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1. Introduction. Given a hyperelliptic curve C over Q, it is often nec-
essary or at least interesting to determine as many of its arithmetical in-
variants as possible. One of the most basic and important invariants is the
Mordell–Weil rank of its Jacobian J , i.e., the free abelian rank of the group
of rational points J(Q). There is no algorithm known so far that provably
determines this rank in all cases, but it is possible, at least in theory, to
bound it from above by computing the size of a suitable Selmer group. De-
pending on the size of the generators, it is also more or less practical to find
lower bounds by looking for independent rational points on the Jacobian.
With some luck, both bounds coincide, and the rank is determined. In gen-
eral, the difference between the actual rank and the upper bound obtained
from a Selmer group is controlled by the rather mysterious Shafarevich–Tate
group X(Q, J).

One usually looks at the 2-Selmer group Sel(2)(Q, J), since the multi-
plication-by-2 map is always available as a Q-defined isogeny and has fairly
low degree. Furthermore, its kernel is easily described explicitly in the case
of hyperelliptic curves. As usual, we have the following exact sequence:

0→ J(Q)/2J(Q)→ Sel(2)(Q, J)→X(Q, J)[2]→ 0.

Thus one obtains the formula

(1.1) rank J(Q) + dimF2 J(Q)[2] + dimF2 X(Q, J)[2] = dimF2 Sel(2)(Q, J)

and hence

rankJ(Q) ≤ dimF2 Sel(2)(Q, J)− dimF2 J(Q)[2].
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The general procedure for the determination of a Selmer group calls
for studying suitable principal homogeneous spaces for J . This is feasible
for elliptic curves (see for example Cremona [5]), but becomes unwieldy in
genus 2 and higher. For some examples, see Gordon and Grant [7]. If one is
willing to do computations in number fields of moderate degree, there is a
method available that completely avoids homogeneous spaces. It turns out
that this method is feasible for general curves of genus 2 over Q and even
for hyperelliptic curves of still higher genus, as long as the coefficients in the
defining equation are not too large.

The basic algorithm in the genus 2 case is described in Cassels’ article [3].
Another description, together with a specific example, can be found in [6].
See also Cassels and Flynn [4]. Schaefer [15, 16] puts it into a more general
and more conceptual framework. We will follow his approach here. The
theory underlying the most general case treated here (y2 = f(x) with f
non-monic of even degree) is explained by Poonen and Schaefer [13], who
consider, more generally, equations of the form yp = f(x) with deg f divisible
by p.

The problem of determining the parity of dimF2 X(Q, J)[2] is studied by
Poonen and Stoll [14]. Unlike the case of elliptic curves, the dimension can
be odd. In this case, the bound on the rank can be improved.

The paper is organised as follows. We first introduce some notation that
is used throughout the paper. Then we discuss what basic algorithms for
arithmetic in number fields and in p-adic fields we need to build our 2-descent
procedure on. In Section 4, we present the algorithm in the somewhat simpler
case when the curve has a rational Weierstraß point. Section 5 discusses
the modifications that are necessary in the general case. In this case, we
have to assume that the genus is even. In both variants of the algorithm,
it is necessary to do certain local computations. These are described in
Section 6. The last section describes a method for determining the parity of
dimX(Q, J)[2].

Acknowledgments. I thank Bjorn Poonen and in particular Ed Schae-
fer for the useful comments they made on earlier versions of this paper. Colin
Stahlke provided me with a list of genus 2 curves, one of which figures as a
nice example at the end of Section 5.

2. Notation. Let f ∈ Q[x] be some square-free polynomial and consider
the hyperelliptic curve given by the affine equation

(2.1) y2 = f(x).

We let C be its non-singular projective model, and we denote by J the
Jacobian of C.
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If p is some fixed prime, we let J denote the Néron model of J over Zp
(see [2], especially Chapter 9). The kernel of reduction in J(Qp) is denoted
by J1(Qp). The larger subgroup of points in J(Qp) mapping into the identity
component J 0

Fp is denoted by J0(Qp). We let Φp = JFp/J 0
Fp denote the

component group; it is a finite étale group scheme over Fp. We then have
the following well known exact sequences:

(2.2) 0→ J0(Qp)→ J(Qp)→ Φp(Fp)→ 0

and

(2.3) 0→ J1(Qp)→ J0(Qp)→ J 0(Fp)→ 0.

The first sequence is exact at the right by [1, §2]. There are corresponding
exact sequences with Qp and Fp replaced by Qnr

p and Fp, respectively.
For any field extension K of Q, let LK = K[T ]/(f(T )) denote the algebra

defined by f ; then LK = K[θ], where θ is the image of T , and LK is a product
of finite field extensions of K,

LK = LK,1 × . . .× LK,mK .
The fields LK,j correspond to the irreducible factors of f in K[x]. We will
drop the subscript Q (i.e., L = LQ, m = mQ etc.) and use the subscript v
instead of Qv for a place v of Q. This convention will be in force throughout
the paper and applies to everything that has a field as a subscript.

Let OK , I(K) and Cl(K) denote the ring of integers, the ideal group
and the ideal class group of a number field K, respectively. Then we define

OLK = OLK,1 × . . .×OLK,mK ,
I(LK) = I(LK,1)× . . .× I(LK,mK ),

Cl(LK) = Cl(LK,1)× . . .× Cl(LK,mK ).

We have the norm map LK → K; we will call it, and various other maps
it induces by functoriality, NK . For a prime p, let Ip(L) be the subgroup of
I(L) consisting of ideals with support above p. For a finite set S of places
of Q, let

IS(L) =
∏

p∈S\{∞}
Ip(L) ⊂ I(L).

The unit group of a ring R is denoted by R×.
We will write O×, K×, L×, I and the like multiplicatively, but Cl addi-

tively. We will use 0 consistently to denote the trivial group.
If M is a group on which the absolute Galois group Gal(K) of a field

K acts, we let M(K) denote the subgroup of invariant or K-rational el-
ements. We use Hj(K,M) as an abbreviation for the Galois cohomology
group Hj(Gal(K),M). When M is an algebraic group over K, H j(K,M)
stands for Hj(K,M(K)) .
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IfM is an abelian group and m is an integer,M [m] denotes them-torsion
subgroup of M , i.e., the elements of M killed by m.

Nearly everything in this paper has a structure of an F2-vector space,
and all dimensions are F2-dimensions.

Recall the definitions of the Shafarevich–Tate and Selmer groups. The
Shafarevich–Tate group X(Q, J) is defined as

X(Q, J) = ker
(
H1(Q, J)

∏
v resv−−−→

∏

v

H1(Qv, J)
)
,

where v runs through all places of Q. The 2-Selmer group Sel(2)(Q, J) is
defined to be the inverse image of X(Q, J)[2] under the canonical map
H1(Q, J [2])→ H1(Q, J)[2].

We will describe large parts of the procedure informally, but occasion-
ally we will present detailed algorithms performing some specific tasks. The
pseudo-code we use should be sufficiently self-explanatory. The only thing
to notice is that the scope of conditional or iterative constructs is indicated
by the indentation level.

3. Prerequisites. In this section, we will describe what kind of algo-
rithms we assume to be available as a basis for our implementation of the
2-descent procedure.

An essential part of this procedure deals with number fields. Let K be
a number field with ring of integers O, ideal group I and ideal class group
Cl. There is the well known exact sequence

0→ O× → K× → I → Cl→ 0.

We need this exact sequence to be effective. This means that we need suitable
representations for elements of K, for ideals and for ideal classes, and we
must be able to do the following:

• Determine the unit group O×.
• Given an element of K×, find the principal ideal it generates.
• Determine the class group Cl.
• Given an ideal, find its image in Cl.
• Given a principal ideal, find a generator.
• Given an element of Cl, find an ideal mapping to it.

In short, we want to be able to compute images and preimages under all of
the maps in the sequence.

There are several packages available that can do these computations,
for example PARI [20], KANT [18] and also MAGMA [19], which contains
KANT’s number field machinery.

The first implementation of the 2-descent procedure described here that
was able to deal with general curves of genus 2 over Q was done by the
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author in Common Lisp. It made use of the PARI libraries (version 1.39.x).
There is now another implementation in MAGMA, again by the author, as
part of a package dealing with hyperelliptic curves. We will use this second
implementation as a reference when we are discussing implementation de-
tails. In its present form, this program can compute the size of the 2-Selmer
group for general curves of genus 2 and curves with f of odd degree of
moderate genus.

The main feature of the 2-descent procedure as described by Schaefer [16]
and Poonen and Schaefer [13] is that it replaces the groupH1(K,J [2]), which
is difficult to deal with directly, by a more tractable group like L×K/(L

×
K)2.

This means that we will have to find the splitting of the étale algebra
L into number fields, and similarly we must find the splitting of Lp into
p-adic fields. This essentially amounts to factoring the polynomial f in Q[x]
or Qp[x], which is easily possible with all the computer algebra packages
mentioned above.

We will also have to deal with groups of the form

L×p /(L
×
p )2 =

mp∏

j=1

L×p,j/(L
×
p,j)

2

and the canonical maps from L×/(L×)2 onto them. This is fairly straight-
forward when p is odd or p =∞. The case p = 2 is somewhat more compli-
cated, but does not present any essential difficulties.

In the following sections, we will tacitly assume that we can perform the
computations described here.

