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1. Introduction. The notation [x] will be used in what follows to rep-
resent the integer part of a number x ∈ R. We reserve the letter p to denote
a prime, and the variables r, s will always be numbers representable as the
sum of two squares.

Harman has proved in [2] and [4, Theorem 3] respectively that:

1. For almost all α > 0, the number of integers of the form [10nα],
1 ≤ n ≤ N , which are prime numbers is

logN

log 10
+O((logN)1/2(log logN)(3/2)+ε)

for any ε > 0.
2. For almost all (α, β) ∈ R2 there are only finitely many n such that

[10nα] and [10nβ] are simultaneously prime.

These results naturally lead one to ask if one could prove a two-dimen-
sional analogue of the first result for a denser set than the primes, say the
set of numbers representable as the sum of two squares. Also, one is curious
to know the structure of the set of measure zero for the second result. One
would like to know its Hausdorff dimension and whether or not the set is
dense. It clearly contains almost all points of the line β = α by the first
result, but does it contain almost all points of any other lines? Here we shall
give definitive answers to these questions as follows.

Theorem 1. For almost all (α, β) ∈ R2, the number of solutions for
n ≤ N to [10nα] and [10nβ] simultaneously equal to a sum of two squares is

K2

log 10
logN +O((logN)1/2(log(logN + 2))(3/2)+ε)
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102 P. Rowe

for any ε > 0 as N →∞, where K is the constant

2−1/2
∏

p≡3 mod 4

(
1− 1

p2

)−1/2

.

Remarks. The constant K enters naturally here via the well-known
formula for the number of sums of two squares up to N :

(1)
∑

r≤N
r a sum of squares

1 =
∑

2≤n≤N

K

(logn)1/2
+O

(
N

logN

)
.

As in Harman’s one-dimensional theorem for primes [2] we obtain an as-
ymptotic formula with the expected main term.

Theorem 2. The set S of (α, β) ∈ [0, 1)2 such that there are infinitely
many n with [10nα] and [10nβ] simultaneously prime has Hausdorff dimen-
sion 2, is dense in [0, 1)2 and intersects any line in R2 except {(x, y) : x = y}
in a set of linear measure zero.

The proofs of both theorems rely on our knowledge of the distribution
of sums of two squares or primes in short intervals: we obtain an asymptotic
formula if the intervals are not too short, and a correct order upper bound
otherwise. A result related to Theorem 1 for square-free numbers is proved
in the author’s PhD thesis [7]. This gives, for every k ≥ 1 and for almost all
α, an asymptotic formula for the number of n with [10nαa1 ], [10nαa2 ], . . . ,
[10nαak ] simultaneously square-free for n ≤ N , where each ai ∈ N. The
details are quite different for this result: one part is easier because the set of
square-free numbers is better understood than the set of sums of two squares;
one part is harder because we make use of the fact that the probability that
a number n is a sum of two squares tends to zero as n→∞.

The first part of Theorem 2 can be generalised to higher dimensions and
the last two parts could clearly be proved for all (α, β) ∈ R2, but here [0, 1)2

is considered for simplicity. We note that another problem, that of finding
the Hausdorff dimension of the set of α such that [10nα] and [10nα2] are
simultaneously prime infinitely often, seems to be much more difficult.

The reader should note that Harman proved his results for any sequence
[bnα] (indeed for even more general sequences) and there is no problem in
replacing 10 in the above theorems by any real b > 1. We have chosen to
state our results in the above form simply because they lend themselves to
a natural interpretation in terms of the decimal expansions of pairs of reals
chosen at random.

2. Theorem 1: Method of proof and preliminary lemmas. With-
out loss of generality we need only consider (α, β) ∈ [1, 2)2. The method will
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be to write

In =

( ⋃

10n≤r<2·10n

[
r

10n
,
r + 1

10n

))
×
( ⋃

10n≤s<2·10n

[
s

10n
,
s+ 1

10n

))
.

Then (α, β) ∈ In precisely when [10nα] and [10nβ] are sums of two squares
for 1 < α, β < 2 and therefore the number of n such that [10nα] and [10nβ]
are simultaneously sums of two squares, for n ≤ N , when 1 < α < 2, is∑N

n=1 χn(α, β) where we define

χn(α, β) = χIn (α, β) =

{
1 if (α, β) ∈ In,

0 otherwise.

We will consider, for any U, V ≤ N , the expression

(2)

2�

1

2�

1

( V∑

n=U

χn(α, β)− K2

log 10

V∑

n=U

1

n

)2

dα dβ.

