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1. Introduction. Let oq(n) =}, d*. Define

!

Au) = Y 0uln) — ¢(1 - aye — ST D a1

1+a 5¢(=)

n<x

where Z;K , means that the last term is halved when x is an integer. Taking

a — 07, we recover the classical error term of Dirichlet’s divisor problem

Alz) =Y d(n) - a(logz + 2y — 1) — 1/4

n<x

with d(n) = o¢(n). The determination of the precise order of magnitude
of A(z) remains an open problem. Nevertheless, there are numerous papers
devoted to the study of its properties such as its power moments, {21 -results,
gaps between sign-changes. In particular, Heath-Brown [3] in 1992 showed
that = '/*A(x) has a limiting distribution and explored its properties.

Unlike A(x) there are not many results about A, (x). In this paper, we
are concerned with the limiting distribution of A, (z) with —1/2 < a < 0.
It is worthwhile to note that from the available results, A,(z) seems to
behave like A(z) only in the range of —1/2 < a <0 (or even —1/2 <a <0
perhaps). When —1 < a < —1/2, the behavior of A,(x) is rather different.
Nonetheless the limiting distribution in this case also exists, shown in [7].
A further investigation will be carried out in the sequel paper.

Let us go back to the case —1/2 < a < 0. Analogously to the case a = 0,
we can prove that for —1/2 <a <0and 1 < M <z,

x1/4+a/2 o (n) x1/2+e
L) Au(@) = =% %; ~/irasz Cos(4my/nz — 7/ )+o< NiTi )
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where the O-constant depends on a and ¢ only. (A proof can be found in
[6].) This is the so-called truncated Voronoi formula, which is the basic tool
in our discussion.

A direct application of (1.1) and [1, Theorem 4.1] yields the following
result.

THEOREM 1. For —1/2 < a < 0, t~ (/42 A () has a limiting dis-

tribution D,(u) which is also the distribution of the random series X =

oo an(ty) where

(1.2) an(t) = 5 n3/4+“/2 Z r3/2+ cos (2mrt — 7w /4)

and t1,ts,... are independent mndom variables uniformly distributed on
[0,1]. Moreover, Dq(u) = §" __pa(z)da for some probability density pq(z);
Pa(x) can be extended to the whole complex plane as an entire function of x.
Furthermore, for real x,

0 < pa(z) < exp(—|z|¥/ 1F2lah=e),

Define
Da(u) lf u < 07
tail of Dg(u) = {1—D(U) if u>0.

In particular, Theorem 1 yields that tail of D, (u) < exp(—|u|*/ (1*+2leD)=¢),
Our first result is to determine a more precise order of magnitude of D, (u).
THEOREM 2. Let |u| > 2. Then
exp(—c1(a) [u 021D <, tail of Da(u) <o exp(—ca(a)|u/1+21eD)

where c1(a) and ca2(a) are some constants depending on a. Also, the implied
constants depend on a.

The lower bound is derived by the method in [1, Theorem 5.1] while the
upper bound is obtained from the study of its Laplace transform. Such an
approach has appeared before, for example, in [2] and [5]. Our proof relies
on their underlying principle.

The next result concerns the rate of convergence. The proof follows
closely the argument in [7], so we shall give an outline only.

THEOREM 3. Define
1
Da,T(u) - ?/J,{t € [17 T] : t7(1/4+a/2)Aa<t) < U}

where p is the Lebesgue measure. Then, for —1/2 < a < 0,
Do r(u) — Do(u) <4 (log log T')~(1+22)/8

where the implied constant depends on a.
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2. Proof of the lower bound in Theorem 2. Write

1 oo
A= "2 o4(r?)rB/2ra),
wﬁ; (r?)

