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The q-Mellin transform of
automorphic forms and converse theorems

by

Mitsugu Mera (Fukuoka)

1. Introduction. It is well known in the classical Hecke theory that the
completed L-functions defined by a Mellin transform of automorphic forms
can be meromorphically continued to the whole complex plane C, and satisfy
a functional equation. Furthermore, we have the so-called converse theorems
established by Hecke [5] and Weil [10] which characterize the image of the
Mellin transform of automorphic forms. The purpose of this paper is to
establish q-analogues of the theory by replacing the Mellin transform with
the q-Mellin transform which is given by the Jackson integral (see, e.g., [2]).

Let 0 < q < 1. We call f : (0,∞)→ C a moderate asymptotic function of
order (i0, j0) if f is continuous, f(y) = O(yi0) as y → 0 and f(y) = O(yj0)
as y → ∞ for some i0, j0 ∈ R (i0 > j0). Then the q-Mellin transform
(Jackson–Mellin’s transform) of f is defined by

Mq(f)(s) :=
∞�

0

ys−1f(y) dqy =
∑
n∈Z

qn(s−1)f(qn)(qn − qn+1)

= (1− q)
∑
n∈Z

qnsf(qn)

for −i0 < Re(s) < −j0. It becomes the classical Mellin transform M(f)(s)
:=

	∞
0 ys−1f(y) dy when q → 1.
According to [4], when F is a full-modular form (i.e., a modular form for

SL(2,Z)), the q-series Λq(s, F ) defined by the q-Mellin transform of F has
a meromorphic continuation to C and satisfies a functional equation. This
is why it is a natural question whether a converse result can hold.

More generally, we describe properties of the q-Mellin transform of au-
tomorphic forms for congruence subgroups and determine their q-Mellin
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images. The classical converse theorem needs the Mellin inversion formula
in its proof, while the proof of the q-analogue of the converse theorem needs
an inversion formula for the q-Mellin transform. Note that the q-Mellin in-
version formula does not involve F (iy) for y 6= qn. Thus, in our proofs of
converse theorems, we need to assume analytic properties of Λq(s, F ) for
infinitely many q ∈ (0, 1).

The paper is organized as follows. In Section 2, we show properties of
the q-Mellin transform of automorphic forms for congruence groups. In Sec-
tion 3, we show two converse theorems which are the main results of this
paper. They correspond to the cases of full-modular forms and of automor-
phic forms for congruence groups. In Section 4, as an application, we recall
the q-analogue of the complete Riemann zeta function ζ(q)(s) introduced
in [3] and [4], and give two characterizations of the image of the q-Mellin
transform of the Jacobi theta function ϑ(z) :=

∑
m∈Z e

πim2z, which is an
automorphic form of weight 1/2 with a suitable multiplier system. Note
that ζ(q)(s) is given by the q-Mellin transform of ϑ(iy2)−1. In Appendix A,
we show another inversion formula. In Appendix B, we prove that ζ(q)(s)
actually gives a true q-analogue, that is, we show that the classical limit
q → 1 of ζ(q)(s) produces the complete Riemann zeta function not only for
Re(s) > 1 but for all s ∈ C.

Throughout this paper, we denote the field of complex numbers, that of
real numbers, the ring of rational integers and the set of positive integers by
C, R, Z and N respectively. Also, we denote the upper half-plane {z ∈ C |
Im(z) > 0} by H.

2. The q-Mellin transform of automorphic forms for congruence
groups. Let k,N ∈ N. Let

ωN :=
(

0 −1
N 0

)
,

and χ be a Dirichlet character modulo N with χ(±1) = (±1)k. Denote by
Mk(Γ0(N), χ) the space of holomorphic automorphic forms of weight k for
the congruence group

Γ0(N) :=
{
γ ∈ SL(2,Z)

∣∣∣∣ γ ≡ ( ∗ ∗0 ∗

)
(mod N)

}
with a character χ. Then we have the following:

Proposition 2.1. Let 0 < q < 1. Let F ∈Mk(Γ0(N), χ) and

(2.1) F (z) =
∑
n≥0

ane
2πinz (z ∈ H)
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be the Fourier expansion of F . Let G := F|ωN , where

F|ωN (z) := N−k/2z−kF (−(Nz)−1)

(which can be seen to belong to Mk(Γ0(N), χ)), and

(2.2) G(z) =
∑
n≥0

bne
2πinz (z ∈ H)

be the Fourier expansion of G. Define q-series Λq(s, F ) and Λq(s,G) by

Λq(s, F ) := (1− q)
{∑
n∈Z

qns
(
f

(
qn√
N

)
− a0

)
− f

(
1√
N

)}
,(2.3)

Λq(s,G) := (1− q)
{∑
n∈Z

qns
(
g

(
qn√
N

)
− b0

)
− g
(

1√
N

)}
(2.4)

for Re(s) > k, where f(y) := F (iy) and g(y) := G(iy) for y > 0. Then
Λq(s, F ) and Λq(s,G) can be analytically continued to meromorphic func-
tions on C,

Λq(s, F )
1− q

+
a0

1− qs
+

b0i
k

1− qk−s

and
Λq(s,G)

1− q
+

b0
1− qs

+
a0i
−k

1− qk−s

are entire, and they satisfy the functional equation

(2.5) Λq(s, F ) = ikΛq(k − s,G).