We expand out the integrand to give

=

2�

1

2�

1

( V∑

n=U

χn(α, β)
V∑

m=U

χm(α, β)

+

(
K2

log 10

V∑

m=U

1

m

)2

− 2
K2

log 10

V∑

m=U

1

m

V∑

n=U

χn(α, β)

)
dα dβ,

which leads to three double integrals to estimate: I1 +I2−2I3, say. Since the
expression in (2) is positive, it suffices to give either asymptotic formulae or
upper bounds for each of the terms Ij . We use these bounds with the fol-
lowing lemma (Lemma 1.5 in [3]) to obtain the asymptotic formula required
for Theorem 1.

Lemma 1. Let Y be a measure space with measure µ such that 0 <
µ(Y ) < ∞. Let F (n) : Y → R (n = 1, 2, . . .) be a sequence of non-negative
µ-measurable functions, and let xn, φn be sequences of real numbers such
that

0 ≤ xn ≤ φn (n = 1, 2, . . .).

Write

Φ(N) =
N∑

n=1

φn,

and suppose that Φ(N)→∞ as N →∞. Suppose that for arbitrary integers
U, V (1 ≤ U < V ) we have

�

Y

( ∑

U≤n<V
(F (n)− xn)

)2
≤ C

∑

U≤n<V
φn
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for an absolute constant C. Then for any ε > 0, and for almost all points
in Y , we have as N →∞,

N∑

n=1

F (n) =

N∑

n=1

xn +O(Φ1/2(N)(log(Φ(N) + 2))(3/2)+ε + max
1≤n≤N

xn).

Now I2 is simply
(

K2

log 10

V∑

m=U

1

m

)2

,

while

I3 =

(
K2

log 10

V∑

m=U

1

m

)( V∑

n=U

λ(In)
)
.

Here λ denotes planar Lebesgue measure, and

V∑

n=U

λ(In) =
V∑

n=U

( ∑

10n≤r<2·10n

1

10n

)( ∑

10n≤s<2·10n

1

10n

)

=
1

log 10

V∑

n=U

(
K2

n
+O(n−3/2)

)
,

from (1). It thus remains to consider I1 which is where the heart of the prob-
lem lies (the so-called “overlap estimates” studied for a range of problems
in [3]). In the double sum over n and m, when n < m/10 (we could in fact
replace 1/10 with a similar fraction), we can use an analogue of Huxley’s
theorem for primes in short intervals and this will yield the main term. For
the part of the proof which gives us a bound when m/10 < n < m we rely
on the following lemma:

Lemma 2. The number of solutions in r1 and r2 of r2 = 10m−nr1 + b
where r2 ∈ [10m, 2 · 10m] for 1 ≤ b < 10m−n is

� 10m

n
.

Proof. Every sum of two squares can be written in the form 2kv2w,
where p | v ⇒ p ≡ 3 mod 4, and p |w ⇒ p ≡ 1 mod 4. Write rj = 2kjv2

jwj .

Clearly the contribution from those rj with 2kjvj > n can be neglected. It
thus suffices to consider

2k2v2
2w2 = 10m−n2k1v2

1w1 + b

with fixed b, kj , vj , wj where 2kjvj ≤ n. Let g = (10m−n2k1v2
1, 2

k2v2
2)

(of course 10m−n could be replaced with 2m−n in this expression since
(5, v2) = 1). Write A = 2k2v2

2/g, B = 10m−n2k1v2
1/g, C = b/g. Then we
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must bound the number of solutions (w1, w2) to

(3) Aw2 = Bw1 + C.

Now (A,B) = 1, and, for any fixed g, C only takes on � 10m−n/g values.
The solutions to (3) have the form

w1 = A`+ J, w2 = B`+K, with AK −BJ = C.

If p ≡ 3 mod 4 with p |C and p |AB, then p |w1w2, so there are no solutions
to (3). Otherwise we can apply a standard sieve upper bound (Theorem 2.3
in [1] with g = 2, δ = 1/2) to show that for each fixed triple (A,B,C) the
number of solutions in w1, w2 is

� ABC

φ(ABC)

10ng

2k1+k2v2
1v

2
2n
.

Here φ(x) is Euler’s function, and we have used 2k1+k2v2
1v

2
2 ≤ n4 to note

that log(10n/2k1+k2v2
1v

2
2)� n.

