G ∈ gAPd
∗
C∗∗n for which

X ⊆ G and Φ ⊆ {ϕ : x 7→ sj(x+ g) ; j = 1, . . . , t, g ∈ G};
(ii) or one can find an u ∈ R and a gGP G ∈ gGPd

∗
C∗∗n for which

X ⊆ G+u and Φ ⊆ {ϕ : x 7→ g ·(x−u)+sj ; j = 1, . . . , t, g ∈ G};
where the constants d∗, C∗ and C∗∗ only depend on C but not on n = |X|.

For the proof see [Ele98, Theorem 3].

To prove Theorem 1.3, we first show that the second (gGP) possibility
in Proposition 6.1 leads to a contradiction for X = {0, 1, . . . , k−1}. To start
with, since X ⊂ G + u, it is natural to consider X0 := X − u ⊆ G. Then we
have

|X0 ·X0| ≤ |G · G| ≤ 2d
∗ |G| ≤ 2d

∗
C∗∗n ≤ 2d

∗
C∗∗

c1
|X0|,

while
|X0 +X0| = 2k − 1 < 2|X0|
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is obvious. However, it was shown in [Ele97, Theorem 1] that c|X0|5/2 ≤
|X0 +X0| · |X0 ·X0| for an absolute constant c > 0. This implies

c|X0|5/2 < 2|X0| ·
2d
∗
C∗∗

c1
|X0| =

2d
∗+1C∗∗

c1
|X0|2,

whence
c
1/2
1 n1/2 ≤ |X0|1/2 ≤

2d
∗+1C∗∗

c1c
,

a contradiction if n > n0(c0, c1) = 22d∗+2C∗2/(c21c
2).

We are left with the first (gAP) possibility in Proposition 6.1. In this
case, for each sj (j = 1, . . . , C∗) we consider the gAP

Gj := sj · (G + G)

whose dimension is at most one more than that of G and whose size is at
most a constant factor larger.

It would be natural to attempt to refer to the proof of the Main Theo-
rem 1.2 in Section 5, but it allows for (not too much but) several exceptional
k-term gAP’s, which we want to avoid here.

Fortunately, it suffices to just repeatedly use Theorem 5.3 for the Gj , as
long as the representation of one of the ∆(2)(Gj) is not bijective. As soon as
all such representations are unique, i.e. each Gj is a (bijective) projected im-
age of a lattice Lj , we observe that each k-AP Ai (i = 1, . . . , t) is completely
covered by one of the (bounded number of) “fibers” of one of the Gj , each
an AP of size at most linear in n. (There is no “wrap-around-the-fibers” by
the unique representation property.) Thus the longest dimension of a lattice,
if it contains an Ai, is at least k = c1n—otherwise no k-AP could fit in it.
Since |Lj |

k
≤ Cn

c1n
=
C

c1
,

we conclude that a bounded number of arithmetic progressions (the set of
all fibers of the Gj) cover all the Ai.

Concluding remarks. From a number-theoretic point of view we have
seen that, in certain situations, usual (i.e. non-generalized) arithmetic pro-
gressions can be far superior to generalized ones.

From the point of view of incidence geometry, our results can also be con-
sidered as a (small) step towards the notoriously difficult problem of char-
acterizing point-line configurations with (asymptotically) maximal number
of incidences; cf. Figure 1 and Remark 2.4.

The following questions remain open:

Problem 1.

(a) Determine the exact value of AP(n, k) for k ≥ 4.
(b) Is it true that AP(n, 4) = dn(n− 3)/6e?
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In place of AP’s one can also consider arbitrary “patterns” P ⊂ R and
denote the number of similar copies of P in a set H by S(H,P). A result of
Szemerédi and Trotter mentioned in Remark 2.4 implies the existence of an
absolute constant C > 0 such that S(H,P) ≤ C|H|2/(|P| − 1). This order
of magnitude can be attained e.g. if P is the positive proportion of an AP
(selected e.g. at random or by following an arbitrary “rule”).

Problem 2. Is it true that if S(H,P) ≥ c|H|2/(|P| − 1) then P is
contained in an AP of length ≤ C|P|, for a C = C(c)—provided that |P| >
k0 = k0(c)?
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[AEFM04] B. Ábrego, G. Elekes, and S. Fernández-Merchant, Structural results for pla-
nar sets with many similar subsets, Combinatorica 24 (2004), 541–554.
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