On the limiting distribution of a generalized divisor problem for the case -1/2 < a < 0

by

YUK-KAM LAU (Nancy)

1. Introduction. Let $\sigma_a(n) = \sum_{d|n} d^a$. Define

$$\Delta_a(x) = \sum_{n \le x} \sigma_a(n) - \zeta(1-a)x - \frac{\zeta(1+a)}{1+a}x^{1+a} + \frac{1}{2}\zeta(-a)$$

where $\sum_{n\leq x}'$ means that the last term is halved when x is an integer. Taking $a \to 0^-$, we recover the classical error term of Dirichlet's divisor problem

$$\Delta(x) = \sum_{n \le x}' d(n) - x(\log x + 2\gamma - 1) - 1/4$$

with $d(n) = \sigma_0(n)$. The determination of the precise order of magnitude of $\Delta(x)$ remains an open problem. Nevertheless, there are numerous papers devoted to the study of its properties such as its power moments, Ω_{\pm} -results, gaps between sign-changes. In particular, Heath-Brown [3] in 1992 showed that $x^{-1/4}\Delta(x)$ has a limiting distribution and explored its properties.

Unlike $\Delta(x)$ there are not many results about $\Delta_a(x)$. In this paper, we are concerned with the limiting distribution of $\Delta_a(x)$ with -1/2 < a < 0. It is worthwhile to note that from the available results, $\Delta_a(x)$ seems to behave like $\Delta(x)$ only in the range of -1/2 < a < 0 (or even $-1/2 \leq a < 0$ perhaps). When $-1 \leq a < -1/2$, the behavior of $\Delta_a(x)$ is rather different. Nonetheless the limiting distribution in this case also exists, shown in [7]. A further investigation will be carried out in the sequel paper.

Let us go back to the case -1/2 < a < 0. Analogously to the case a = 0, we can prove that for -1/2 < a < 0 and $1 \le M \le x$,

(1.1)
$$\Delta_a(x) = \frac{x^{1/4+a/2}}{\pi\sqrt{2}} \sum_{n \le M} \frac{\sigma_a(n)}{n^{3/4+a/2}} \cos(4\pi\sqrt{nx} - \pi/4) + O\left(\frac{x^{1/2+\varepsilon}}{\sqrt{M}}\right)$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 11N60.

where the O-constant depends on a and ε only. (A proof can be found in [6].) This is the so-called truncated Voronoi formula, which is the basic tool in our discussion.

A direct application of (1.1) and [1, Theorem 4.1] yields the following result.

THEOREM 1. For -1/2 < a < 0, $t^{-(1/4+a/2)}\Delta_a(t)$ has a limiting distribution $D_a(u)$ which is also the distribution of the random series $X = \sum_{n=1}^{\infty} a_n(t_n)$ where

(1.2)
$$a_n(t) = \frac{1}{\pi\sqrt{2}} \cdot \frac{\mu(n)^2}{n^{3/4+a/2}} \sum_{r=1}^{\infty} \frac{\sigma_a(nr^2)}{r^{3/2+a}} \cos(2\pi rt - \pi/4)$$

and t_1, t_2, \ldots are independent random variables uniformly distributed on [0, 1]. Moreover, $D_a(u) = \int_{-\infty}^{u} p_a(x) dx$ for some probability density $p_a(x)$; $p_a(x)$ can be extended to the whole complex plane as an entire function of x. Furthermore, for real x,

$$0 \le p_a(x) \ll \exp(-|x|^{4/(1+2|a|)-\varepsilon}).$$

Define

tail of
$$D_a(u) = \begin{cases} D_a(u) & \text{if } u < 0, \\ 1 - D_a(u) & \text{if } u \ge 0. \end{cases}$$

In particular, Theorem 1 yields that tail of $D_a(u) \ll \exp(-|u|^{4/(1+2|a|)-\varepsilon})$. Our first result is to determine a more precise order of magnitude of $D_a(u)$.