Proof. Since

(2.6) f

(
qn√
N

)
= ikq−nkg

(
q−n√
N

)
(n ∈ Z),

we get

Λq(s, F )
1− q

= ik
∑
n≥1

qn(s−k)
(
g

(
q−n√
N

)
− b0

)
+
∑
n≥1

q−ns
(
f

(
q−n√
N

)
− a0

)

− a0

1− qs
− b0i

k

1− qk−s

for Re(s) > k. Similarly,

Λq(s,G)
1− q

= i−k
∑
n≥1

qn(s−k)
(
f

(
q−n√
N

)
− a0

)
+
∑
n≥1

q−ns
(
g

(
q−n√
N

)
− b0

)

− b0
1− qs

− a0i
−k

1− qk−s
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for Re(s) > k. Since f(q−n/
√
N) − a0 =

∑
m≥1 ame

−2πmq−n/
√
N → 0 and

g(q−n/
√
N) − b0 =

∑
m≥1 bme

−2πmq−n/
√
N → 0 rapidly as n → ∞, all the

series on the right-hand sides above converge absolutely and uniformly for
s in any compact subset of C, whence they are entire. Hence Λq(s, F ) and
Λq(s,G) are meromorphic on C, and the other claims follow immediately.

Remark 2.2. When q → 1,

Λq(s, F )→ Λ(s, F ) :=
∞�

0

ys−1

(
F

(
iy√
N

)
− a0

)
dy =

(√
N

2π

)s
Γ (s)LF (s)

for Re(s) > k, where LF (s) :=
∑

n≥1 ann
−s (Re(s) > k).

More generally, we get the following result for twisted automorphic forms,
whose basic properties can be found in [1], [6].

Theorem 2.3. Let 0 < q < 1 and r ∈ N with (r,N) = 1. Let F ∈
Mk(Γ0(N), χ) and G := F|ωN ∈ Mk(Γ0(N), χ) have Fourier expansions
(2.1), (2.2). Let ψ be a primitive Dirichlet character modulo r and τ(ψ) :=∑r

m=1 ψ(m)e2πim/r be the Gauss sum. Put w(ψ) := χ(r)ψ(N)τ(ψ)2r−1 and
M := Nr2. Let Fψ, Gψ be the twisted series

Fψ(z) :=
∑
n≥0

ψ(n)ane2πinz (z ∈ H),(2.7)

Gψ(z) :=
∑
n≥0

ψ(n)bne2πinz (z ∈ H).(2.8)

Define q-series Λq(s, Fψ) and Λq(s,Gψ) by

Λq(s, Fψ) := (1−q)
{∑
n∈Z

qns
(
fψ

(
qn√
M

)
−ψ(0)a0

)
−fψ

(
1√
M

)}
,(2.9)

Λq(s,Gψ) := (1−q)
{∑
n∈Z

qns
(
gψ

(
qn√
M

)
−ψ(0)b0

)
−gψ

(
1√
M

)}
(2.10)

for Re(s) > k, where fψ(y) := Fψ(iy) and gψ(y) := Gψ(iy) for y > 0.
Then Λq(s, Fψ) and Λq(s,Gψ) can be analytically continued to meromorphic
functions on C,

Λq(s, Fψ)
1− q

+
ψ(0)a0

1− qs
+
w(ψ)ψ(0)b0ik

1− qk−s
and

Λq(s,Gψ)
1− q

+
ψ(0)b0
1− qs

+
w(ψ)−1ψ(0)a0i

−k

1− qk−s
are entire, and they satisfy the functional equation

(2.11) Λq(s, Fψ) = ikw(ψ)Λq(k − s,Gψ).
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Proof. We can see that Fψ ∈ Mk(Γ0(M), χψ2), Gψ ∈ Mk(Γ0(M), χψ2)
and (Fψ)|ωM = w(ψ)Gψ. In particular,

fψ(qn/
√
M) = w(ψ)ikq−nkgψ(q−n/

√
M).

Hence, as in the proof of Proposition 2.1, we get
Λq(s, Fψ)

1− q
= w(ψ)ik

∑
n≥1

qn(s−k)
(
gψ

(
q−n√
M

)
− ψ(0)b0

)

+
∑
n≥1

q−ns
(
fψ

(
q−n√
M

)
− ψ(0)a0

)
− ψ(0)a0

1− qs
− w(ψ)ψ(0)b0ik

1− qk−s
,

Λq(s,Gψ)
1− q

= w(ψ)−1i−k
∑
n≥1

qn(s−k)
(
fψ

(
q−n√
M

)
− ψ(0)a0

)

+
∑
n≥1

q−ns
(
gψ

(
q−n√
M

)
−ψ(0)b0

)
−ψ(0)b0

1− qs
−w(ψ)−1ψ(0)a0i

−k

1− qk−s

for Re(s) > k. This shows our claims.

Remark 2.4. If r ≥ 2, then ψ(0) = 0, whence Λq(s, Fψ) and Λq(s,Gψ)
are entire. If r = 1, then ψ = 1, whence Theorem 2.3 yields Proposition 2.1.

3. Converse theorems to Theorem 2.3. We show here converse the-
orems which are the main results of this paper. We begin with the simple
case of Γ0(1) = SL(2,Z). Actually, it corresponds to a corollary of Theo-
rem 3.4.

3.1. The case of SL(2,Z)

Theorem 3.1. Let k be a non-negative even integer. Suppose F is given
by the Fourier series

F (z) :=
∑
n≥0

ane
2πinz (z ∈ H)

with |an| = O(nα) as n→∞ for some α > 0. Let f(y) := F (iy) for y > 0.
Let {qj}∞j=1 ⊂ (0, 1) be a sequence which has a limit point in (0, 1]. For any
q ∈ {qj}∞j=1, assume the following :

(I) The function

Λq(s, F ) := (1− q)
{∑
n∈Z

qns(f(qn)− a0)− f(1)
}

can be analytically continued to a meromorphic function on C such
that

Λq(s, F )
1− q

+ a0

(
1

1− qs
+

i−k

1− qk−s

)
is entire. (We do not assume its boundedness in vertical strips.)
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(II) Λq(s, F ) satisfies the functional equation

Λq(s, F ) = i−kΛq(k − s, F ).

Then F ∈ Mk(SL(2,Z)). In particular , if a0 = 0, then F ∈ Sk(SL(2,Z)),
the space of cusp forms.

To prove this theorem, we need the following lemma, which gives an
inversion formula for the q-Mellin transform.