Now φ(xy) ≥ φ(x)φ(y) for any x, y. Also, for any X,

∑

C≤X

C

φ(C)
� X.

Using φ(2) = 1 with the above we may sum over kj, vj and b to obtain an
upper bound for the number of solutions of the form

�
∑

k1,k2

∑

v1,v2

v1v2

φ(v1)φ(v2)

10ng2

n2k1+k2v2
1v

2
2

∑

C≤10m−n/g

C

φ(C)

� 10m

n

∑

k1,k2

2−max(k1,k2)
∑

v1,v2

(v1, v2)2

v1v2φ(v1)φ(v2)
� 10m

n

as required. Here we have noted that

∑

v1,v2

(v1, v2)2

v1v2φ(v1)φ(v2)
≤
∑

d

d2
∑

vj

1

d2v1v2φ(dv1)φ(dv2)

�
∑

d

d2
∑

v1,v2

1

(d2v1v2)7/4
� 1,

where we have used the simple bound φ(x)� x3/4.

3. Proof of Theorem 1. We are left to estimate

I1 =

2�

1

2�

1

V∑

n=U

V∑

m=U

χn(α, β)χm(α, β) dαdβ,
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which is equal to

V∑

n=U

V∑

m=U

λ(In ∩ Im)

where In ∩ Im is made up of a union of sets of the form
([

r1

10n
,
r1 + 1

10n

)
∩
[
r2

10m
,
r2 + 1

10m

))
×
([

s1

10n
,
s1 + 1

10n

)
∩
[
s2

10m
,
s2 + 1

10m

))
.

We thus need to consider intersections of intervals of the form
[
r1

10n
,
r1 + 1

10n

)
∩
[
r2

10m
,
r2 + 1

10m

)

and [
s1

10n
,
s1 + 1

10n

)
∩
[
s2

10m
,
s2 + 1

10m

)
.

We assume to start with that n < m. Since we only need an upper
bound, it is sufficient to assume that the length of the intersection of the
two intervals, [

r1

10n
,
r1 + 1

10n

)
and

[
r2

10m
,
r2 + 1

10m

)
,

is the maximum possible whenever they intersect, i.e. 1/10m. This may
appear rather wasteful, especially when n is close to m, but these terms
only give a small contribution to our sums. The assumption we make is
quite accurate when n is much less than m, which is the crucial case. Thus
we obtain the conditions

r1

10n
<
r2 + 1

10m
and

r2

10m
<
r1 + 1

10n
.

These imply that

(4) r1 · 10m−n − 1 ≤ r2 < r1 · 10m−n + 10m−n.

Likewise we do this for s replacing r. We therefore must bound

(5)
1

102m

∑

∗
1

where the sum (∗) is over r1, r2, s1, s2 satisfying (4) and its analogue for sj .
We first consider the case when m/10 ≤ n < m. Now we have r2 =

r1 · 10m−n + b where −1 ≤ b < 10m−n. Trivially the number of solutions
with b = −1 or 0 is � 10nn−1/2 (the number of choices for r1). For the
remaining values of b we apply Lemma 2 to obtain a bound� 10m/n. Since
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we obtain the same bound for the equation in s1, s2 we have

V∑

m=U

∑

m/10≤n<m

1

102m

∑

∗
1�

V∑

m=U

∑

m/10≤n<m

1

102m

(
10m

n
+

10n

n1/2

)2

�
V∑

m=U

1

m

after an elementary calculation.
We now consider the case when n < m/10. We use the analogue for

sums of two squares of Huxley’s theorem for primes in short intervals [5].

This states that if x(7/12)+ε ≤ y < x for some ε > 0, then the number of
sums of two squares in the interval (x, x+ y) is

Ky

(log x)1/2

(
1 +O

(
1

(log x)1/2

))
.

We take x = 10m and y = 10m−n so the condition n < m/10 implies that
x9/10 ≤ y < x. Using this for both the inequalities in rj and sj we thus
obtain an asymptotic formula for the expression (5):

1

102m

((
K2

log 10

)2 102m

mn
+O

(
102m

mn3/2

))
.

Since
∑
n−3/2 converges, combining our two cases we obtain

I1 =
V∑

m=U

V∑

n=U

1

mn
+O

( V∑

m=U

1

m

)
.

We thus obtain

I1 + I2 − 2I3 < C
V∑

m=U

1

m

for some constant C. Theorem 1 then follows from Lemma 1.