THEOREM 2. Let $|u| \ge 2$. Then

 $\exp(-c_1(a)|u|^{4/(1+2|a|)}) \ll_a tail of D_a(u) \ll_a \exp(-c_2(a)|u|^{4/(1+2|a|)})$

where $c_1(a)$ and $c_2(a)$ are some constants depending on a. Also, the implied constants depend on a.

The lower bound is derived by the method in [1, Theorem 5.1] while the upper bound is obtained from the study of its Laplace transform. Such an approach has appeared before, for example, in [2] and [5]. Our proof relies on their underlying principle.

The next result concerns the rate of convergence. The proof follows closely the argument in [7], so we shall give an outline only.

THEOREM 3. Define

$$D_{a,T}(u) = \frac{1}{T} \mu\{t \in [1,T] : t^{-(1/4 + a/2)} \Delta_a(t) \le u\}$$

where μ is the Lebesgue measure. Then, for -1/2 < a < 0,

$$D_{a,T}(u) - D_a(u) \ll_a (\log \log T)^{-(1+2a)/8}$$

where the implied constant depends on a.

Acknowledgements. The author wishes to thank Prof. D. R. Heath-Brown and Dr. Kai-Man Tsang for their valuable comments. Hearty thanks are given to Charlies Tu for unfailing encouragement.

2. Proof of the lower bound in Theorem 2. Write

$$A = \frac{1}{\pi\sqrt{2}} \sum_{r=1}^{\infty} \sigma_a(r^2) r^{-(3/2+a)}.$$

Then we have

(2.1)
$$\sup_{0 \le t \le 1} |a_m(t)| \le A\sigma_a(m)m^{-(3/4+a/2)},$$

(2.2)
$$\int_{0}^{1} a_{m}(t) dt = 0,$$

(2.3)
$$\int_{0}^{1} a_{m}(t)^{2} dt = \frac{1}{4\pi^{2}} \cdot \frac{\mu(m)^{2}}{m^{3/2+a}} \sum_{r=1}^{\infty} \frac{\sigma_{a}(mr^{2})^{2}}{r^{3+2a}}.$$

Define $a_m^{\pm}(t) = \max(0, \pm a_m(t))$. From (2.2) and (2.3), we have

$$\int_{0}^{1} a_{m}^{+}(t) dt = \int_{0}^{1} a_{m}^{-}(t) dt$$

and

$$\int_{0}^{1} a_{m}^{+}(t)^{2} dt + \int_{0}^{1} a_{m}^{-}(t)^{2} dt = \frac{1}{4\pi^{2}} \cdot \frac{\mu(m)^{2}}{m^{3/2+a}} \sum_{r=1}^{\infty} \frac{\sigma_{a}(mr^{2})^{2}}{r^{3+2a}}.$$

Using (2.1), we obtain

$$\int_{0}^{1} a_{m}^{\pm}(t)^{2} dt \leq A\sigma_{a}(m)m^{-(3/4+a/2)} \int_{0}^{1} a_{m}^{+}(t) dt$$

and hence for any squarefree m,

(2.4)
$$\int_{0}^{1} a_{m}^{+}(t) dt \ge 2B^{-1}\sigma_{a}(m)m^{-(3/4+a/2)}$$

where $B = 16\pi^2 A (\sum_{r=1}^{\infty} r^{-(3+2a)})^{-1} > 1.$

Let n be a large integer. For $1 \le m \le n$, we define $A_m = [0, 1]$ if m is non-squarefree, and

$$A_m = \{t \in [0,1] : a_m(t) > B^{-1}\sigma_a(m)m^{-(3/4+a/2)}\}$$

otherwise. For squarefree m, it is apparent that

$$\sup_{0 \le t \le 1} |a_m(t)| \mu(A_m) + \frac{1}{B} \cdot \frac{\sigma_a(m)}{m^{3/4 + a/2}} \mu(A_m^c) \ge \int_0^1 a_m^+(t) \, dt.$$