Lemma 3.2. Let 0 < q < 1. Let f : (0,∞)→ C be a moderate asymptotic
function of order (i0, j0). Then

f(qn) = − log q
1− q

· 1
2πi

σ−iπ/log q�

σ+iπ/log q

Mq(f)(s)q−ns ds(3.1)

= −q
−nσ log q

2π(1− q)

−π/log q�

π/log q

Mq(f)(σ + it)q−int dt

for −i0 < σ < −j0 and n ∈ Z.

Proof. Since for −i0 < σ < −j0 and t ∈ R we have

Mq(f)(σ + it) = (1− q)
∑
n∈Z

qn(σ+it)f(qn) =
∑
n∈Z

(1− q)qnσf(qn)e2πin·
t log q

2π ,

we get

(1− q)qnσf(qn) =
1/2�

−1/2

Mq(f)
(
σ + i · 2πt

log q

)
e−2πint dt

= − log q
2π

−π/log q�

π/log q

Mq(f)(σ + it)q−int dt

for −i0 < σ < −j0 and n ∈ Z. Hence the lemma follows.

Remark 3.3. A result similar to Lemma 3.2 is also given in [2, Theo-
rem 2].

Proof of Theorem 3.1. Since F (z) =
∑

n≥0 ane
2πinz, we have F (z+1) =

F (z) for z ∈ H. So it is sufficient to show that

(3.2) F (−z−1) = zkF (z)

for z ∈ H. Since |an| = O(nα) as n → ∞, the series F (z) =
∑

n≥0 ane
2πinz

converges absolutely and uniformly for z in any compact subset of H, whence
it is holomorphic on H. So it is sufficient to show (3.2) for z = iy with y > 0
by analytic continuation. Note that f(y) − a0 is a moderate asymptotic
function of order (−α− 1, ∗), where ∗ means any j0 ∈ R with j0 < −α− 1.
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Actually, it is clear that f(y)− a0 = O(e−2πy) as y →∞. Also, since

Γ (α+ 1) = lim
n→∞

nαn!
(α+ 1) · · · (α+ n)

= lim
n→∞

nα · (−1)n
(
−α− 1
n

)−1

,

we have

|f(y)− a0| ≤
∑
n≥1

|an|e−2πny ≤ Cα
∑
n≥0

(
−α− 1
n

)
(−e−2πy)n

= Cα(1− e−2πy)−α−1

for some Cα > 0. This means that f(y) − a0 = O(y−α−1) as y → 0. Hence
f(qn)−a0 = O(q−n(α+1)) as n→∞ and f(qn)−a0 =

∑
m≥1 ame

−2πmqn → 0
rapidly as n → −∞. Therefore, the series

∑
n∈Z q

ns(f(qn) − a0) converges
absolutely on Re(s) > α+ 1. Put

g(y) := f(y)− (iy)−kf(y−1) = F (iy)− (iy)−kF (−(iy)−1)

for y > 0. It is sufficient to show that g(y) ≡ 0 for y > 0. We may assume
that α > k − 1. We apply Lemma 3.2 to q ∈ {qj}∞j=1 and f(y)− a0. By (I),
(II), Cauchy’s theorem and the 2πi

log qZ-periodicity of Λq(s, F ), for n ∈ Z\{0}
and a fixed σ0 with σ0 > α+ 1 we get

f(qn)− a0 = − log q
1− q

· 1
2πi

σ0−iπ/log q�

σ0+iπ/log q

(Λq(s, F ) + (1− q)f(1))q−ns ds

= − log q
1− q

· i
−k

2πi

{ k−σ0−iπ/log q�

k−σ0+iπ/log q

Λq(k − s, F )q−ns ds

+
σ0�

k−σ0

Λq

(
k − σ + i

π

log q
, F

)
q−n(σ−iπ/log q) dσ

−
σ0�

k−σ0

Λq

(
k − σ − i π

log q
, F

)
q−n(σ+iπ/log q) dσ

+ 2πi(Res
s=0

Λq(k − s, F )q−ns + Res
s=k

Λq(k − s, F )q−ns)
}

= − log q
1− q

· i
−k

2πi

{ σ0−iπ/log q�

σ0+iπ/log q

Λq(s, F )q−n(k−s) ds

+ (−1)n
σ0�

k−σ0

(
Λq

(
k − σ + i

π

log q
, F

)
− Λq

(
k − σ − i π

log q
, F

))
q−nσ dσ

+ 2πi · 1− q
log q

a0(ik − q−nk)
}

= (iqn)−k(f(q−n)− a0) + a0((iqn)−k − 1) = (iqn)−kf(q−n)− a0.
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This means that g(qn) = 0 for q ∈ {qj}∞j=1 and n ∈ Z \ {0}. In particular,
as n = 1, we have g(qj) = 0 (j = 1, 2, . . .). Since F is holomorphic on H
and f(y) = F (iy), f is holomorphic as a function on Re(y) > 0, and so is g.
Hence we obtain g(y) ≡ 0 for y > 0 by the unicity theorem. This completes
the proof.

3.2. The case of Γ0(N)

Theorem 3.4. Let k,N ∈ N. Let ωN :=
(
0 −1
N 0

)
, and χ be a Dirichlet

character modulo N with χ(±1) = (±1)k. Suppose F and G are given by the
Fourier series (2.1), (2.2) with |an|, |bn| = O(nα) as n→∞ for some α > 0.
Let f(y) := F (iy) and g(y) := G(iy) for y > 0. Let {qj}∞j=1 ⊂ (0, 1) be a
sequence which has a limit point in (0, 1]. For any q ∈ {qj}∞j=1, assume that
Λq(s, F ) and Λq(s,G) defined by (2.3), (2.4) can be analytically continued
to meromorphic functions on C such that

Λq(s, F )
1− q

+
a0

1− qs
+

b0i
k

1− qk−s

and
Λq(s,G)