4. Theorem 2: Preliminaries. First recall that the diameter d(A) of
a set A in R2 is defined as

d(A) = max
x,y∈A

|x− y|.

We shall use the following definition of Hausdorff dimension.

Definition. The set S ⊆ R2 has Hausdorff dimension δ > 0 if both the
following conditions hold:
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(A) For any ε > 0, there exists a covering (ξi) of the set S with d(ξi) < ε
such that ∞∑

i=1

d(ξi)
γ < 1 for all γ > δ.

(B) There exists ε > 0 such that for all coverings (ξi) of S such that
d(ξi) < ε we have

∞∑

i=1

d(ξi)
γ ≥ 1 for all γ < δ.

5. Proof of Theorem 2. For the first part of the theorem, to show
that the set S has Hausdorff dimension 2 it clearly suffices to verify (B)
above with δ = 2.

We will show that there exists ε > 0 such that for any δ > 0 and for any
collection of sets (ξi) ⊆ [0, 1)2 satisfying both

d(ξi) < ε for all i, and

∞∑

i=1

d(ξi)
2−δ < 1,

the collection (ξi) does not cover the set S. We will do this by constructing
a sequence of nested compact sets II ⊇ II+1 ⊇ II+2 ⊇ · · · such that each
Ii will consist of Mi boxes of the form

(6)

[
p1

103i
,
p1 + 3

4

103i

]
×
[
p2

103i
,
p2 + 3

4

103i

]

and so ∞⋂

i=I

Ii ⊂ S.

We need to show at each stage of our inductive construction that there are
a large number of boxes, say Mi > Ki, which do not intersect any of the ξj
of a certain size, say those with εi ≤ d(ξj) < εi−1. The condition

∞∑

i=1

d(ξi)
2−δ < 1

is vital for controlling the number of boxes from our construction which do
not intersect any of the ξj . The reader will recognise this is a well-known
technique used to establish the Hausdorff dimension of certain sets in metric
number theory (see pages 271–275 of [3] for example).

We define Ki, εi for i = 1, 2, . . . now (the reader will see the reason for
the choice as the proof proceeds):

Ki =
102·3i

4i2+1(log 10)2i
and εi = 10−i

2/δ
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and choose I large enough so that both

(7) Ki+1 <
102·3i+1

2 · 4i2+132i+2(log 10)2i+2
− 4 · 102·3i+1

10i232i(log 10)2
− 102(i+1)2/δ

and

(8)

(
3

4
· 102·3i

3i+1 log 10
(1 + o(1))

)2

≥ 1

2
· 104·3i

32i+2(log 10)2

hold for all i ≥ I. Here the o(1) in (8) means the o(1) terms which arise
below in the proof.

For the case i = I we let II be the union of all boxes of the form (6) for

i = I and 103i < p1, p2 < 2 · 103I . By the prime number theorem [6, p. 226],
we have

MI = (π(2 · 103I )− π(103I ))2 ∼
(

2 · 103I

log 2 + 3I log 10
− 103I

3I log 10

)2

> KI

where π(x) represents the number of primes not greater than x. Also, if we
let ε = εI then no box in II intersects any ξj with εI ≤ d(ξj) < εI−1 since
d(ξj) < εI for all j. This establishes the case i = I. For the inductive step
we suppose we have Ii. Then by Huxley’s theorem [5] the number of primes
in the interval [

103i+1
, 103i+1

+
3

4
· 103i+12/3

]

is
3
4 · 102·3i

log 103i+1 (1 + o(1))

and therefore we can find

≥ 1

2
· 104·3i

(log 10)232i+2

boxes of the form [
p1

103i+1 ,
p1 + 3

4

103i+1

]
×
[

p2

103i+1 ,
p2 + 3

4

103i+1

]

contained entirely within each box of Ii by (8). Thus the number of boxes
in total is

>
102·3i

4i2+1(log 10)2i
· 1

2
· 104·3i

(log 10)232i+2
=

102·3i+1

2 · 4i2+132i+2(log 10)2i+2

by the inductive hypothesis. The number of these boxes which intersect a
set ξj of diameter d is

<

(
d · 103i+1

3i log 10
+ 1

)2

<

(
2d · 103i+1

3i log 10

)2

+ 1
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since the number of primes in an interval of length 103i+1
d is

<
3 · 103i+1

d

log(103i+1d)

by the Brun–Titchmarsh inequality [1, Theorem 3.7], and we may need to
count an extra prime outside the interval which nevertheless gives boxes
that intersect the set ξj . Since we are assuming that

∑∞
i=1 d(ξi)

2−δ < 1, we
have ∑

ξj
εi+1≤d<εi

d2 <
∑

d<εi

d2 < εδi
∑

d<εi

d2−δ < εδi = 10−i
2
,

and also
∑

ξj
d>εi+1

1 < εδ−2
i+1

∞∑

j=1

d(ξj)
2−δ < εδ−2

i+1 < 102(i+1)2/δ.