Hence from (2.1), (2.4) and $\mu(A_m^c) \leq 1$ we get

$$(2.5) 1/B' \le \mu(A_m) \le 1$$

where B' = AB. By Markov's inequality, we have

$$\Pr\left(\left|\sum_{m=n+1}^{\infty} a_m(t_m)\right| \le 2\sqrt{K}\right) \ge 1 - \frac{1}{4K} \sum_{m=1}^{\infty} \int_{0}^{1} a_m(t)^2 dt \ge \frac{3}{4}$$

where Pr(#) denotes the probability of the event # and

$$K = \sum_{m=1}^{\infty} \int_{0}^{1} a_m(t)^2 dt.$$

Define

$$E_n = \left\{ (t_1, t_2, \ldots) : t_m \in A_m \text{ for } 1 \le m \le n \text{ and } \left| \sum_{m=n+1}^{\infty} a_m(t_m) \right| \le 2\sqrt{K} \right\}.$$

Then we get

$$\Pr(E_n) = \prod_{m=1}^n \Pr(A_m) \Pr\left(\Big|\sum_{m=n+1}^\infty a_m(t_m)\Big| \le 2\sqrt{K}\right) \ge \frac{3}{4}e^{-n\log B}$$

due to $Pr(A_m) = \mu(A_m)$ and (2.5). When $(t_1, t_2, \ldots) \in E_n$,

$$\sum_{m=1}^{\infty} a_m(t_m) \ge \frac{1}{B} \sum_{\substack{m \le n \\ m \text{ squarefree}}} \frac{\sigma_a(m)}{m^{3/4 + a/2}} - 2\sqrt{K} \gg n^{1/4 + |a|/2}.$$

Here and in what follows, the implied constants may depend on a. Replacing n by $[u^{4/(1+2|a|)}]$, we obtain $1 - D(u) \gg \exp(-c_1(a)u^{4/(1+2|a|)})$ for all sufficiently large u. The case of D(-u) can be proved in a similar way.

3. Proof of the upper bound in Theorem 2. To prove it, we need the following result which is contained in [5]. For the sake of completeness, we give a proof as well.

A positive measurable function $\phi(x)$ defined for sufficiently large positive x is called a *regularly varying function* with index α if

$$\lim_{x \to \infty} \phi(\lambda x) / \phi(x) = \lambda^{\alpha} \quad \text{ for any } \lambda > 1.$$

 $\psi(x)$ is called an *asymptotic inverse* of $\phi(x)$ if $\lim_{x\to\infty} \psi(\phi(x))/x = 1$.

LEMMA 3.1. Let X be a real random variable with probability distribution D(x), let $\phi(x)$ be a regularly varying function with index $0 < \alpha < 1$, and let $\psi(x)$ be an asymptotic inverse of $x/\phi(x)$. Suppose that D(x) > 0 for any x > 0 and $L \in (0, \infty)$. We have

(a) if
$$\limsup_{\lambda \to \infty} \psi(\lambda)^{-1} \log E(\exp(\lambda X)) \leq L$$
, then

$$\limsup_{x \to \infty} \frac{1}{x} \log(1 - D(\phi(x))) \leq -\alpha \left(\frac{1 - \alpha}{L}\right)^{(1 - \alpha)/\alpha},$$
(b) if $\limsup_{\lambda \to \infty} \psi(\lambda)^{-1} \log E(\exp(-\lambda X)) \leq L$, then

$$\limsup_{x \to \infty} \frac{1}{x} \log D(-\phi(x)) \leq -\alpha \left(\frac{1 - \alpha}{L}\right)^{(1 - \alpha)/\alpha}.$$