1− q
+

b0
1− qs

+
a0i
−k

1− qk−s

are entire, and satisfy the functional equation (2.5). Furthermore, put

P(N) :=
⋃
a,c∈N

(a,c)=1

P(N)
a,c ,

where P(N)
a,c := {p ∈ N | p is a prime number such that (p,N) = 1, p ≡ a

(mod c)}. For any p ∈ P(N) and any primitive Dirichlet character ψ mod-
ulo p, put M := Np2, τ(ψ) :=

∑p
m=1 ψ(m)e2πim/p (the Gauss sum), and

w(ψ) := χ(p)ψ(N)τ(ψ)2p−1, and let Fψ, Gψ be the twisted series (2.7), (2.8).
Let fψ(y) := Fψ(iy) and gψ(y) := Gψ(iy) for y > 0. Let {qj(ψ)}∞j=1 ⊂ (0, 1)
be a sequence which has a limit point in (0, 1]. For any q ∈ {qj(ψ)}∞j=1,
assume that Λq(s, Fψ) and Λq(s,Gψ) defined by (2.9), (2.10) can be analyti-
cally continued to entire functions and satisfy the functional equation (2.11).
Then F ∈Mk(Γ0(N), χ), G ∈Mk(Γ0(N), χ) and G = F|ωN .

We use the following lemma:

Lemma 3.5 (see [6, Lemma 7.10]). Let p1, p2 be prime numbers with
(p1p2, N) = 1. Put M := Np2 with p = p1 or p2. Suppose F , G given by
the Fourier series (2.1), (2.2) satisfy G = F|ωN and (Fψ)|ωM = w(ψ)Gψ
for any primitive Dirichlet character ψ modulo p with the constant w(ψ)
:= χ(p)ψ(N)τ(ψ)2p−1, where Fψ(z) :=

∑
n≥0 ψ(n)ane2πinz and Gψ(z) :=∑

n≥0 ψ(n)bne2πinz are the twisted series and τ(ψ) :=
∑p

m=1 ψ(m)e2πim/p is
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the Gauss sum. Then

G|γ = χ(p2)G for any γ =
(

p1 v

uN p2

)
∈ Γ0(N) (u, v ∈ Z),

where

G|γ(z) := (cz + d)−kG
(
az + b

cz + d

)
if γ =

(
a b

c d

)
∈ Γ0(N).

Proof of Theorem 3.4. First we show that G = F|ωN . Note that f(y)−a0

and g(y) − b0 are moderate asymptotic functions of order (−α − 1, ∗). We
may assume that α > k−1. It is easy to see that F and G are holomorphic on
H, and the series

∑
n∈Z q

ns(f(qn/
√
N)− a0) and

∑
n∈Z q

ns(g(qn/
√
N)− b0)

converge absolutely for Re(s) > α+ 1. Put

h(y) := f

(
y√
N

)
− iky−kg

(
1√
Ny

)
= iky−k

{
F|ωN

(
i√
Ny

)
−G

(
i√
Ny

)}
for y > 0. It is sufficient to show that h(y) ≡ 0 for y > 0. By applying
Lemma 3.2 to q ∈ {qj}∞j=1, f(y)− a0 and g(y)− b0 and imitating the proof
of Theorem 3.1, we obtain h(qn) = 0 for all q ∈ {qj}∞j=1 and n ∈ Z \ {0}. In
particular, as n = 1, we have h(qj) = 0 (j = 1, 2, . . .). Hence h(y) ≡ 0 for
y > 0 by holomorphy of F , G on H and the unicity theorem.

Next we show the automorphy of F , G by using Lemma 3.5. We have G =
F|ωN (which is equivalent to F = (−1)kG|ωN ). Moreover, by considering Fψ,
w(ψ)Gψ and M instead of F , G and N respectively, we also get (Fψ)|ωM =
w(ψ)Gψ. So it is sufficient to show the automorphy of either F or G. We
show the latter, i.e.,

G|γ = χ(d)G if γ =
(
a b

c d

)
∈ Γ0(N).

When c = 0, since G(z+ 1) = G(z) for z ∈ H by the Fourier series (2.2), we
get

G|(±1 b
0 ±1 )(z) = (±1)−kG(z ± b) = (±1)kG(z) = χ(±1)G(z).

When c 6= 0, we have |c| ∈ N, c ≡ 0 (mod N) and (ad, c) = 1. If G|( a b
c d

) =
χ(d)G, then

G|(−a −b−c −d ) = (−1)kG|( a b
c d

) = χ(−1)χ(d)G = χ(−d)G.

So we may assume that c > 0. Note that for any a, c ∈ N with (a, c) = 1, P(N)
a,c

is a countably infinite set (by Dirichlet’s theorem on primes in an arithmetic
progression). Hence, choose m1,m2 ∈ N∪{0} such that a+cm1, d+cm2 > 0,
and prime numbers p1, p2 such that p1 ∈ P(N)

a+cm1,c, p2 ∈ P(N)
d+cm2,c

. This
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means that p1, p2 can be written as p1 = a + ct1, p2 = d + ct2 (t1, t2 ∈ Z).
Then

γ =
(
a b

c d

)
=
(

1 −t1
0 1

)(
p1 v

uN p2

)(
1 −t2
0 1

)
with u := c/N ∈ Z and v := b+p1t2+p2t1−ct1t2 ∈ Z. Hence, by Lemma 3.5,

G|γ = G|( 1 −t1
0 1

)(
p1 v
uN p2

)( 1 −t2
0 1

) = χ(1)G|( p1 v
uN p2

)( 1 −t2
0 1

)

= 1 · χ(p2)G|( 1 −t2
0 1

) = χ(p2 − t2uN) · χ(1)G = χ(d)G.