Then we have

(2.1) Sup |am (t)| < Aog(m)m=G/4+e/2),
0<t<1
1
(2.2) Vam(t)dt =0,
0
1 00
1 p(m)? - oa(mr?)?
2 —
(2.3) Sam(t) dt = dn2  m3/2+a Z r3+2a
0 r=1
Define a;: (t) = max(0, +a,,(t)). From (2.2) and (2.3), we have

0
and . .
. L pm)? & oa(mr?)?
+ (+)2 2 _
om0 de+ Y0 dt = 0 G D =
Using (2.1), we obtain
1 1
Vak(t)? dt < Agg(m)m=G/4/2 {af (1) dt
0 0
and hence for any squarefree m,
1
(2.4) Sa;(t) dt > 2B Lo, (m)m~B/4+a/2)

0

where B = 16m2A(> 00 | r~(GH+20)=1 5 1,
Let n be a large integer. For 1 < m < n, we define A4,, = [0,1] if m is
non-squarefree, and

Ay ={t €[0,1] : am(t) > B Lo, (m)m~3/4+a/2)}
otherwise. For squarefree m, it is apparent that
1
n(AS,) > ag(t) d.
0

1 o4(m)
Osgltlgl |am ()| p(Am) + B m3/ita
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Hence from (2.1), (2.4) and pu(AS,) <1 we get
(2.5) 1/B" < u(A,) <1
where B’ = AB. By Markov’s inequality, we have

Pr( i m(t )‘<2\/—>>1——i§am(t)2dt
0

m=n-+1 m=1
where Pr(#) denotes the probability of the event # and

K-y

v
BN

O e =

am
m=1
Define
E, = {(tl,tg,...) it € A, for 1 <m <n and ’ Z am(tm)‘ < 2@}
m=n-+1
Then we get

T eare(| 3 anttn] £ 2VE) 2 B

m=1 m=n-+1

due to Pr(A,,) = M(Am) and (2.5). When (t1,t2,...) € E,,

= 0a(m) 1/4+]al/2
)DEUB I S LN ST

m3/4+a/2

m=1 m<n
m squarefree

Here and in what follows, the implied constants may depend on a. Replac-
ing n by [u**212D] we obtain 1 — D(u) > exp(—ci(a)u®/(F2leD) for all
sufficiently large u. The case of D(—u) can be proved in a similar way.

3. Proof of the upper bound in Theorem 2. To prove it, we need
the following result which is contained in [5]. For the sake of completeness,
we give a proof as well.

A positive measurable function ¢(z) defined for sufficiently large positive
x is called a regularly varying function with index « if

lim ¢(Az)/od(z) = A for any A > 1.
(x) is called an asymptotic inverse of ¢(x) if lim, . ¥(p(z))/z = 1.

LEMMA 3.1. Let X be a real random variable with probability distribution
D(x), let ¢(z) be a regularly varying function with index 0 < o < 1, and let
Y(x) be an asymptotic inverse of x/¢(x). Suppose that D(x) > 0 for any
x>0 and L € (0,00). We have
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(a) if limsup,_, ., ¥(\)tlog E(exp(AX)) < L, then

(1-a)/a
limsupllog(l — D(¢(2))) < _a<1—a> )

r—oo L L

(b) if limsup,_ . ¥(\) " tlog E(exp(—AX)) < L, then

(1-a)/a
1 1—
lim sup — log D(—¢(z)) < —a< a> .
x

Tr— 00 L

Proof. The proofs of (a) and (b) are similar and we prove part (b) only.
Write A = limsup,_, . log D(—¢(x))/x < 0; the result is obviously true if
A = —o0. Let £ > 0 be fixed and 1 > 0. Then

E<exp(—$x>> - _OS; exp<—$x) dD(z)

—¢(&n)

> _goo exp<—%n)x> dD(z)
> exp <n%>D(—¢(§n))~
Hence,
%ng(exp(_%X)) > % + %log D(=¢(¢n)).

Then, for any ¢ € (0,1), there exist infinitely many n > no(¢) such that

Therefore,

1

lim sup — logE<eXp<—LX>> > Y+ AC.
n—oo 1 o(n)

Taking A = n/¢(n), we have A — oo as 7 — oo since 0 < o < 1 (see [8,

Section 1.1]), and so

li)Iisip ﬁ log E(exp(—AX)) > £~ + AE.
From the hypothesis in (b), we obtain L > £“ + A, which holds for all
¢ > 0. Let us write A = —H (H > 0). Then we get L > £* — H¢ and by
taking ¢ = (a/H)Y (=) we have

. (1—a)/a
H2a<1 a) .

Our assertion follows.
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As X =3 | an(t,) where t,,’s are independent random variables uni-
formly distributed on [0,1], we have

E(exp(£AX)) HEeXp (£Aan (tn) H exp(£Aay, (1)) dt.

n=1

OL/%»—A

Now, we take ¢(x) = x(1H2laD/4 4 (z) = z4/(3+20) and N = N\Y/B+29)] We
want to give an upper bound for log F(exp(£AX)) where A > 1. Therefore,
we consider the integrals (inside the product) according to the following
three cases.