4. The odd degree case. In this section, we assume that the polyno-
mial f defining the curve has odd degree. By a suitable scaling of x and y,
we may assume f to be monic and to have integral coefficients. The genus
g of C is 1

2 (deg f − 1). Note that any hyperelliptic curve with a rational
Weierstraß point has an equation with f of odd degree.

The basic references for this case are Schaefer’s papers [15] and [16].
There is one point at infinity on the projective closure of the affine curve

given by equation (2.1); it is covered by one point on the normalisation,
which we call ∞. This point is in C(Q).

For a field extension K of Q, let

HK = ker(NK : L×K/(L
×
K)2 → K×/(K×)2).

This fairly concrete group will replace the rather abstract groupH1(K,J [2]).
Let Div0

⊥(C) denote the group of degree zero divisors on C with support
disjoint from the support of the principal divisor div(y). Then for every K
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we get a homomorphism

FK : Div0
⊥(C)(K)→ L×K ,

∑

P

nPP 7→
∏

P

(x(P )− θ)nP ,

which induces a homomorphism

δK : J(K)→ HK

with kernel 2J(K). The induced map J(K)/2J(K) → HK will also be
denoted by δK .

Lemma 4.1. The assignments K 7→ J(K)/2J(K), K 7→ HK and K 7→
H1(K,J [2]) are functors from the category of field extensions of Q into the
category of F2-vector spaces. There is a natural isomorphism ιK : HK

∼=−→
H1(K,J [2]). The maps δK give a natural injection J(K)/2J(K) ↪→ HK ,
and ιK ◦ δK equals the coboundary morphism J(K)/2J(K)→ H1(K,J [2]).

Proof. This is proved in [16].

This gives us the following characterisation of the Selmer group. Recall
that H = HQ according to our convention.

Proposition 4.2. The 2-Selmer group of J over Q can be identified as
follows:

Sel(2)(Q, J) = {ξ ∈ H | resv(ξ) ∈ δv(J(Qv)) for all v}.
Here, resv denotes the canonical “restriction” map H → Hv, induced by
functoriality from the inclusion Q ↪→ Qv.

In order to make this practical, we have to reduce the set of places that
have to be considered to a finite set. This requires some preparations. The
reader who is only interested in the resulting algorithm can safely proceed
to Corollary 4.7.

We will need some additional information on the 2-torsion subgroup of
J and on the maps δK . Recall that all dimensions in this paper are F2-
dimensions.

Lemma 4.3. Let K be a field extension of Q.

(1) For a point P ∈ C(K) not in the support of div(y), δK(P −∞) =
x(P )− θ mod (L×K)2.

(2) Let f = f1 . . . fmK be the factorisation of f over K into monic
irreducible factors. Then with every factor fj , we can associate an element
Pj ∈ J(K)[2] such that :

(i) The Pj generate J(K)[2] and satisfy
∑mK
j=1 Pj = 0.

(ii) Let hj be the polynomial with f = fjhj . Then

δK(Pj) = (−1)deg fjfj(θ) + (−1)deg hjhj(θ) mod (L×K)2.

(3) dimJ(K)[2] = mK − 1.
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Proof. See [16]. Pj is the divisor class of
∑
fj(α)=0(α, 0)− (deg fj)∞.

Let Qnr
p be the maximal unramified extension of Qp. Denote the Frobe-

nius automorphism of Qnr
p /Qp by Frp. In order to avoid double subscripts,

we set Hnr
p = HQnr

p
. By functoriality, we have an action of Gal(Qnr

p /Qp)
on Hnr

p . If p is odd, we can identify the invariants Hnr
p (Qp) = (Hnr

p )Frp with

Ip = ker(N : Ip(L)/Ip(L)2 → Ip(Q)/Ip(Q)2).

We denote by valp the map Hp → Ip induced by the valuations of the fields
Lp,j . For odd p, it corresponds to the map Hp → (Hnr

p )Frp induced by the
inclusion of Qp in Qnr

p . This map valp is surjective for all p. By taking all
the primes together, we get a map

val =
∏

p

valp resp : H → I(L)/I(L)2.

This map val is induced by the usual map L× → I(L) associating with an
element the principal ideal it generates.

We will need to know the dimensions of the various groups for local
fields.

Lemma 4.4. Let K be a p-adic local field , and let dK = [K : Q2] if
p = 2 and dK = 0 if p is odd. Then

(1) dimJ(K)/2J(K) = dimJ(K)[2] + dKg = mK − 1 + dKg.
(2) dimHK = 2 dimJ(K)/2J(K) = 2(mK − 1 + dKg).
(3) dim IK = mK − 1.

Proof. (1) See [16, Prop. 2.4] or [11, Lemma I.3.3].
(2) For a p-adic local field M , we have dimM×/(M×)2 = 2+dM . Hence

dimL×K/(L
×
K)2 = 2mK + dLK . Since deg f is odd, the norm map NK :

L×K/(L
×
K)2 → K×/(K×)2 is surjective, and so

dimHK = 2mK + dLK − 2− dK = 2(mK − 1 + dKg).

Alternatively, this follows from Tate local duality and the identification
HK
∼= H1(K,J [2]) (see [11, Thm. I.3.2]).

(3) Easy.

With these preparations, we can determine the image of δv for almost
all places v of Q. Before we do this, let us first state a general result on the
image of J(Qp) in Ip, when p is odd. Recall the notation Φp for the group
of connected components of the special fibre of J , the Néron model of J
over Zp.

Lemma 4.5. If p is odd , then the image of J(Qp) in Ip under valp δp is
isomorphic to the image of Φp(Fp) in Φp/2Φp.
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Proof. We refer back to the exact sequences (2.2) and (2.3) and the cor-
responding sequences over Qnr

p . Since J 0 is a connected algebraic group and
since Fp is algebraically closed, the multiplication-by-2 map from J 0(Fp)
to itself is onto. Since p is odd and J1 is a formal group, multiplication-
by-2 is an automorphism of J1(Qnr

p ). Together, these two facts imply that
J(Qnr

p )/2J(Qnr
p ) ∼= Φp/2Φp.

Similarly, we get an exact sequence

J 0(Fp)/2J 0(Fp)→ J(Qp)/2J(Qp)→ Φp(Fp)/2Φp(Fp)→ 0.

Under the map from J(Qp)/2J(Qp) to J(Qnr
p )/2J(Qnr

p ), the first term in
this sequence vanishes. Hence the image of J(Qp) in J(Qnr

p )/2J(Qnr
p ) is

isomorphic to the image of Φp(Fp) in Φp/2Φp.
Because of naturality, the following diagram commutes:

J(Qp)/2J(Qp) Hp

J(Qnr
p )/2J(Qnr

p ) Hnr
p ⊃ Ip

��

δp //

valp
��δnr

p //

Since the lower horizontal map is an injection, the claim follows.

Remark. Let cp = #J(Qp)/J0(Qp). These so-called Tamagawa num-
bers show up in the Birch and Swinnerton-Dyer conjecture that relates the
leading term of the L-series of J at s = 1 to invariants of J . The lemma
implies that #Gp divides cp when p is odd, where Gp = valp δp(J(Qp)). Our
algorithm computes Gp for all p where it is non-trivial and therefore gives
us also some partial information on the numbers cp.

The following is an immediate consequence.

Proposition 4.6. If p is an odd prime such that p2 does not divide the
discriminant of f , then

0→ J(Qp)/2J(Qp)
δp−→ Hp

valp−→ Ip → 0

is an exact sequence.

Proof. We already know that δp is injective and that valp is onto.
If p does not divide the discriminant of f , then the Jacobian has good

reduction at p. This means that J(Qp) = J0(Qp), and so Φp(Fp) = 0.
If p does divide disc(f), but p2 does not, then the model of the curve

is regular, and its special fibre has only one component. This again implies
that Φp is trivial (cf. [1]).

Lemma 4.5 shows that in both cases valp δp = 0. Since by Lemma 4.4,
dimHp = dimJ(Qp)/2J(Qp) + dim Ip for odd p, this implies exactness
at Hp.
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Corollary 4.7. Let S = {∞, 2} ∪ {p | p2 divides disc(f)}. Then

Sel(2)(Q, J) = {ξ ∈ H | val(ξ) ∈ IS(L)/IS(L)2,

resv(ξ) ∈ δv(J(Qv)) for all v ∈ S}.
This suggests the following strategy:

(1) Find the set S.
(2) For each v ∈ S, determine Jv = δv(J(Qv)) ⊂ Hv.
(3) Determine a suitable finite subgroup H̃ of L×/(L×)2 that contains the

Selmer group and find a basis of H̃.
(4) Compute Sel(2)(Q, J) as the inverse image of

∏
v∈S Jv under

∏

v∈S
resv : H̃ →

∏

v∈S
Hv.

We will consider each of the steps in turn.

Step (1). We must compute the discriminant of f and factor it. Since
we have to factor f anyway in order to find the splitting of L into fields, we
may do that first and then find the bad primes from the product formula
for disc(f) in terms of the discriminants and resultants of the factors. In
practice, f will often be irreducible, and this simplification cannot be used.
Another possible simplification is that we only need primes that occur at
least twice in the factorisation. This means that we can split off “small”
primes first. If d is the remaining factor, we check if d is a square. If it is
not, it will suffice to find all prime factors of d below 3

√
d, and if it is, we

only have to factor
√
d. I do not know if one can get a measurable speedup

this way. The current implementation simply factors the discriminant.