Proof. The proofs of (a) and (b) are similar and we prove part (b) only. Write $A = \limsup_{x\to\infty} \log D(-\phi(x))/x \leq 0$; the result is obviously true if $A = -\infty$. Let $\xi > 0$ be fixed and $\eta > 0$. Then

$$E\left(\exp\left(-\frac{\eta}{\phi(\eta)}X\right)\right) = \int_{-\infty}^{\infty} \exp\left(-\frac{\eta}{\phi(\eta)}x\right) dD(x)$$
$$\geq \int_{-\infty}^{-\phi(\xi\eta)} \exp\left(-\frac{\eta}{\phi(\eta)}x\right) dD(x)$$
$$\geq \exp\left(\eta\frac{\phi(\xi\eta)}{\phi(\eta)}\right) D(-\phi(\xi\eta)).$$

Hence,

$$\frac{1}{\eta}\log E\left(\exp\left(-\frac{\eta}{\phi(\eta)}X\right)\right) \ge \frac{\phi(\xi\eta)}{\phi(\eta)} + \frac{1}{\eta}\log D(-\phi(\xi\eta)).$$

Then, for any $\varepsilon \in (0, 1)$, there exist infinitely many $\eta \ge \eta_0(\varepsilon)$ such that

$$\frac{1}{\eta}\log E\bigg(\exp\bigg(-\frac{\eta}{\phi(\eta)}X\bigg)\bigg) \ge \frac{\phi(\xi\eta)}{\phi(\eta)} + (A-\varepsilon)\xi.$$

Therefore,

$$\limsup_{\eta \to \infty} \frac{1}{\eta} \log E\left(\exp\left(-\frac{\eta}{\phi(\eta)}X\right)\right) \ge \xi^{\alpha} + A\xi.$$

Taking $\lambda = \eta/\phi(\eta)$, we have $\lambda \to \infty$ as $\eta \to \infty$ since $0 < \alpha < 1$ (see [8, Section 1.1]), and so

$$\limsup_{\lambda \to \infty} \frac{1}{\psi(\lambda)} \log E(\exp(-\lambda X)) \ge \xi^{\alpha} + A\xi.$$

From the hypothesis in (b), we obtain $L \ge \xi^{\alpha} + A\xi$, which holds for all $\xi > 0$. Let us write A = -H (H > 0). Then we get $L \ge \xi^{\alpha} - H\xi$ and by taking $\xi = (\alpha/H)^{1/(1-\alpha)}$, we have

$$H \ge \alpha \left(\frac{1-\alpha}{L}\right)^{(1-\alpha)/\alpha}$$

Our assertion follows.

As $X = \sum_{n=1}^{\infty} a_n(t_n)$ where t_n 's are independent random variables uniformly distributed on [0,1], we have

$$E(\exp(\pm\lambda X)) = \prod_{n=1}^{\infty} E(\exp(\pm\lambda a_n(t_n))) = \prod_{n=1}^{\infty} \int_{0}^{1} \exp(\pm\lambda a_n(t)) dt$$

Now, we take $\phi(x) = x^{(1+2|a|)/4}$, $\psi(x) = x^{4/(3+2a)}$ and $N = [\lambda^{4/(3+2a)}]$. We want to give an upper bound for $\log E(\exp(\pm\lambda X))$ where $\lambda \ge 1$. Therefore, we consider the integrals (inside the product) according to the following three cases.

CASE (i):
$$n \leq N$$
. Using $\sigma_a(nr^2) \leq \sigma_a(n)\sigma_a(r^2)$,
$$\int_0^1 \exp(\pm\lambda a_n(t)) dt \leq \exp\left(\lambda A \frac{\sigma_a(n)\mu(n)^2}{n^{3/4+a/2}}\right)$$

Recall that $A = (\pi\sqrt{2})^{-1} \sum_{r=1}^{\infty} \sigma_a(r^2) r^{-(3/2+a)}$.