4. An application to the Jacobi theta function

4.1. A q-analogue ζ(q)(s) of the Riemann zeta function. We recall the
q-analogue of the complete Riemann zeta function ζ(q)(s) introduced in [3]
and [4]. Let 0 < q < 1. Put θ(y) := ϑ(iy) =

∑
m∈Z e

−πm2y (y > 0) and
φ(y) := θ(y2) (y > 0), where ϑ(z) :=

∑
m∈Z e

πim2z (z ∈ H) is the Jacobi
theta function. Since θ(y−1) =

√
y θ(y), φ(y) − 1 is a moderate asymptotic

function of order (−1, ∗) (φ(y)− 1 = O(e−πy
2
) as y →∞). Then ζ(q)(s) can

be obtained by the q-Mellin transform of φ(y)− 1, i.e.,

ζ(q)(s) := Mq(φ− 1)(s) = (1− q)
∑
n∈Z

qns(φ(qn)− 1)

= (1− q)
∑
n∈Z

qns
∑
m 6=0

e−πm
2q2n

for Re(s) > 1. Note that ζ(q)(s) tends to the complete Riemann zeta function
as q → 1, i.e.,

ζ(q)(s)→
∞�

0

ys−1(θ(y2)− 1) dy = π−s/2Γ

(
s

2

)
ζ(s) (Re(s) > 1).

Since
ζ(q)(s)
1− q

=
∑
m∈Z

e−πm
2

+
∑
n≥1

(q−ns + q−n(1−s))
∑
m 6=0

e−πm
2q−2n

− 1
1− qs

− 1
1− q1−s

,

ζ(q)(s) can be analytically continued to a meromorphic function on C. More
precisely,

(4.1)
ζ(q)(s)
1− q

+
1

1− qs
+

1
1− q1−s

is entire and satisfies the functional equation

(4.2) ζ(q)(1− s) = ζ(q)(s).
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4.2. A characterization of q-Mellin’s image of the theta function. In this
subsection, we show that the only moderate asymptotic function which gives
the meromorphy as in (4.1) and the functional equation (4.2) under some
reasonable conditions is given by θ(y2) − 1 (y > 0). The idea of the proof
is the same as for Theorem 3.1. Note that, in the classical case, we have a
similar description of the Riemann zeta function (due to Hamburger, see [8]).

Theorem 4.1. Let

F (z) :=
∑
n≥0

ane
πin2z (z ∈ H)

with |an| = O(nβ) as n → ∞ for some 0 < β < 1. Let f(y) := F (iy) for
y > 0. Let {qj}∞j=1 ⊂ (0, 1) be a sequence which has a limit point in (0, 1].
For any q ∈ {qj}∞j=1, assume the following :

(I) The function

Lq(f)(s) := (1− q)
∑
n∈Z

qns(f(q2n)− a0)

can be analytically continued to a meromorphic function on C such
that

Lq(f)(s)
1− q

+
1

1− qs
+

1
1− q1−s

is entire.

(II) Lq(f)(s) satisfies the functional equation

Lq(f)(1− s) = Lq(f)(s).

Then an = 2 for n = 1, 2, . . . . In particular , if a0 = 1, then F (z) = ϑ(z)
and f(y) = θ(y). In other words, Lq(f)(s) agrees essentially with ζ(q)(s).

Proof. The function f(y2)−a0 is a moderate asymptotic function of order
(−2(β + 1), ∗). By applying Lemma 3.2 to q ∈ {qj}∞j=1, f(y2) − a0 and
σ > 2(β + 1) and imitating the proof of Theorem 3.1, we have

(4.3) f(q2n)− a0 = q−n(f(q−2n)− a0) + q−n − 1 (n ∈ Z)

for q ∈ {qj}∞j=1. Hence

(4.4) f(y)− a0 =
1
√
y

(f(y−1)− a0) +
1
√
y
− 1 (y > 0)

by the holomorphy of F on H and the unicity theorem. We multiply this
by e−πt

2y (t > 0) and integrate over y ∈ (0,∞). From the left-hand side of
(4.4), we get

∞�

0

(f(y)− a0)e−πt
2y dy =

∑
n≥1

an
π(t2 + n2)



188 M. Mera

for t > 0, where the series on the right-hand side converges absolutely since
|an| = O(nβ) as n→∞ (β < 1). From the right-hand side of (4.4), we get
∞�

0

{
1
√
y

(f(y−1)− a0) +
1
√
y
− 1
}
e−πt

2y dy =
1
t

∑
n≥1

ane
−2πnt +

1
t
− 1
πt2

for t > 0. Hence∑
n≥1

an

(
1

t+ in
+

1
t− in

)
− 2π +

2
t

= 2π
∑
n≥1

ane
−2πnt (t > 0).

The series on the left-hand side is a meromorphic function on C and has
simple poles at t = ±in with residues an (n = 1, 2, . . .). Since the series
on the right-hand side is an iZ-periodic function, so is the function on the
left-hand side. In particular, all the residues at t = ±in (n = 1, 2, . . .) are
equal to the residue at t = 0. Hence an = 2 for n = 1, 2, . . . .

4.3. Remarks on a q-Mellin image. From the previous study, one finds
that the essential problem is whether (4.4) follows from (4.3) with a fixed
q ∈ (0, 1).

Let us consider the following subset of (0, 1):

(4.5) Y :=
⋂
j≥0

⋃
n≥1

Yj,n,

where

Yj,n :=
⋃

m1,m2≥0
m1 6=m2

{y ∈ (0, 1) | (πny2m1 , πny2m2) ∈ Xj} (j ∈ N∪{0}, n ∈ N)

and

Xj :=
⋂

a1,a2≥0

{(x1, x2) ∈ R2
>0 | e2jx1 cosh((2a1+1)x1) 6= e2jx2 cosh((2a2+1)x2)}

(j ∈ N ∪ {0}) with R2
>0 := {(x1, x2) ∈ R2 | x1, x2 > 0}. The set Y plays

an important role in Lemma 4.6 below. We have the following proposition
about Y.

Proposition 4.2. The set Y defined by (4.5) has infinitely many ele-
ments.

To prove this, we first show the following lemma.