Step (2). The reason for doing this step before step (3) is that the
knowledge of the Jv allows us to find a smaller bounding group H̃ in the
third step. For example, if it turns out that Jp = ker(valp) for some odd
p ∈ S, then we can drop p from S altogether.

Hence we can subdivide this step.

(2.1) For all p ∈ S \ {∞}, compute Jp = δp(J(Qp)) and its image Gp =
valp(Jp) in Ip.

(2.2) Remove from S all odd p with Gp = 0.
(2.3) Compute J∞.

We require p to be odd in step (2.2), because for p = 2, Gp = 0 does not
imply that Jp = ker(valp). This comes from the fact that dimH2 is larger
than dimJ2 + dim I2 (compare Lemma 4.4).

Step (2.1). This step will be dealt with in detail in Section 6.
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Step (2.3). The determination of J∞ is fairly easy with the following
result.

Lemma 4.8. (1) The dimension of J(R)/2J(R) is m∞ − 1− g.
(2) J∞ is generated by the δ∞(P −∞) for P ∈ C(R).
(3) The value of δ∞(P −∞) only depends on the connected component

of C(R) containing P .

Proof. (1) See [16, Prop. 2.5].
(2) This follows from Lemma 6.1 and J(C)/2J(C) = 0.
(3) The map δ∞ is continuous, and L×∞/(L

×
∞)2 is discrete.

In practice, we have to find the real roots of f and order them to find
the connected components of C(R). The map from C(R) to L×∞/(L

×
∞)2 is

then given on a point (x, y) by the collection of signs of x−α for all the real
roots α.

Step (3). We let G =
∏
p∈S\{∞}Gp ⊂ I(L)/I(L)2. Recall that Gp

denotes the image of Jp in Ip; it was determined in step (2.1). Obviously,
the group

{ξ ∈ H | val(ξ) ∈ G}
contains the Selmer group. Since it turns out that we do not have to restrict
to the kernel of the norm map at this point (see the discussion at the end
of this section), we replace the group above by the larger group

H̃ = {ξ ∈ L×/(L×)2 | val(ξ) ∈ G}.
A basis of H̃ is computed in two steps.

(3.1) Find a basis of V = ker(val : L×/(L×)2 → I(L)/I(L)2).
(3.2) Enlarge this basis to get a basis of H̃ = val−1(G).

Step (3.1)

Lemma 4.9. Let V = ker(val : L×/(L×)2 → I(L)/I(L)2). There is an
exact sequence

0→ O×L/(O×L )2 → V → Cl(L)[2]→ 0.

Proof. Consider

L× L× L×/(L×)2 0

0 I(L) I(L) I(L)/I(L)2 0
��

2 //

��

//

val
��

//

// 2 // // //

and apply the snake lemma.

To get a basis of V , we first take a basis of O×L /(O×L )2, which is obtained
from a set of fundamental units and a suitable power of some primitive
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root of unity for each of the fields Lj . Then we have to take a basis of
Cl(L)[2] and lift it back to L×/(L×)2. This is done as follows. We take some
representative ideal a ∈ I(L) of a basis element in Cl(L)[2]. Then a2 = αOL
is principal, and we can use the generator α as the lifting. The union of the
two sets thus obtained is a basis of V .

Step (3.2). To extend the basis of V in order to get a basis of H̃, we
have to lift a basis of

G ∩ val(L×/(L×)2) = ker(G→ Cl(L)/2Cl(L))

back under val to L×/(L×)2. We can do this as follows.

(3.2.1) Put the results of step (2.1) together to produce a basis of G.
(3.2.2) Compute the image of this basis in Cl(L)/2Cl(L) and find a basis of

the kernel W of the map G→ Cl(L)/2Cl(L).
(3.2.3) For each element aI(L)2 of this basis of W , find some ideal b ∈ I(L)

such that ab2 is principal, and take a generator of ab2 as an element
of the basis of H̃.

The image of a in Cl(L) is needed in step (3.2.3) to find b.
Once we know the class groups, we can give an upper bound for the

Selmer group dimension without having to find generators for principal ide-
als and without having to compute the fundamental units of the number
fields involved. (Both of these tasks tend to require much more computa-
tional effort than the determination of the class group alone for fields of
medium complexity.) We only need to find the ideal class an ideal belongs
to and to know the unit rank of the number fields, which is determined by
the signature.

Lemma 4.10. We have the following bound on the Selmer group dimen-
sion:

dim Sel(2)(Q, J) ≤ m∞ + dim Cl(L)[2] + dim ker(G→ Cl(L)/2Cl(L))− 1.

Proof. The sum of the numbers of real and pairs of conjugate complex
embeddings of all the number fields Lj equals m∞. By Lemma 4.9, we have

dimV = dimO×L /(O×L )2 + dim Cl(L)[2] = m∞ + dim Cl(L)[2].

By the definition of H̃, we see that the bound given is just one less than
its dimension. Since Gp lies in the kernel of the norm map to Ip(Q)/Ip(Q)2,
the norm map on L×/(L×)2 maps H̃ into 〈−1〉 ⊂ Q×/(Q×)2. Since −1 ∈ H̃
and N(−1) = −1, this implies that

dim ker(N : H̃ → Q×/(Q×)2) = dim H̃ − 1.

But the Selmer group is contained in the kernel of N on H̃, whence the
claim.
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Note that for the computation of ker(G→ Cl(L)/2Cl(L)), we only need
to find the images of various prime ideals in the ideal class group, whereas
in order to find an actual basis of H̃, we must find the units, and we
must determine generators for principal ideals. We can of course bound
dim ker(G→ Cl(L)/2Cl(L)) by dimG, if we even want to avoid the compu-
tation of images in the class group.

Suppose that we already have got a lower bound l on the Mordell–Weil
rank. We might have found a number of independent points on J , for exam-
ple. If at this point, we see that dim H̃ = l+dimJ(Q)[2]+1, the computation
can be stopped, since ker(N |

H̃
) must be the Selmer group, and the rank must

be l.

Step (4). This is simply linear algebra over F2. If only a bound for the
Mordell–Weil rank is needed, it is sufficient to compute the dimension of
Sel(2)(Q, J) instead of a basis. Let JS =

⊕
v∈S Jv, and denote by resS the

map from L×/(L×)2 into
⊕

v∈S L
×
v /(L

×
v )2. Then

dim Sel(2)(Q, J) = dim H̃ + dimJS − dim(resS(H̃) + JS).

At some point in the calculation, we have to restrict to the kernel of
N : L×/(L×)2 → Q×/(Q×)2. This could be done between steps (3) and (4),
but it turns out to be unnecessary, since step (4) does take care of it au-
tomatically. To see this, note that an element a ∈ Q× is a square if and
only if vp(a) is even for all primes p and a is positive. This implies that an
element α of L×/(L×)2 with val(α) ∈ IS(L)/IS(L)2 that maps into Jp for
all p ∈ S automatically has trivial norm in Q×/(Q×)2, since the norm of its
representative is a square at all p ∈ S and has even valuation outside S.

If we want to use a number field other than Q as the base field, we will
need an extra step to find the kernel of the norm on H̃, unless the S-class
group of the base field has odd order.

5. The even degree case. In this section, we assume f to have even de-
gree deg f = 2n. By a suitable scaling of the variables, we can again assume
f to have integral coefficients or even to have the form f(x) = cf1(x) with
a non-zero integer c and a monic polynomial f1 with integral coefficients.
This form is often convenient for practical purposes, since some computer
algebra systems require a monic polynomial with integral coefficients to de-
fine a number field, and some statements become simpler when θ is known
to be integral in L = Q[x]/(f(x)) = Q[x]/(f1(x)). Hence we will assume f
to have this form.

The curve C has two points at infinity (i.e., points that cover the point
at infinity on the projective closure of the affine curve y2 = f(x)); they are
Q-rational if and only if c is a square; otherwise they are defined over Q(

√
c)
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and conjugate. We let m ∈ Div(C)(Q) denote their sum. The genus g of C
is n− 1.

Remark. A general curve of genus 2 over Q can be defined by an equa-
tion y2 = f(x) with f of degree 5 or 6 and square-free (see [4, §1.1]).

The approach is similar to that used for the odd degree case, but there
are some additional complications. The theoretical background can be found
in Poonen and Schaefer [13]. The first contribution (for genus 2) goes back
to Cassels [3].

The first complication is that the definition of HK has to be adjusted as
follows. For a field extension K of Q, let

HK = ker(NK : L×K/(L
×
K)2K× → K×/(K×)2).

Note that the norm map is well defined here since K× is in the kernel.
As before, there is a homomorphism

FK : Div0
⊥(C)(K)→ L×K ,

∑

P

nPP 7→
∏

P

(x(P )− θ)nP .

We will say that the field K satisfies condition (†) if every element of J(K)
is represented by a K-rational divisor. In this case, FK induces a homomor-
phism

δK : J(K)→ HK .

Condition (†) is satisfied when K is a local or number field and C has a
K-rational point or the genus is even (compare [13, Prop. 3.3 and 3.4]; note
that the period divides 2).

If the genus is odd, condition (†) is not always satisfied. But even when
there is a rational point on C, there are other problems. For example, it
is no longer true in general that for an odd prime p not dividing disc(f),
the local image Jp equals the kernel of valp : Hp → Ip. Therefore, we will
suppose that g > 0 is even (and consider g = 2 in particular). This means
that the degree of f satisfies deg f ≡ 2 mod 4.