CASE (ii): n > N and $\lambda A \sigma_a(n) < n^{3/4+a/2}$. Using the inequality $e^x \leq 1 + x + x^2$ for $-\infty < x \leq 1$ and $a_n(t) \leq \lambda A \sigma_a(n) / n^{3/4+a/2}$, we obtain with (2.2),

$$\int_{0}^{1} \exp(\pm\lambda a_{n}(t)) dt \leq \int_{0}^{1} (1+\lambda a_{n}(t)+\lambda^{2}a_{n}(t)^{2}) dt$$
$$\leq 1+(\lambda A)^{2} \frac{\sigma_{a}(n)^{2}\mu(n)^{2}}{n^{3/2+a}}$$
$$\leq \exp\left((\lambda A)^{2} \frac{\sigma_{a}(n)^{2}\mu(n)^{2}}{n^{3/2+a}}\right)$$

since $e^x \ge 1 + x$ for all real x.

CASE (iii): n > N and $\lambda A \sigma_a(n) \ge n^{3/4 + a/2}$. As $e^x \le e^{x^2}$ for $|x| \ge 1$ or x = 0,

$$\int_{0}^{1} \exp(\pm \lambda a_n(t)) \, dt \le \exp\left(\lambda A \frac{\sigma_a(n)\mu(n)^2}{n^{3/4+a/2}}\right) \le \exp\left((\lambda A)^2 \frac{\sigma_a(n)^2 \mu(n)^2}{n^{3/2+a}}\right).$$

Since

$$\sum_{n \le x} \sigma_a(n) = \zeta(1-a)x + O(x^{1+a}),$$

$$\sum_{n \le x} \sigma_a(n)^2 = \zeta(1-2a)\zeta(1-a)^2\zeta(1-2a)^{-1}x + O(x^{1+a}),$$

we have

$$\log E(\exp(\pm\lambda X)) \le \lambda A \sum_{n\le N} \frac{\sigma_a(n)\mu(n)^2}{n^{3/4+a/2}} + (\lambda A)^2 \sum_{n>N} \frac{\sigma_a(n)^2\mu(n)^2}{n^{3/2+a}}$$
$$\le c_1 \lambda A N^{1/4+|a|/2} + c_2 (\lambda A)^2 N^{-1/2+|a|}$$
$$\le c_3 \lambda^{4/(3+2a)}$$

where c_1 , c_2 and c_3 are some positive constants depending on a.

Thus,

$$\limsup_{\lambda \to \infty} \frac{1}{\psi(\lambda)} \log E(\exp(\pm \lambda X)) \le c_3.$$

Note that $D_a(u) > 0$ for all u from the lower bound. By Lemma 3.1 and replacing $\phi(x)$ by u, i.e. $x = u^{4/(1+2|a|)}$, our proof is then complete.

4. Proof of Theorem 3. Define $F_a(t) = t^{-(1/2+a)} \Delta_a(t^2)$ and let $a_n(t)$ be defined as in (1.2). By taking $M = T^2$ in (1.1), we have for $1 \le N \le T$,

$$\begin{split} &\int_{T}^{2T} \left| F_{a}(t) - \sum_{n \leq N} a_{n}(\gamma_{n}t) \right|^{2} dt \\ &\ll \int_{T}^{2T} \left| \sum_{N < n \leq T^{2}} \frac{\sigma_{a}(n)}{n^{3/4 + a/2}} \cos(4\pi\sqrt{n}t - \pi/4) \right|^{2} dt \\ &+ \int_{T}^{2T} \left| \sum_{n \leq N} \frac{\mu(n)^{2}}{n^{3/4 + a/2}} \sum_{r > T/\sqrt{n}} \frac{\sigma_{a}(nr^{2})}{r^{3/2 + a}} \cos(4\pi r\sqrt{n}t - \pi/4) \right|^{2} dt + T^{2|a| + \varepsilon} \end{split}$$

where \sum' sums over integers of the form $n = mr^2$ where m > N is squarefree. Then the first integral on the right hand side is evaluated as in Ivić [4, Theorem 13.5] while the second one is bounded trivially. We obtain for $1 \le N \le T$,