Lemma 4.3. There does not exist any (a, b, c, d) ∈ Z4 such that

2 ≤ eaπ/2 + ebπ/2

ecπ/2 + edπ/2
≤ 1

2
eπ/2.
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Proof. Suppose that a, b, c, d ∈ R satisfy these inequalities. We may as-
sume that a ≥ b and c ≥ d. Then

2 ≤ eaπ/2 + ebπ/2

ecπ/2 + edπ/2
<
eaπ/2 + ebπ/2

ecπ/2
= e(a−c)π/2 + e(b−c)π/2 ≤ 2e(a−c)π/2.

It follows that c < a. Also,

eaπ/2 < eaπ/2 + ebπ/2 ≤ 1
2
eπ/2(ecπ/2 + edπ/2) ≤ 1

2
eπ/2(ecπ/2 + ecπ/2)

= e(c+1)π/2.

Hence a < c+ 1. Thus, c < a < c+ 1, so that (a, c) 6∈ Z2.

Proof of Proposition 4.2. From Lemma 4.3, it follows that

(4.6) e2πj cosh((2a1 + 1)π) 6= eπj/2 cosh
(

(2a2 + 1)
π

4

)
(j, a1, a2 ∈ N ∪ {0}).

Actually, 2 < eπ/4 < eπ/2/2 and (4.6) is equivalent to

e(4a1+2+3j)π/2 + e−(4a1+2−3j)π/2

ea2π/2 + e−(a2+1)π/2
6= eπ/4 (j, a1, a2 ∈ N ∪ {0}).

Hence (π, π/4) ∈ Xj for j ∈ N ∪ {0}. Thus,

{2−1, 2−1/2, 2−1/3, . . .} ⊂ Yj,1
for all j ∈ N ∪ {0}. Therefore,

Y =
⋂
j≥0

⋃
n≥1

Yj,n ⊃ {2−1, 2−1/2, 2−1/3, . . .}.

Remark 4.4. Since the function cosh(y) = (ey+e−y)/2 is increasing for
y > 0, we have

X0 =
⋂

a1,a2≥0

{
(x1, x2) ∈ R2

>0

∣∣∣∣x1 6=
2a2 + 1
2a1 + 1

x2

}
,

and therefore

Y0,n =
⋃
m≥1

⋂
a1,a2≥0

{
y ∈ (0, 1)

∣∣∣∣ y 6= (2a2 + 1
2a1 + 1

)1/2m}
(n ∈ N),

which does not depend on n. Hence

Y ⊂
⋃
n≥1

Y0,n =
⋃
m≥1

⋂
a1,a2≥0

{
y ∈ (0, 1)

∣∣∣∣ y 6= (2a2 + 1
2a1 + 1

)1/2m}
.

Therefore, for example, 3−1/2, 5−1/2, 7−1/2, . . . 6∈ Y.

Now we give a characterization for a fixed q.
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Theorem 4.5. Let F (z) :=
∑

n≥0 ane
πin2z (z ∈ H) with |an| = O(nβ)

as n → ∞ for some β > 0. Let f(y) := F (iy) for y > 0. Take q ∈ (0, 1).
For this q, assume (I) and (II) in Theorem 4.1 hold. Then

f(q2n)− a0 = q−n(f(q−2n)− a0) + q−n − 1 (n ∈ Z).

If q ∈ Y and f(q2m) = θ(q2m) (m = 0, 1, . . .), then f(y) = θ(y) (y > 0),
whence F (z) = ϑ(z) (z ∈ H).

To prove this theorem, we need the following lemma.

Lemma 4.6. Let F (z) :=
∑

n≥0 ane
πin2z and G(z) :=

∑
n≥0 bne

πin2z

converge absolutely for z ∈ H. Take q ∈ Y. Assume that F (iq2m) = G(iq2m)
for m = 0, 1, . . . . Then an = bn for n = 0, 1, . . . , i.e., F (z) ≡ G(z) (z ∈ H).

Proof. Put

A :=
{

(c0, c1, . . .) ∈
∏
n≥0

C
∣∣∣ ∑
n≥0

cne
−πn2q2m = 0 for m = 0, 1, . . .

}
.

It is sufficient to show that A = {(0, 0, . . .)}. It is clear that (0, 0, . . .) ∈ A.
For m ∈ N ∪ {0}, put

Am :=
{

(c0m, c1m, . . .) ∈
∏
n≥0

C
∣∣∣ ∑
n≥0

cnme
−πn2q2m = 0

}
.

Note that A =
⋂
m≥0Am. It is well known that the (general) theta function

ϑ(z, τ) :=
∑
n∈Z

eπin
2τ+2πinz

converges absolutely for (z, τ) ∈ C×H and its zeros are {z ∈ C | ϑ(z, τ) = 0}
= {(a+ 1/2)τ + (b+ 1/2) | a, b ∈ Z} for τ ∈ H, by the Jacobi triple product
formula

ϑ(z, τ) =
∏
n≥1

(1− e2πinτ )(1 + e(2n−1)πiτ+2πiz)(1 + e(2n−1)πiτ−2πiz).

In particular, when τ = iq2m (m ∈ N ∪ {0}), the zeros of ϑ(z, iq2m) =
1 + 2

∑
n≥1 cos(2πnz)e−πn

2q2m are z = (a+ 1/2)iq2m + (b+ 1/2) (a, b ∈ Z).
This means that

(4.7)
{

(c1m, c2m, . . .) ∈
∏
n≥1

C
∣∣∣ 1 +

∑
n≥1

cnme
−πn2q2m = 0

}
=
⋃
a≥0

{
(c1m, c2m, . . .) ∈

∏
n≥1

C
∣∣∣∣ cnm = 2(−1)n cosh

(
2πn

(
a+

1
2

)
q2m

)}
because the maps C 3 z 7→ 2 cos(2πnz) ∈ C (n = 1, 2, . . .) are surjec-
tive. Now fix m ∈ N ∪ {0} and suppose that

∑
n≥0 cnme

−πn2q2m = 0 with
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(c0m, c1m, . . .) 6= (0, 0, . . .). We put j := min{n ∈ N ∪ {0} | cnm 6= 0}. Then
c0m = · · · = cj−1,m = 0 and

0 =
∑
n≥j

cnme
−πn2q2m =

∑
n≥0

cn+j,me
−π(n+j)2q2m

= cjme
−πj2q2m

∑
n≥0

cn+j,m

cjm
e−2πjnq2me−πn

2q2m .