A major difference compared to the odd degree situation is that the
kernel of δK can be larger than 2J(K).

Let us say that K satisfies condition (‡) if either f has a factor of odd
degree in K[x], or f1 factors as f1 = hh over a quadratic extension K ′ of K,
with h the Gal(K ′/K)-conjugate of h. The latter condition is equivalent to
LK containing a quadratic extension of K, i.e., there is a field M of degree 2
over K with K ⊂ M ⊂ LK , where K ↪→ LK is the canonical embedding
K ↪→ K[T ]� LK .

Lemma 5.1. Assume that K satisfies condition (†). Then the kernel of
δK is 2J(K) if K satisfies condition (‡), or if there is no K-rational divisor
class of degree 1 on C. Otherwise, 2J(K) has index 2 in the kernel of δK .
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Proof. See [13, Thm. 11.2].

We note a few cases where condition (‡) is always satisfied.

Lemma 5.2. Condition (‡) is satisfied in each of the following situations:

(1) K = R.
(2) K is a p-adic field , and the irreducible factors of f in K[x] all define

unramified extensions of K.
(3) K = Qnr

p for an odd prime p.

Proof. We can assume that f has no irreducible factors of odd degree
in K[x]. Suppose that the compositum M of the fields LK,j defined by the
irreducible factors of f is a cyclic extension ofK. Then each LK,j is a subfield
of even degree of M and must therefore contain the unique subfield of degree
two of M . Hence LK contains this quadratic extension of K. This proves (1)
and (2). For part (3), note that there is a unique quadratic extension of Qnr

p ,
and this extension is contained in every extension of even degree of Qnr

p .

For genus g = 2, i.e. deg f = 6, the second alternative in condition (‡)
can be tested as follows. Note that another form of this condition is that the
six zeros of f in K allow a Gal(K/K)-stable partition into two three-sets.

Lemma 5.3. Write f1(x) =
∏6
j=1(x− αj), and let

h(f1) =
∏

σ

(x− (ασ(1)ασ(2)ασ(3) + ασ(4)ασ(5)ασ(6))),

where the product is over left coset representatives σ ∈ S6 modulo the sta-
biliser of the partition {{1, 2, 3}, {4, 5, 6}}. Then h(f1) has degree 10.

(1) For a ∈ K, the second alternative in condition (‡) holds for f if and
only if it holds for f(x+ a).

(2) If h(f1) has a simple root in K, then K satisfies the second alternative
in condition (‡).

(3) If h(f1) has no root in K, then K does not satisfy the second alter-
native in condition (‡).

(4) There are at most 45 values of a ∈ K such that h(f1(x + a)) is not
square-free.

Proof. (1) Obvious.
(2) Assume α1α2α3 + α4α5α6 is in K and distinct from the other zeros

of h(f1). Then Gal(K/K) must stabilise {{α1, α2, α3}, {α4, α5, α6}}.
(3) If Gal(K/K) stabilises {{α1, α2, α3}, {α4, α5, α6}} (say), then α1α2α3

+ α4α5α6 must be in K.
(4) We show that for each pair of roots of h(f1), there is at most one value

of a ∈ K such that the two corresponding roots of h(f1(x + a)) coincide.
Since there are 45 pairs of roots, the claim follows.
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Since S6 acts transitively on pairs of partitions of {1, 2, 3, 4, 5, 6} into
two three-sets, we may assume that the two roots are α1α2α3 +α4α5α6 and
α1α2α4 + α3α5α6. Let

T = {a ∈ K | (α1 − a)(α2 − a)(α3 − a) + (α4 − a)(α5 − a)(α6 − a)

= (α1 − a)(α2 − a)(α4 − a) + (α3 − a)(α5 − a)(α6 − a)}
and suppose that a and b are two distinct elements of T . This gives

(α1 − a)(α2 − a)(α3 − α4) = (α5 − a)(α6 − a)(α3 − α4)

and similarly with b instead of a. Since α3 6= α4, we get

α1α2 − a(α1 + α2) = α5α6 − a(α5 + α6),

α1α2 − b(α1 + α2) = α5α6 − b(α5 + α6)

and then α1α2 = α5α6 and α1 +α2 = α5 +α6, whence {α1, α2} = {α5, α6},
contradicting the fact that f1 has no multiple roots.

To determine whether Q and all relevant Qp’s satisfy condition (‡) or
not, we can therefore proceed as follows:

(0.1) If f1 has a factor of odd degree over Q, then condition (‡) is satisfied
for Q and all its completions.

(0.2) Otherwise, let a = 0 and compute h = h(f1(x)).
(0.3) If h has a simple rational root, then again condition (‡) is satisfied for

Q and all its completions.
(0.4) If h is not square-free, replace a by a+ 1 and set h = h(f1(x+a)). Go

back to step (0.3).
(0.5) Now we have a square-free resolvent h without rational roots. Then Q

does not satisfy condition (‡). To determine whether Qp satisfies con-
dition (‡), we first factor f1 over Qp. If there is a factor of odd degree,
then condition (‡) is satisfied. Otherwise, condition (‡) is satisfied if
and only if h has a root in Qp.

There are essentially two methods for computing the resolvent h(f1).
The first method is to determine the roots αj to sufficient accuracy (in C or
perhaps in Qp) and from them the coefficients of h(f1), using the fact that
they must be integers. The second method is to find explicit expressions for
the coefficients of h(f1) in terms of the coefficients of f1 and use them to
compute h(f1).

Our implementation uses the second approach. We also remark that the
resolvent can be simplified when f1 factors into polynomials of degrees 2
and 4 or 2, 2 and 2.

For even genus g > 2, the best method to check the second alternative in
condition (‡) probably is to find the quadratic subextensions of the fields Lj
directly and see if there is one contained in all of them.
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The relationship between δK , HK and the coboundary map from Galois
cohomology is less direct than in the odd degree case, but still sufficient to
get the information we want.

Lemma 5.4. The assignments K 7→ J(K)/2J(K), K 7→ H1(K,J [2]),
K 7→ HK and K 7→ QK = H1(K,µ2(LK)/µ2(K)) are functors from the cat-
egory of field extensions of Q into the category of F2-vector spaces. There
are natural homomorphisms ιK : H1(K,J [2]) → QK and qK : HK → QK .
The maps δK give a natural homomorphism J(K)/2J(K) → HK , which,
when followed by qK , equals the coboundary morphism J(K)/2J(K) →
H1(K,J [2]), followed by ιK . In other words, the following diagram is com-
mutative:

J(K)/2J(K) HK

H1(K,J [2]) QK
��

δK //

qK

��
ιK //

Proof. See [13, Thm. 9.4].

Proposition 5.5. The dimension of the 2-Selmer group of J over Q
can be determined as follows. Let

Sel(2)
fake(Q, J) = {ξ ∈ H | resv(ξ) ∈ δv(J(Qv)) for all v}.

Here again, resv denotes the canonical map H → Hv, induced by functori-
ality from the inclusion Q ↪→ Qv. Then

dim Sel(2)(Q, J) =

{
dim Sel(2)

fake(Q, J) if Q satisfies (‡),
dim Sel(2)

fake(Q, J) + 1 otherwise.

Proof. See [13, Thm. 13.2].

The computation of Sel(2)
fake(Q, J) proceeds essentially in the same way

as for the odd degree case. Note, however, that we have to deal with the
additional complication that the fake Selmer group sits in the quotient of
L×/(L×)2 by Q×/(Q×)2. We will deal with this difficulty later. Let us first
state the results parallel to those in the odd degree case.

Lemma 5.6. Let K be a field extension of Q.

(1) Suppose that the points ∞± at infinity on C are K-rational. Then
for a point P ∈ C(K) not in the support of div(y), we have δK(P −∞±) =
x(P )− θ (mod (L×K)2K×).

(2) With every monic polynomial h ∈ K[x] of even degree such that h
divides f1, we can associate an element Ph ∈ J(K)[2] such that :

(i) The Ph generate J(K)[2] and satisfy
∑
j Phj = 0, if

∏
j hj = f1.
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(ii) Let h̃ be the polynomial with f = hh̃. Then δK(Ph) = h(θ)−h̃(θ)
(mod (L×K)2K×).

(3) dimJ(K)[2] = mK − 1 if all irreducible factors of f over K have
even degree, and dimJ(K)[2] = mK − 2 otherwise.

Proof. See [13]. Ph is the divisor class of
∑
h(α)=0(α, 0)− 1

2 (deg h)m.

We adjust the definition of Ip in the following way:

Ip = ker(N : Ip(L)/Ip(L)2Ip(Q)→ Ip(Q)/Ip(Q)2).

There is again the valuation map valp : Hp → Ip, or more generally,

valp : L×/(L×)2 → L×/(L×)2Q× → L×p /(L
×
p )2Q×p → Ip(L)/Ip(L)2Ip(Q).

These maps valp, taken together, give us a map

val : H ⊂ L×/(L×)2Q× → I(L)/I(L)2I(Q).