(4.1)
$$\int_{T}^{2T} \left| F_a(t) - \sum_{n \le N} a_n(\gamma_n t) \right|^2 dt \ll T N^{|a| - 1/2} + T^{2|a| + \varepsilon} N^{1 + \varepsilon}.$$

Let us write $D_{F,T}(u) = T^{-1}\mu\{t \in [1,T] : F_a(t) \leq u\}$. Then, applying the argument in [7, (5.1)], we have for any r > 2,

(4.2)
$$D_{a,T}(u) - D_a(u) \ll \sup_{T^{1/r} \le v \le T^{1/2}} |D_{F,v}(u) - D_a(u)| + T^{2/r-1}.$$

Thus, we consider $D_a(u) - D_{F,T}(u)$ and we have

$$D_a(u) - D_{F,T}(u) \ll \frac{1}{R} + \int_{-R}^{R} \left| \frac{\chi_{a,T}(\alpha) - \chi_a(\alpha)}{\alpha} \right| d\alpha$$

where $\chi_{a,T}(\alpha)$ and $\chi_a(\alpha)$ are the characteristic functions of $D_{F,T}$ and D_a respectively. Define

$$\chi_{N,T}(\alpha) = \frac{1}{T} \int_{1}^{T} \prod_{n=1}^{N} e(\alpha a_n(\gamma_n t)) dt$$
 and $\chi_N(\alpha) = \prod_{n=1}^{N} \int_{0}^{1} e(\alpha a_n(t)) dt.$

Taking $N = 2[(\log \log T)/4]$, $R = N^{(1-2|a|)/8}$ and following [7, (5.3)–(5.4)], we obtain by (4.1),

(4.3)
$$D_a(u) - D_{F,T}(u) \ll \frac{1}{R} + RN^{|a|/2 - 1/4} + \int_{-R}^{R} \left| \frac{\chi_{N,T}(\alpha) - \chi_N(\alpha)}{\alpha} \right| d\alpha.$$

We follow [7, (5.5)–(5.7)] (with the same choices of M and δ) to evaluate $|\chi_{N,T}(\alpha) - \chi_N(\alpha)|$. Then we can get

$$|\chi_{N,T}(\alpha) - \chi_N(\alpha)| \ll (|\alpha| + 1)(\log T)^{-1/4 + |\alpha|/2 + \varepsilon},$$

and
$$|\chi_{N,T}(\alpha) - \chi_N(\alpha)| \ll |\alpha| N^{1/4 + |a|/2 + \varepsilon}$$
 if $|\alpha| \le (\log T)^{-1}$. This yields

$$\int_{-R}^{R} \left| \frac{\chi_{N,T}(\alpha) - \chi_{N}(\alpha)}{\alpha} \right| d\alpha \ll (\log T)^{-1/4 + |a|/2 + \varepsilon}.$$

Together with (4.2) and (4.3), our result follows.

References

- P. M. Bleher, Z. Cheng, F. J. Dyson and J. L. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993), 433–469.
- [2] T. Hattori and K. Matsumoto, A limit theorem for Bohr-Jessen's probability measures of the Riemann zeta-function, J. Reine Angew. Math. 507 (1999), 219–232.
- [3] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389–415.
- [4] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985.
- [5] Y. Kasahara, Tauberian theorems of exponential type, J. Math. Kyoto Univ. 18 (1978), 209–219.
- [6] I. Kiuchi, On an exponential sum involving the arithmetic function $\sigma_a(n)$, Math. J. Okayama Univ. 29 (1987), 193–205.
- [7] Y. K. Lau, On the existence of limiting distributions of some number-theoretic error terms, manuscript.
- [8] E. Seneta, *Regularly Varying Functions*, Lecture Notes in Math. 508, Springer, 1976.

Institut Élie Cartan Université Henri Poincaré (Nancy 1) 54506 Vandœuvre-lès-Nancy Cedex, France E-mail: lau@antares.iecn.u-nancy.fr

> Received on 25.2.2000 and in revised form on 18.9.2000

(3760)