Hence

1 +
∑
n≥1

cn+j,m

cjm
e−2πjnq2m · e−πn2q2m = 0.

From (4.7), it follows that

cn+j,m ∈ {cjme2πjnq
2m · 2(−1)n cosh(2πn(a+ 1/2)q2m) | a ∈ N ∪ {0}}

(n = 1, 2, . . .).

Therefore,

Am = {(0, 0, . . .)} ∪
⋃
a,j≥0

Bj
m,a (m ∈ N ∪ {0}),

where

Bj
m,a :=

{
(c0m, c1m, . . .) ∈

∏
n≥0

C
∣∣∣ c0m = · · · = cj−1,m = 0, cjm 6= 0,

cn+j,m = cjme
2πjnq2m · 2(−1)n cosh(2πn(a+ 1/2)q2m) (n = 1, 2, . . .)

}
.

It is sufficient to show that
⋂
m≥0

⋃
a,j≥0B

j
m,a = ∅. It is clear that Bj1

m1,a1 ∩
Bj2
m2,a2 = ∅ for any m1,m2, a1, a2, j1, j2 ∈ N ∪ {0} with j1 6= j2. Hence, it is

sufficient to show that

(4.8)
⋂
m≥0

⋃
a≥0

Bj
m,a = ∅ (j = 0, 1, . . .).

Note that (4.8) is equivalent to⋂
m≥0

⋃
a0,...,am≥0

(Bj
0,a0
∩ · · · ∩Bj

m,am) = ∅ (j = 0, 1, . . .).

This means that for j = 0, 1, . . . , there exists m = m(j) ∈ N∪{0} such that
Bj

0,a0
∩· · ·∩Bj

m,am = ∅ for any a0, . . . , am ∈ N∪{0}. Therefore, it is sufficient
to show that for j = 0, 1, . . . , there exist m1,m2 ∈ N ∪ {0} (m1 6= m2) such
that Bj

m1,a1 ∩ B
j
m2,a2 = ∅ for any a1, a2 ∈ N ∪ {0}. We have the following

expression:
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Bj
m1,a1

∩Bj
m2,a2

=
{

(c0, c1, . . .) ∈
∏
n≥0

C
∣∣∣ c0 = · · · = cj−1 = 0, cj 6= 0,

cn+j = cje
2πjnq2m1 · 2(−1)n cosh(πn(2a1 + 1)q2m1)

= cje
2πjnq2m2 · 2(−1)n cosh(πn(2a2 + 1)q2m2) (n = 1, 2, . . .)

}
.

Hence the assertion follows immediately from the definition of Y.

Remark 4.7. Since the sequence {iq2m}∞m=0 does not have any limit
points in H, we cannot use the unicity theorem.

Proof of Theorem 4.5. The first statement follows as in the proof of
Theorem 3.1. Note that θ(y) = 1 + 2

∑
m≥1 e

−πm2y satisfies

θ(y)− 1 =
1
√
y

(θ(y−1)− 1) +
1
√
y
− 1 for y > 0.

In particular,

θ(q2n)− 1 = q−n(θ(q−2n)− 1) + q−n − 1 (n ∈ Z).

Hence, if q ∈ Y and f(q2m) = θ(q2m) (m = 0, 1, 2, . . .), then a0 = 1 and
f(y) = θ(y) (y > 0) by Lemma 4.6.

Finally, we obtained two characterizations, in Theorems 4.1 and 4.5.
Note that Theorem 4.1 requires a strong assumption on q, and Theorem 4.5
on f . It seems difficult to combine the two theorems.

A. Appendix—An inversion formula. In this appendix, we show
an inversion formula which is different from (3.1). It gives a generalization
of the classical Mellin inversion formula in terms of the q-Mellin transform.

Proposition A.1. Let 0 < q < 1. Let f : (0,∞) → C be a moderate
asymptotic function of order (i0, j0). Put

MN
q (f)(s) := −1− q

log q

∑
|n|≤N

M(f)
(
s+

2πin
log q

)
for −i0 < Re(s) < −j0 and N ∈ N ∪ {0}, where M(f)(s) =

	∞
0 ys−1f(y) dy.

Fix σ with −i0 < σ < −j0. Then

(A.1) f(y)

=



− log q
1− q

· 1
2N + 1

· 1
2πi

σ+i∞�

σ−i∞
MN
q (f)(s)y−s ds if y = qn (n ∈ Z),

− log q
1− q

·
sin
(
π log y

log q

)
sin
(
(2N + 1)π log y

log q

) · 1
2πi

σ+i∞�

σ−i∞
MN
q (f)(s)y−s ds

if y 6= qn/(2N+1) (n ∈ Z),
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for y > 0 and N ∈ N ∪ {0}. Moreover , if the sum MN
q (f)(σ + it) converges

absolutely and uniformly for t in any compact subset of R as N →∞, then

lim
N→∞

MN
q (f)(σ + it) = Mq(f)(σ + it) (t ∈ R),

where Mq(f)(s) = (1− q)
∑

n∈Z q
nsf(qn).

Proof. For y>0 and N ∈N ∪ {0} we have
σ+i∞�

σ−i∞
MN
q (f)(s)y−s ds

= −1− q
log q

∑
|n|≤N

σ+i∞�

σ−i∞
M(f)

(
s+

2πin
log q

)
y−s ds

= −1− q
log q

∑
|n|≤N

y
i 2πn
log q

σ+i∞�

σ−i∞
M(f)(s)y−s ds

=


−2πi(1− q)

log q
f(y) · (2N + 1) if y = qn (n ∈ Z),

−2πi(1− q)
log q

f(y) ·
sin
(
(2N + 1)π log y

log q

)
sin
(
π log y

log q

) otherwise.