We will also need to use the canonical map ṽal : L×/(L×)2 → I(L)/I(L)2.
If p is odd, we can again identify Ip with the Frp-invariants in Hnr

p = HQnr
p

,
and the map valp corresponds in this way to the map Hp → Hnr

p induced
from the inclusion Qp ↪→ Qnr

p .
The determination of the dimensions of the various local groups is less

straightforward than in the odd degree case.
For an arbitrary field extension K of Q, we let tK = 0 if all the factors

of f in K[x] have even degree, and tK = 1 otherwise. We let uK = 0 if there
is a quadratic extension of K contained in LK , and uK = 1 otherwise. If
K is a p-adic field, we let rK = 0 if all the ramification indices of the field
extensions LK,j/K are even, and rK = 1 otherwise. Similarly, we let sK = 0
if all the residue class degrees of the field extensions LK,j/K are even, and
sK = 1 otherwise. Finally, we let dK = [K : Q2] if p = 2 and dK = 0 if p is
odd.

Lemma 5.7. Let K be a p-adic local field. Then

(1) dimJ(K)/2J(K) = dimJ(K)[2] + dKg = mK − 1− tK + dKg.
(2) dim IK = mK − rK − sK .
(3) dimHK = 2 dim IK if p is odd.
(4) If p is odd and rK = 1, then valp : Hp → Ip is onto.

Proof. (1) The first equality is shown in the same way as in Lemma 4.4.
The second equality was proved in Lemma 5.6.

(2) The group I(LK)/I(LK)2 has dimension mK . The image of
I(K)/I(K)2 in it is trivial if and only if rK = 0. The norm map from
I(LK)/I(LK)2 to I(K)/I(K)2 is the zero map if sK = 0 and has a kernel
of codimension one otherwise.
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(3) Since p is odd, there is an exact sequence

0→ k×/(k×)2 → K×/(K×)2 → I(K)/I(K)2 → 0,

where k is the residue field of K. There is a similar sequence for LK and `K ,
where `K denotes the product of the residue fields of the LK,j . Then we
have snake lemma diagrams

0 Ker1 Ker2 Ker3

0 k×/(k×)2 K×/(K×)2 I(K)/I(K)2 0

0 `×K/(`
×
K)2 L×K/(L

×
K)2 I(LK)/I(LK)2 0

`×K/(`
×
K)2k× L×K/(L

×
K)2K× I(LK)/I(LK)2I(K) 0

//

��

//

��

//

��

//

//

��

//

��

//

��

//

//

��

//

��

//

��

//

// // // //

and

Cok4 Ker4 HK IK

Cok4 `×K/(`
×
K)2k× L×K/(L

×
K)2K× I(LK)/I(LK)2I(K) 0

0 k×/(k×)2 K×/(K×)2 I(K)/I(K)2 0

Cok1 Cok2 Cok3 0

�
�
�
�
�

�
�
�
�
�

//

��

//

��

//

��

//

//

N
��

//

N
��

//

N
��

//

//

��

//

��

//

��

//

// // // //

We have denoted by Kerj and Cokj (j = 1, 2, 3) the obvious kernels and
cokernels. Cok4 is the cokernel of the map Ker2 → Ker3, and Ker4 is the
kernel of the leftmost norm map in the second diagram.

From elementary considerations, we find

dim Ker1 = dim Cok3 = 1− sK and dim Ker3 = dim Cok1 = 1− rK .
Also, by local class field theory

dim Ker2 = dim Cok2 = 1− uK .
Hence

dim Cok4 = dim Ker2−dim Ker1−dim Ker3

= dim Cok2−dim Cok1−dim Cok3 .

This implies dimHK = dim IK + dim Ker4, and from the diagrams, it is
easily read off that dim Ker4 = mK − rK − sK = dim IK .
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(4) This follows from the second diagram above, noting that Cok1 = 0
when rK = 1.

Following our convention, we denote rK , sK , tK and uK by rp, sp, tp
and up, respectively, when K = Qp.

Lemma 5.8. The following combinations of the values of rp, sp, tp and
up are possible when p is odd. We use J/2J to abbreviate J(Qp)/2J(Qp).
The fifth column indicates whether Qp satisfies condition (‡), the last column
indicates whether the map valp : Hp → Ip is onto or not.

rp sp tp up (‡) dimJ/2J dimJp dimHp dim Ip Hp� Ip?

1 1 1 1 y mp − 2 mp − 2 2mp − 4 mp − 2 y
1 1 0 1 n mp − 1 mp − 2 2mp − 4 mp − 2 y
1 0 0 0 y mp − 1 mp − 1 2mp − 2 mp − 1 y
0 1 0 1 n mp − 1 mp − 2 2mp − 2 mp − 1 n
0 1 0 0 y mp − 1 mp − 1 2mp − 2 mp − 1 y

Proof. By Lichtenbaum [10], there is a Qp-rational divisor class of degree
g − 1. Since g is even, and since there are Qp-rational divisors of degree 2,
there is a Qp-rational divisor class of degree one. By Lemma 5.1, this means
that dimJ(Qp)/2J(Qp) and dimJp are equal if and only if Qp satisfies con-
dition (‡), otherwise they differ by one. On the other hand, (‡) is equivalent
to tp = 1 or up = 0. Together with the fact that dimJ(Qp)/2J(Qp) =
mp − 1 − tp (see part (1) of the preceding lemma), this explains columns
5, 6 and 7 of the table. Columns 8 and 9 are explained by the preced-
ing lemma. From its proof, we can deduce that valp is onto precisely when
1 + up = rp + sp. This explains the last column. Note also that rp = 0 or
sp = 0 implies tp = 0, that sp = 0 implies up = 0 and that rp = sp = 0
is impossible, since the degree of f is not divisible by four. Furthermore,
rp = sp = 1 implies up = 1. This shows that all possible combinations of
the first four entries are given in the table.

With these preparations, we can again determine the image of δv for
almost all places v of Q. Recall that Φp denotes the group of components of
the special fibre of the Néron model J of J over Zp.

Lemma 5.9. If p is odd , then the image of J(Qp) in Ip under valp δp is
isomorphic to the image of Φp(Fp) in Φp/2Φp.

Proof. By Lemma 5.2(3), the map δnr
p from J(Qnr

p )/2J(Qnr
p ) to Hnr

p is
injective. Since Ip is again contained in Hnr

p , we can conclude in the same
way as we did for Lemma 4.5.

Proposition 5.10. If p is an odd prime not dividing the discriminant
of f , then
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0→ J(Qp)/2J(Qp)
δp−→ Hp

valp−→ Ip → 0

is an exact sequence. If we only assume that p2 does not divide disc(f), then
we still have the exact sequence

J(Qp)/2J(Qp)
δp−→ Hp

valp−→ Ip → 0.

Proof. If p does not divide the discriminant, we have rp = 1 and sp = tp.
By Lemma 5.8, valp is surjective and Qp satisfies condition (‡). This implies
that δp is injective. It remains to show exactness at Hp. Since the dimensions
match, it suffices to show that valp δp = 0. This follows from Lemma 5.9,
since Φp = 0.

If p does divide disc(f), but p2 does not, then we again have Φp = 0,
implying valp δp = 0. Furthermore, one of the fields Lp,j has ramification
index 2 and residue class degree 1, whereas the remaining fields (there is at
least one) are unramified. Hence rp = sp = 1, and Lemma 5.8 shows that
valp is onto and that dimHp = dimJp + dim Ip. Together with valp δp = 0,
this implies exactness at Hp.

Corollary 5.11. Let S = {∞, 2} ∪ {p | p2 divides disc(f)}. Then

Sel(2)
fake(Q, J) = {ξ ∈ H | val(ξ) ∈ IS(L)/IS(L)2IS(Q),

resv(ξ) ∈ δv(J(Qv)) for all v ∈ S}.
Now it is time to consider the question of how to represent the fake

Selmer group, or more generally, a finite subgroup of L×/(L×)2Q×. Consider
the following diagram:

(5.1)

0 Ker Sel2 Sel1 Sel(2)
fake(Q, J) 0

0 Ker Q×/(Q×)2 L×/(L×)2 L×/(L×)2Q× 0

//
�
�
�
�
�
�

�
�
�
�
�
�

//

��

//

��

//

��

//

// // // // //

We define Ker to make the bottom row exact. A good way to represent
Sel(2)

fake(Q, J) is to find finite subgroups Sel1 and Sel2 of L×/(L×)2 and
Q×/(Q×)2, respectively, that make the top row exact. Note that Ker = 0
if there is no quadratic extension of Q contained in L, and Ker = 〈d〉 is
one-dimensional if Q(

√
d) is contained in L. The group Sel2 will be sim-

plest to deal with when it is the span of −1 and some primes. The following
proposition gives an indication of how we can proceed.

Proposition 5.12. Let Gp be the image of J(Qp) in Ip, and recall that
rp = 0 if and only if all the fields Lp,j have even ramification index. Let Sel2
be the span in Q×/(Q×)2 of {−1} ∪ S′, where

S′ = {p | rp = 0 or Gp 6= 0}.
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Define

H̃ = {ξ ∈ L×/(L×)2 | ṽal(ξ) ∈ IS′(L)/IS′(L)2 and

valp(ξ) ∈ Gp for all p ∈ S′},
where ṽal is the canonical map from L×/(L×)2 to I(L)/I(L)2. Then H̃ is
finite. Let S = S′ ∪ {∞, 2} and set

Sel1 = {ξ ∈ H̃ | resv(ξ) ∈ Jv for all v ∈ S}.
Then with these definitions of Sel1 and Sel2, the top row in the diagram (5.1)
is exact.