CasE (i): n < N. Using o,(nr?) < a,(n)o,(r?),

éexp(:l:kan(t)) dt < exp ()\A%)

Recall that A = (1v/2) 71 Y272 0 (r2)r— 3/2F9),

CASE (ii): n > N and Mo, (n) < n3/4t%/2_ Using the inequality e® <
1+ + 2 for —oo < 2 < 1 and ap(t) < AAo,(n)/n3/*%/2 we obtain
with (2.2),

Vexp(han () dt < {(1 4 Aan(t) + Nan(t)?) dt
0 0
<1+ (AA)Qi%(,Z,);ﬁEW
OqlM 2(n)?
< o (e

since e®* > 1+ z for all real x.

CasE (iii): n > N and Mo, (n) > n?/4+2/2 As e* < e for || > 1 or
z =0,

iexp(:l:)\an(t)) dt < exp </\AM> < exp <(>\A)2M>.

0 3/44a/2 n3/2+a
Since
ZUa C(1 —a)z + O(x*+%),
n<x
Zaa ¢(1—2a)¢(1 —a)’C(1 —2a)taz 4+ O(z*19),
n<x

we have
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2 2 2
oq(n)p(n Oq(N)"p{n
log E(exp(£AX)) <A ) 7n(3/2+£/2) + (A7 Y %
n<N n>N

< 61)\AN1/4+|11\/2 + CQ()\A)2N_1/2+|U‘I
< e\ (3+20)
where c1, ¢z and c3 are some positive constants depending on a.
Thus,

lim sup

1

Note that D,(u) > 0 for all v from the lower bound. By Lemma 3.1 and
replacing ¢(x) by u, i.e. x = u?/(+2lal) " our proof is then complete.

log E(exp(£AX)) < cs.

4. Proof of Theorem 3. Define F,(t) = t~(1/2t9) A, (+?) and let a,(t)
be defined as in (1.2). By taking M = T2 in (1.1), we have for 1 < N < T,
2T

)

Fa(t)— Y an(%t)(gdt

n<N
2T , oa(n) )
<l > ey cos(dmy/nt — w/4)| dt
T ' N<n<T?
Ty oy 7a(r?) * dt 4 7ol
a g
+ S Z ~3/ata)3 Z Wcos(47rr\/ﬁt—7r/4) dt+T
T 'n<N r>T/n

where > sums over integers of the form n = mr? where m > N is square-
free. Then the first integral on the right hand side is evaluated as in Ivié

[4, Theorem 13.5] while the second one is bounded trivially. We obtain for
I1<NZT,

2
Fu(t)= > an(’ynt)’ dt < TNII=1/2 4 p2lalte Nlte,
n<N

(4.1) |

Let us write Dpr(u) = T u{t € [1,T] : Fo(t) < u}. Then, applying
the argument in [7, (5.1)], we have for any r > 2,

(4.2) D, r(u) — Do(u) < sup |Dpy(u) — Do (u)| + T2/7=1,
Tl/TSUSTl/Q
Thus, we consider D, (u) — Dpp(u) and we have

R

Da(u) — Dpp(u) < % + |
-R

Xa,7(@) = Xa()

da
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where x, 7(@) and x,(c) are the characteristic functions of Dpr and D,
respectively. Deﬁne

N 1
XN, S H e(aan(ynt))dt and xn(a H Se aan(t)) dt.
1n 1 n=10
Taking N = 2[(loglogT)/4], R = N(~2al)/8 and following [7, (5.3)-(5.4)],

we obtain by (4.1),
R

1
(4.3) Da(u) = Drr(u) < & + RNll/2=1/4 |
~R

We follow [7, (5.5)—(5.7)] (with the same choices of M and J) to evaluate
Ix~v7(a) — xn()|. Then we can get

(@) = xn (@) < (laf + 1)(log T) ~H/4Hel/24e,
and |xn.r(a) — xn ()| < || NT/4+al/2te if |o| < (log T)~'. This yields
R

-R
Together with (4.2) and (4.3), our result follows.

xn,r(a) — xn ()

do.

xw, (@) — xn (@) da < (log T)~1/4+lal/2+<.
«Q
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