Hence (A.1) follows. Next assume that MN
q (f)(σ + it) converges absolutely

and uniformly for t in any compact subset of R as N → ∞. The Fourier
transform of the function

ϕ(x) := M(f)
(
σ +

2πi
log q

x

)
(x ∈ R)

is given by

ϕ̂(ξ) :=
∞�

−∞
M(f)

(
σ +

2πi
log q

x

)
e−2πixξ dx

= − qξσ log q
2πi

σ+i∞�

σ−i∞
M(f)(s)q−ξs ds = −f(qξ)qξσ log q (ξ ∈ R).

Hence, by the Poisson summation formula
∑

n∈Z ϕ(x+n)=
∑

n∈Z ϕ̂(n)e2πinx

(x ∈ R), we get

lim
N→∞

MN
q (f)(σ + it) = −1− q

log q

∑
n∈Z

ϕ

(
t log q

2π
+ n

)
= −1− q

log q

∑
n∈Z

ϕ̂(n)e2πin·
t log q

2π

= (1−q)
∑
n∈Z

qn(σ+it)f(qn)=Mq(f)(σ+it) (t ∈ R).
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Remark A.2. When N = 0, (A.1) gives just the classical Mellin inver-
sion formula. However, when N ≥ 1, (A.1) does not give the expression of
f(y) for y = qn/(2N+1) with n/(2N + 1) 6∈ Z.

Remark A.3. If f is written as the series f(y) =
∑

n≥1 ane
−2πny (y > 0)

with |an| = O(nα) as n → ∞ for some α > 0, then f(y) = O(y−α−1) as
y → 0, f(y) = O(e−2πy) as y → ∞ and M(f)(s) = (2π)−sΓ (s)L(s) for
Re(s) > α+ 1 with L(s) :=

∑
n≥1 ann

−s (Re(s) > α+ 1). Then, for a fixed
σ > α+ 1, one sees that MN

q (f)(σ+ it) converges absolutely and uniformly
for t in any compact subset of R as N →∞. Actually, by Stirling’s formula
and the boundedness of (2π)−sL(s) on Re(s) = σ, for t ∈ [−R,R] (R > 0)
and |n| > R|log q|/2π we can estimate∣∣∣∣M(f)

(
σ + it+

2πin
log q

)∣∣∣∣ ≤ Cσ∣∣∣∣t+
2πn
log q

∣∣∣∣σ−1/2

e
−π

2

∣∣t+ 2πn
log q

∣∣
≤ C ′σe

−
(

2π|n|
|log q|−R

)
with some Cσ, C ′σ > 0. Hence, in this case,

lim
N→∞

MN
q (f)(σ + it) = Mq(f)(σ + it) (t ∈ R).

B. Appendix—ζ(q)(s) gives a true q-analogue of ζ(s). In this ap-
pendix, we prove that ζ(q)(s) gives a true q-analogue like the q-analogue
ζq(s) of ζ(s) introduced in [7] (see also [9]). Namely, we show the following:

Proposition B.1. For all s ∈ C, we have

lim
q→1

ζ(q)(s) = π−s/2Γ

(
s

2

)
ζ(s).

Proof. Recall the original property of the q-Mellin transform. If f is a
moderate asymptotic function of order (i0, j0), then for −i0 < Re(s) < −j0
we have Mq(f)(s)→M(f)(s) as q → 1, i.e.,

lim
q→1

∑
n∈Z

qn(s−1)f(qn)(qn − qn+1) =
∞�

0

ys−1f(y) dy.

More precisely,

lim
q→1

∑
n≥1

qn(s−1)f(qn)(qn − qn+1) =
1�

0

ys−1f(y) dy (Re(s) > −i0)

and

lim
q→1

∑
n≤−1

qn(s−1)f(qn)(qn − qn+1) =
∞�

1

ys−1f(y) dy (Re(s) < −j0).
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Using these formulas, we rewrite the expression of ζ(q)(s). We have

ζ(q)(s) =
∑
n∈Z

qn(s−1)(θ(q2n)− 1)(qn − qn+1)

= (1− q)(θ(1)− 1) +
∑
n≤−1

(q−ns + qn(s−1))(θ(q2n)− 1)(qn − qn+1)

+ (1− q)
(

qs−1

1− qs−1
− qs

1− qs

)
for Re(s) > 1. Since θ(y2) − 1 is a moderate asymptotic function of order
(−1, ∗), the above equation holds for all s ∈ C and

lim
q→1

ζ(q)(s) =
∞�

1

(y−s + ys−1)(θ(y2)− 1) dy +
1

s(s− 1)
(s ∈ C).

Also,

π−s/2Γ

(
s

2

)
ζ(s) =

∞�

0

ys−1(θ(y2)− 1) dy

=
∞�

1

(y−s + ys−1)(θ(y2)− 1) dy +
1

s(s− 1)

for Re(s) > 1. Hence the assertion is obtained by analytic continuation.

Remark B.2. The following table gives present results on q-analogues
ζq(s) and ζ(q)(s) of ζ(s). The “+” in the last column means that several
special values of ζq(s) can be evaluated explicitly by q-Bernoulli numbers
(see [7], [9]), and the question mark in that column indicates that no special
values of ζ(q)(s) have been calculated. This is a problem for future research.

Table 1. Present results

True q-analogue Functional equation Special values

ζq(s) : + ? +

ζ(q)(s) : + + ?

Remark B.3. In view of the transformation rule given by (2.6), as in
the proof of Proposition B.1, we can also see that the q-series Λq(s, F )
defined by (2.3) is a true q-analogue of the completed L-function Λ(s, F ) of
Remark 2.2.
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