Proof. It is clear that H̃ is finite (compare the odd degree case).
If p is a prime outside S′, then Gp = 0. This implies that Sel(2)

fake(Q, J)
is contained in

H ′ = {ξ ∈ L×/(L×)2Q× | val(ξ) ∈ IS′(L)/IS′(L)2IS′(Q),

valp(ξ) ∈ Gp for all p ∈ S′}.
If p is odd and rp = 1, then by Lemma 5.8, we have dimHp = dimJp+dim Ip.
Furthermore, valp : Hp → Ip is onto. Therefore, if Gp = 0, then Jp =
ker valp. Hence

Sel(2)
fake(Q, J) = {ξ ∈ H ′ | resv(ξ) ∈ Jv for all v ∈ S}.

Since Q has trivial class group, H̃ surjects onto H ′, and by definition, Sel1 is
the inverse image of Sel(2)

fake(Q, J) in H̃. The kernel of H̃ � H ′ is the inter-
section of H̃ with the image of Q×/(Q×)2 in L×/(L×)2, which is the same
as the image of the kernel of the composition Q×/(Q×)2 → L×/(L×)2 →
IS′(L)/IS′(L)2. This kernel is easily seen to equal Sel2.

Remark. It is possible to remove from S those odd primes p that have
Gp = 0 (and rp = 0) and are such that Lp contains a quadratic extension
of Qp. The reason is that one can show that in this case, we again have
Jp = ker valp, compare Lemma 5.8. Note also that by Proposition 5.10, any
odd prime p ∈ S′ must satisfy p2 | disc(f).

We get the following outline of the algorithm.

(0) Perform steps (0.1) through (0.5) in order to determine whether Q satis-
fies condition (‡) or not. If it does not, we also prepare the necessary data
for deciding whether Qv satisfies condition (‡) or not, for any given v.

(1) Let S′ = {2} ∪ {p | p2 divides disc(f)} and set S = S′ ∪ {∞}.
(2) For all v ∈ S, compute the local images Jv = δv(J(Qv)) ⊂ Hv and (for

v 6=∞) Gv = valv(Jv) ⊂ Iv.
(3) Remove from S′ all primes p that have Gp = 0 and rp = 1. Remove

from S all odd primes p that have Gp = 0 and (rp = 1 or up = 0).
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(4) Find a basis of H̃ as defined in Proposition 5.12.
(5) Find Sel1 as the inverse image of

∏
v∈S Jv under

∏
v∈S resv : H̃ →∏

v∈S Hv. Let Sel2 ⊂ Q×/(Q×)2 be the span of {−1}∪S′. Let Sel3 ⊂ Sel2
be the trivial group if L does not contain a quadratic extension of Q,
and let Sel3 be generated by d if L ⊃ Q(

√
d). Then there is an exact

sequence

0→ Sel3 → Sel2 → Sel1 → Sel(2)
fake(Q, J)→ 0.

In particular,

dim Sel(2)
fake(Q, J) = dim Sel1−dim Sel2 + dim Sel3 .

If we let t = 0 if all irreducible factors of f in Q[x] have even degree and
t = 1 otherwise, and u = 0 if there is a quadratic extension of Q contained
in L, u = 1 otherwise, then we finally get the formula

(5.2) rankJ(Q) + dimX(Q, J)[2] = dim Sel1−#S′ −m+ 1 + t(1− u).

Note that condition (‡) is equivalent to (1 − t)u = 0, that dimJ(Q)[2] =
m− 1− t, that dim Sel2 = #S′ + 1, and that dim Sel3 = 1− u.

As in the odd degree case, we get a bound on the rank from the knowledge
of dim H̃ only, which can be found as in the odd degree case; see also below.

Lemma 5.13. We have the following inequality :

rank J(Q) + dimX(Q, J)[2] ≤ dim H̃ −#S′ −m+ 1− tu.

Proof. Trivially, Sel1 ⊂ H̃. When t = 1, then we can find elements in H̃
with norm −1. (Construct an element of L by taking it to be −1 in a field
Lj of odd degree and 1 in every other field Lj . This element has norm −1
and gives rise to an element of H̃.) Hence dim Sel1 ≤ dim H̃ − t, and the
claim follows from equation (5.2).

We discuss some of the main steps in more detail.

Step (2). The method is the same as in the odd degree case. We know
the dimension of J(Qv)/2J(Qv), and we can decide whether δv has non-
trivial kernel on J(Qv)/2J(Qv) by checking whether Qv satisfies condi-
tion (‡) or not. Hence we know the dimension of Jv. For details, see Section 6.

In the case v =∞, we have the following analogue of Lemma 4.8.

Lemma 5.14. (1) dimJ(R)/2J(R) = dimJ∞ = dimJ(R)[2]− g.
(2) J∞ is generated by the δ∞(P + Q − m) with P,Q ∈ C(R), and

δ∞(P + Q − m) only depends on the connected components of C(R) con-
taining P and Q.

Proof. The proof is straightforward.
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From this, the procedure is very similar to that in the odd degree case.
We only have to be careful to take the sign of the leading coefficient of f
into account when we determine the connected components of C(R).

Step (4). A basis of H̃ is constructed in the same way as in the odd
degree case. Instead of the group Gp (for p ∈ S′), we have to use its preimage
G̃p in Ip(L)/Ip(L)2 when extending the basis of ker(val : L×/(L×)2 →
I(L)/I(L)2) to a basis of H̃, but apart from this small difference, everything
proceeds in exactly the same fashion as before.

We note that dim H̃ = m∞+dim Cl(L)[2]+dim ker(G̃→ Cl(L)/2Cl(L)),
where G̃ =

∏
p∈S′ G̃p. We remark that we could remove all p with rp = 0

and Gp = 0 from S′ in this formula, since in this case G̃p = Gp = 0.
As an example, consider the curve given by the equation

y2 = x6 − 56x5 + 176x4 + 74x3 − 81x2 − 282x+ 169.

This curve is one in a list of genus 2 curves with small coefficients and many
rational points constructed by Colin Stahlke. The divisor classes of degree
zero containing divisors supported in small rational points on the curve
generate a subgroup of J(Q) of rank 12. The discriminant is a power of 2
times the product of the two primes 27605791 and 12261635838401, so 2 is
the only really bad prime. After computing the local image at p = 2, one sees
that G2 is trivial. Since the class group of the number field L defined by the
right hand side is (Z/2Z)8 and there is no quadratic subfield, Lemma 5.13
tells us that the rank is bounded by

(5 + 8)− 1− 1 + 1− 0 = 12.

(We have m = 1, m∞ = 5, t = 0 and S = {2}; note that 2 is ramified in L,
so r2 = 0.) Hence the rank is 12.

6. Local images. In this section, we will discuss how we can find the
local image Jp of J(Qp)/2J(Qp) in Hp. We assume that we know dimJp
beforehand. The basic procedure is to construct points in J(Qp) and to
compute their image in Hp until these images generate a subspace of the
right dimension.

Let K be an arbitrary field extension of Q. We extend the definition of
δK to all K-rational divisors on C. Essentially, we put

δK

(∑

P

nP · P
)

=
∏

P

(x(P )− θ)nP mod (L×K)2 or (L×K)2K×.

This is defined for divisors D ∈ Div(C)(K) with support not containing
points at infinity or points with zero y-coordinate. In [16] and [13], it is shown
that δK is trivial on principal divisors. We therefore can extend its definition
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to all K-rational divisors if we move a divisor in its linear equivalence class
when necessary. Explicitly, we get the following.

For divisors D supported at the point(s) at infinity, we simply have
δK(D) = 1. If D is a prime divisor that is the sum of points (α, 0), where
α runs through the zeros of a monic irreducible factor h(x) ∈ K[x] of f(x),
we get

δK(D) =
{

(−1)deg h(h(θ)− h̃(θ)) mod (L×K)2 if deg f is odd,
h(θ)− h̃(θ) mod (L×K)2K× if deg f is even,

where f(x) = h(x)h̃(x) in each case (compare Lemmas 4.3 and 5.6).
The following two lemmas provide us with the tools for constructing

elements in Jp.

Lemma 6.1. Suppose that the degree of f is odd. Then the image of δK in
HK is generated by the images under δK of all prime divisors in Div(C)(K)
of degree at most g.

Proof. Let D be a K-rational divisor class of degree zero on C. Consider
the divisor classes D + n · ∞ for n = 0, 1, . . . By Riemann–Roch, there is
some 0 ≤ n ≤ g such that there is a unique effective divisor (of degree n) in
D+n ·∞. Because this divisor is unique, it must be K-rational, and we can
write it as a sum of prime divisors Pj over K of degree at most g. Hence,

δK(D) = δK

(∑

j

Pj − n · ∞
)

=
∏

j

δK(Pj).

(Note that δK(∞) = 1.)

The even degree case is a little bit more involved. We let δ′K be the
following map.

δ′K : Div(C)(K)→ HK × F2, D 7→ (δK(D),degD mod 2).

Lemma 6.2. Suppose that the degree of f is even and that the genus is
even. Let J ′p be the subspace of HK × F2 generated by the images under δ′K
of all prime divisors of degree at most g. Then Jp = {ξ ∈ HK | (ξ, 0) ∈ J ′p}.

Proof. Recall that m is the divisor given by the sum of the two points
at infinity on C. Again from Riemann–Roch, every point P ∈ J(K) is rep-
resented by a K-rational divisor of the form D − n · m, where D is effec-
tive of degree 2n, and 2n ≤ g. (This uses the fact that g is even.) We
can write D as a sum of prime divisors of degrees at most g. Therefore,
δ′K(D − n ·m) = (δK(D), 0) ∈ J ′p. The converse is obvious.

Now we specialise to the case that K = Qp. We need some means to cut
down the work for the determination of Jp to a finite amount of computation.
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Lemma 6.3. Let {αj} denote the zeros of f in Qp, and let K be a finite
extension of Qp with p-adic absolute value | · |, which we extend to Qp. Let
x, x′ ∈ K.

(1) If |x − x′| < |4| · |x − αj | for all j, then f(x′) is a square in K if
and only if f(x) is a square in K. When this is the case, let P = (x, y) and
P ′ = (x′, y′) be points in C(K). Then δK(P ) = δK(P ′).

(2) If |x − αi| < |4| · |x − αj | for some i and all j 6= i, and P = (x, y)
is a point in C(K), then αi ∈ K, and δK(P ) = δK((αi, 0)).

(3) If |x| > |4|−1 and P = (x, y) is a point in C(K), then δK(P ) = 1.

Proof. For elements x, x′ ∈ R×, where R is some ring, we write x ∼R x′
if x/x′ ∈ (R×)2. We claim that for elements x, y, z ∈ K, we have

|x− y| < |4| · |x− z| ⇒ x− z ∼K y − z.
For the proof, we write y − z = (x− z)(1 + w) with |w| < |4|. Hence 1 + w
is a square, and the claim follows.

(1) The condition implies that x′−αj ∼K(αj) x−αj for all j. By Galois
theory, this means x′ − θ ∼LK x− θ. This already proves the second claim.
Taking norms, we see that f(x′) ∼K f(x). This proves the first claim.

(2) If x = αi, there is nothing to prove. Hence we assume that x 6= αi.
The condition implies first that αi ∈ K by Krasner’s Lemma (see [17, II,
Ex. 2.1]), and then that x− αj ∼K(αj) αi − αj for all j 6= i. Setting h(x) =
f(x)/(x− αi) = c

∏
j 6=i(x− αj), we also have

y2 = f(x) = (x− αi)h(x) ∼K(αi) (x− αi)h(αi).

This implies that x− αj ∼K(αj) (αi − αj) + h(αj) for all j and hence

δK(P ) ≡ x− θ ≡ (αi − θ) + h(θ) ≡ δK((αi, 0)) mod (L×K)2 or (L×K)2K×.

(3) The condition implies that y2 = f(x) ∼K cxn, where c is the leading
coefficient of f and n is its degree. When n is odd and c = 1, this means that
x is a square. Since all the αj are integral, the condition then also implies
that x− θ is a square in LK , whence δK(P ) = 1.

When n is even, we have in any case x− θ ∼LK x, and hence δK(P ) ≡
x ≡ 1 mod (L×K)2K×, since x ∈ K×.

Let K be some finite extension of Qp. Then the following diagram obvi-
ously commutes:

Div(C)(K) Div(C)(Qp)

HK Hp

δK

��

TrK/Qp//

δp

��NK/Qp //
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The upper horizontal map is the trace map, the lower horizontal map is
induced from the norm map K → Qp. In more down-to-earth terms, this
means the following. Suppose we have a prime divisor P ∈ Div(C)(Qp) of
degree d. Then there is a field extension K of Qp of degree d and a point
P = (x, y) ∈ C(K) such that P = TrK/Qp(P ). Let h be the characteristic
polynomial of x. Then the diagram tells us that δp(P) ≡ (−1)deg hh(θ).

By Lemmas 6.1 and 6.2, we have to take all extensions K of Qp of
degree at most g, and for each of them, we must find the image of C(K)
under δp TrK/Qp . In practice, we will stop as soon as the span of the values
has attained the right dimension. In order to save work, we will look at the
extensions of low degree first, in the hope that it will not be necessary to look
at high degree extensions at all. The following algorithm finds this image
for a given K, when p is odd. Let v : K× � Z be the normalised valuation,
let O be the integers of K, let π be a uniformiser, and let k = O/πO be the
residue field.

Input: f ∈ O[x], T ⊂ Hp

Output: T ∪ δp TrK/Qp(C(K))

delta(f, T, K) :
T := T ∪ {δp TrK/Qp((α, 0)) | α ∈ K with f(α) = 0};
return delta rec(f, 0, 1, T).

delta rec(f, ξ0, a, T) :
for ξ ∈ k:
fx := f(ξ) (∈ k);
if fx = 0 then
fx1 := f ′(ξ) (∈ k);
if fx1 = 0 then
ξ1 := lift(ξ, O);
if v(f(ξ1)) ≥ 2 then
T := delta rec( 1

π2 f(ξ1 + πx), ξ0 + aξ1, aπ, T);
else // fx 6= 0
if fx ∈ (k×)2 then
ξ1 := lift(ξ, O);
T := T∪{(−1)dcharpol(ξ0+aξ1)(θ) mod (L×p )2 or (L×p )2Q×p };

return T.

Why does this algorithm work? We claim that delta rec(fn, ξn, πn, T ),
where fn = π−2nf(ξn + πnx) ∈ O[x], adjoins to T all images δp TrK/Qp(P )
with P = (x, y) ∈ C(K) such that v(x − ξn) ≥ n, except possibly those
that are also images of (α, 0) for some zero α ∈ K of f . To see this, we
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first consider the else branch. Here, fn(ξ) is non-zero in k. If fn(ξ) is a
non-square in k, then there is no point in C(K) with x-coordinate satisfying
the condition. If fn(ξ) is a square in k, then all x satisfying the condition
give rise to points in C(K). It is easily verified that for any two such x, x′,
we have v(x − x′) > v(x − α) for all zeros α of f , hence by Lemma 6.3, δ
gives the same value on all of them. We find it for some representative x
and adjoin it to T .

If, on the other hand, fn(ξ) vanishes in k, we look at the derivative,
f ′n(ξ). If this does not vanish in k, then there is some zero α of f such that
every x such that (x − ξn)/πn ≡ ξ is nearer to α than to every other zero
of f . By Lemma 6.3 again, this implies that δ gives the same value on all
those x, and this value is the same as that it takes on (α, 0). Since we have
computed this value right at the beginning of the algorithm, we need not
include it at this point. If f ′n(ξ) does vanish in k, then it is easily seen that
fn(ξ1) mod π2 is independent of the representative ξ1 ∈ O of ξ ∈ k chosen.
When fn(ξ1) is not divisible by π2, then there is no point in C(K) with
x-coordinate satisfying the condition. Otherwise, we can rescale fn and set
fn+1(x) = π−2fn(ξ1 + πx) ∈ O[x] and call delta rec recursively. Since f is
square-free, this cannot go on indefinitely, and the algorithm terminates.

The case p = 2 is somewhat more involved, since we cannot decide
whether a unit is a square or not by just looking at its image in the residue
field. This means that we have to modify the else branch of delta rec ac-
cordingly. Essentially, we have to look at all lifts ξ̃ ∈ O/4πO of ξ and check if
f(ξ̃) is a square in O/4πO or not. The details are left to the reader. There is
also the additional complication that points with non-integral x-coordinate
can have non-trivial image under δ. This problem can be overcome by scaling
the variable of f in such a way that |α| ≤ |4| for all zeros α of f with respect
to the 2-adic absolute value; then the proof of Lemma 6.3 shows that points
with non-integral x-coordinate have trivial image under δ. Another possi-
bility is to look at delta rec 1(x2g+2f(1/x), 0, π, T ), where delta rec 1
is like delta rec, except that it takes the characteristic polynomial of the
reciprocal of ξ0 + aξ1.

In practice, we compute the image of δp or δ′p on prime divisors supported
on y = 0 at the very beginning and leave out the corresponding first step in
the algorithm above. When p is odd and there is no 4-torsion in J(Qp), then
this image will be all we need. Otherwise, we find the points on C defined
over extensions of Qp of increasing degree, keeping track of the subspace
of Hp or H ′p generated so far, until this subspace has reached the right
dimension.

When the field K is Galois over Qp, or more generally, when it has
non-trivial automorphisms, then we can save some time by considering only
one representative of each Aut(K/Qp)-orbit in K.
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One problem has still to be dealt with, and this is that we have to find all
extensions of a given degree d ≤ g of Qp. It is easy to find all tamely ramified
extensions (see for example Lang [9, §§II.4, 5] or Neukirch [12, §II.7]). It is
possible to find all the totally ramified extensions by classifying Eisenstein
polynomials (see Krasner [8]). Below, we list the fields in the cases p = d = 2
and p = d = 3. This is sufficient for the 2-descent procedure when the genus
is at most 3. Note that even for genus 2, it can be necessary to know the
ramified extensions of Q3 of degree 3, when one wants to determine the
parity of dimX(Q, J)[2]; see the next section.

The first result is straightforward, since every extension of degree 2 is
obtained by adjoining a suitable square root.

Lemma 6.4. There are six ramified extensions of Q2 of degree 2. They
are generated by roots of the following Eisenstein polynomials:

x2 + 2x+ 2, x2 + 2x− 2, x2 − 2, x2 + 2, x2 − 6, x2 + 6.

The case d = p = 3 requires more work, but is still fairly easily dealt
with. We leave the proof as an exercise for the interested reader.

Lemma 6.5. There are nine ramified extensions of Q3 of degree 3. They
are generated by roots of the following Eisenstein polynomials:

x3 − 3, x3 + 6, x3 − 12, x3 + 3x− 3, x3 − 3x− 3,
x3 − 3x2 − 3, x3 + 3x2 − 3, x3 + 3x2 + 6, x3 + 3x2 − 12.

If we do not want to find all these fields explicitly, for example when
the genus is fairly large and we would have to construct all wildly ramified
extensions of some Qp with p ≥ 5, we can use the following alternative
approach. Either systematically or randomly, we choose a monic polynomial
h ∈ Qp[x] of degree d ≤ g. This polynomial specifies an effective Qp-rational
divisor of degree d on P1. We then check whether this divisor is the image
of an effective Qp-rational divisor of degree d on C under the canonical map
C → P1. This is the case if the resultant with respect to the variable x of
the polynomials h(x) and y2 − f(x) has no irreducible factors in Qp[y] that
are polynomials in y2. In this case, the image of (−1)dh(θ) in Hp belongs
to Jp (in the odd degree case; a similar statement holds in the even degree
case). Lemma 6.3 shows that we can take h ∈ Zp[x] when p is odd, and it
gives bounds on the denominators of the coefficients when p = 2. From the
same lemma, we can also deduce an estimate for the precision we need in the
coefficients of h. The current implementation uses this approach and selects
the polynomials randomly. This has the disadvantage, however, that it is
possible that a generator of J(Qp)/2J(Qp) has to be found in a p-adically
tiny set, and it can take quite a long time to hit this set by chance. We
therefore plan to implement the systematic approach described in the main
part of this section.
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7. Odd and even Jacobians. We have now learned how to find the
size of the 2-Selmer group Sel(2)(Q, J) of the Jacobian J of a hyperelliptic
curve C. By the fundamental equality (see (1.1))

rankJ(Q) = dim Sel(2)(Q, J)− dimJ(Q)[2]− dimX(Q, J)[2],

this provides us with a bound on the Mordell–Weil rank of J(Q). The size
of the 2-torsion subgroup J(Q)[2] is easily determined from the degrees of
the irreducible factors of f in Q[x] (see Lemmas 4.4 and 5.7). On the other
hand, information on X(Q, J) is notoriously difficult to come by. Luckily,
in some cases it is possible to obtain a little bit of information, which then
allows us to lower the bound for the rank by one. This will be the subject
of this section. The main reference is Poonen and Stoll [14].

The relevant result for our purposes is the following.

Theorem 7.1. Let N be the number of places v of Q such that there
is no Qv-rational divisor of degree g − 1 on C. This can only occur for
v ∈ {2,∞} or v dividing the discriminant of f , hence N is a finite number.
If N is odd , then dimX(Q, J)[2] ≥ 1. Furthermore, if X(Q, J) is finite,
then N and the dimension of X(Q, J)[2] have the same parity.

Proof. See [14, Thm. 5, Thm. 8, Cor. 9, Thm. 11 and Cor. 12].

The places counted by N are called deficient for C.
The preceding theorem shows that when N is odd, we can reduce by

one the bound for the Mordell–Weil rank of J(Q) we have found from the
dimension of the 2-Selmer group. Furthermore, if X(Q, J) is finite, then the
difference between the improved bound and the actual rank is even. If N
is even, then we cannot improve our bound, and the difference between the
bound and the actual rank is again even, if X(Q, J) is finite.

We will now derive an algorithm that decides whether a place of Q is
deficient for C or not, where C is a hyperelliptic curve given by y2 = f(x)
as usual. Let us get rid of some trivial cases first.

If the curve has a Q-rational point, then there are Q-rational divisors of
every degree and hence no place can be deficient. This holds in particular
when f has odd degree, since then there is a Q-rational point at infinity.

Further, note that there are always Q-rational divisors of degree 2, for
example m. If g is odd, then g − 1 is even, and there are always Q-rational
divisors of degree g − 1. Hence there are no deficient places in this case.

We may therefore assume that g is even and that f has degree 2g + 2.
Then to have a Qv-rational divisor of degree g − 1 is equivalent to having
one of any odd degree, and this in turn is equivalent to having a point
on C defined over some extension of Qv of odd degree. By invoking the
Riemann–Roch Theorem, we can bound the degree by g+1. So we will need
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an algorithm determining whether there is some point on C defined over
such an extension.

Now suppose v is infinite. Then v is deficient if and only if C(R) = ∅,
which means that f has no real zeros and negative leading coefficient.

We may therefore assume that v = p is finite. A straightforward approach
is to try each of the extensions K of Qp of odd degree ≤ g + 1 and see if
there is a K-rational point on C. The following algorithm checks whether
there is a point in C(K) with integral x-coordinate. We let π denote a prime
element of K, and we let R ⊂ OK be a set of representatives of the residue
field k = OK/πOK . As usual, v denotes the normalised valuation of K.

haspoint(f,K,π,R) :
if f(0) = 0 then return TRUE;
if f(0) ∈ (K×)2 then return TRUE;
w := min(v(coeff(f,j)), j=1..deg(f));
if f(0) 6∈ ((OK/πwOK)×)2 then return FALSE;
for a ∈ R:
if haspoint(f(πx + a),K,π,R) then return TRUE;

return FALSE.

We simply call haspoint((πx)deg(f)f(1/(πx)),...) to check for points
with non-integral x-coordinate.

In practice, for g = 2, say, this makes sense to use for small primes, in
particular for p = 2, since the algorithm given below only works for odd
primes. If the prime is large, there are too many elements in the residue
field to check. For g = 2, p = 2, there are three fields to check (Q2, the
unramified extension of degree 3 and Q2(21/3)), which is fast enough.

To obtain a reasonably fast algorithm for large primes, we make use of
the following two lemmas. We consider the curve y2 = f(x) over a p-adic
field K with odd p. The Newton polygon of f is the lower convex hull of
the points (d, v(ad)) with 0 ≤ d ≤ deg f such that ad 6= 0, where ad is the
coefficient of xd in f(x). It is a sequence of line segments [(d,w), (d′, w′)]
(with d < d′), ordered by increasing d. The slope of the line segment above
is defined to be −(w′ − w)/(d′ − d).

Lemma 7.2. If f(0) = 0, then C has a K-rational point. Otherwise, let
P be the Newton polygon of f . If P has a segment of odd length, then C has
a point defined over an extension of K of odd degree. Otherwise, if one of
the coefficients of f corresponding to a vertex of P is a square in K, then
again C has a point defined over an extension of K of odd degree. Otherwise,
every point (ξ, η) defined over an extension of K of odd degree must have
v(ξ) equal to the slope of some segment of P ; in particular , the denominator
of this slope must be odd.
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Lemma 7.3. Write f = πnf0 with f0 ∈ OK [x] such that f0, its reduction
mod π, is non-zero. If n is even and f0 is not of the form ug2 with u ∈
k× \ (k×)2 and g ∈ k[x], then C has a point defined over an extension of K
of odd degree. Otherwise, every such point (ξ, η) must have v(f0(ξ)) > 0.

These lemmas, which are not difficult to establish, give rise to the fol-
lowing algorithm. def(f,K,π) determines whether the curve has a point
defined over an extension of K of odd degree. def1 looks for points with x-
coordinate of positive valuation, and def2 looks for points with x-coordinate
a unit.

def(f,K,π) :
return def1(f,K,π) or def2(f,K,π)

or def1(xdeg(f)f(1/x),K,π).

def1(f,K,π) :
if f(0) = 0 then return TRUE;
if f(0) ∈ (K×)2 then return TRUE;
P := newton polygon(f,π);
for all segments [(i1,j1),(i2,j2)] of P:
if j2 ≥ j1 then return FALSE;
// further segments correspond
// to solutions with non-positive valuation

if i2-i1 is odd then return TRUE;
// segment of odd length

if coeff(f,i2) ∈ (K×)2 then return TRUE;
s := -(j1-j2)/(i1-i2); d := denominator(s);
if d is odd then
for (K ′, π′) ∈ totally ramified extensions(K,π, d):
if def2(f((π′)d·sx),K ′,π′) then return TRUE;

return FALSE.

def2(f,K,π) :
n := valuation(f,π);
f := f/πn mod π;
u := leading coefficient(f);
F := factorisation(f);
if n is even

and (u ∈ (k×)2 or some factor in F has odd multiplicity)
then return TRUE;
for all factors h 6= x in F:
d := deg(h);
if d is odd then
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(K ′,π′) := unramified extension(K,π,d);
α := some element of OK′ reducing to a zero of h;
if def1(f(x+ α),K ′,π′) then return TRUE;

return FALSE.

The data (K ′, π, α) needed in def2 can be easily got as follows. Lift h
to a monic polynomial H ∈ OK [x] and set K ′ = K[T ]/(H(T )), π′ = π and
α = T .

The ramified extensions required in def1 are more difficult to deal with;
compare the discussion at the end of the preceding section. For example,
if g = 2, the degree is at worst three, and there are either one or three
such extensions if p 6= 3, depending on the existence of third roots of unity
in Qp. Since we already know that there must be a point over an extension
of degree three if there is any over an extension of odd degree, we can decide
in practice which of the extensions needs to be considered. If p = 3, the
situation is more difficult—there are 9 different totally ramified extensions
of degree 3 to consider (see Lemma 6.5).

A variant of this algorithm for the case g = 2 forms part of our implemen-
tation of the 2-descent algorithm. The program switches to the haspoint
algorithm when in def1 it is required to loop through all the ramified ex-
tensions of degree three where p = 3. This is reasonable, since the residue
field is small in this case.
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