Hence the number of boxes which do not intersect a set ξj with εi+1 ≤
d(ξj) < εi is

>
102·3i+1

2 · 4i2+132i+2(log 10)2i+2
− 4 · 102·3i+1

32i10i
2
(log 10)2

− 102(i+1)2/δ > Ki+1

by (7). This proves the first part of the theorem.
For the second part, to show that S is dense, we need to show that any

open set, B, of [0, 1)2 contains a point of S.
Let (a, b) × (c, d) ⊆ B where (a, b) and (c, d) are open intervals. We

choose N1 and N2 such that the first N1 digits of a and b correspond but
the (N1+1)st digits differ. Similarly N2 is chosen for (c, d). We will construct
two real numbers α and β such that [10nα] and [10nβ] are simultaneously
prime infinitely often and (α, β) ∈ (a, b)× (c, d).

We define the first N1 digits of α to be the same as those of a and the
first N2 digits of β the same as those of c. The (N1 + 1)st digit of α and the
(N2 + 1)st digit of β can then be chosen so that (α, β) ∈ (a, b)× (c, d). Now
we let N > max(N1 + 1, N2 + 1) and define the rest of the first N digits
of α and β arbitrarily. We can define the next n − N digits of α in such a
way that [10nα] is prime for this n as long as n is sufficiently large. This is
because we need to find a prime in the interval [x10n, x10n + 10n−N ], where
x is a real number between 0 and 1, and by Huxley’s theorem [5] there are

O

(
10n−N

log 10n

)

primes in this interval if

10n−N ≥ x(7/12)+ε10(7n/12)+ε
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for any ε > 0. This condition holds if we choose n > 12N/5. We can define
the corresponding n − N digits of β similarly so that [10nβ] is prime. Let
this particular value of n be n1. Now we repeat this process, defining a
further n2−n1 digits of α and of β so that [10nα] and [10nβ] are both prime
for n = n2. We can do this if n2 > 12n1/5. This process can be repeated
indefinitely and so this proves the existence of α and β such that [10nα]
and [10nβ] are simultaneously prime infinitely often with (α, β) ∈ B. This
proves the second part of the theorem.

Almost all points on the line {(α, α) : α ∈ R} are in S by [2]. For the
last part of the theorem, we will prove that this is the only line in R2 with
the above property; all others intersect S in a set of measure zero, i.e. we
will prove (α,Aα+B) ∩ S has measure zero unless A = 1 and B = 0.

Without loss of generality assume that A ≥ 0. We require [10nα] and
[10n(Aα + B)] simultaneously prime infinitely often and so we define the
following two sequences of sets:

Ai =

[
pi1
10i

,
pi1 + 1

10i

)
∪ · · · ∪

[
pik
10i

,
pik + 1

10i

)
, i ≥ 1,

where pi1, . . . , pik are the primes between 10i and 2 · 10i, and

Bi =

[
qi1

10iA
− B

A
,
qi1 + 1

10iA
− B

A

)
∪ · · · ∪

[
qik

10iA
− B

A
,
qik + 1

10iA
− B

A

)
, i ≥ 1,

where qi1, . . . , qik are the primes between 10i(A+ B) and 10i(2A+B). We
thus need β = Aα + B and α ∈ Ai ∩ Bi for infinitely many i. To find the
size of the intersection Ai ∩ Bi we consider the intersection of an interval
from Ai with one from Bi. The intervals are of the form

[
p1

10i
,
p1 + 1

10i

)
and

[
p2

10iA
− B

A
,
p2 + 1

10iA
− B

A

)
.

Case 1. Suppose that

p1

10i
≤ p2

10iA
− B

A
.

Then we also need
p2

10iA
− B

A
<
p1 + 1

10i
.

Suppose first that A > 1. The length of the intersection is thus ≤ 1/10iA.
We need

p1 ≤
p2

A
− B · 10i

A
< p1 + 1,

or equivalently

0 <
p2

A
− p1 −

B · 10i

A
< 1.
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We thus need to determine the number of solutions to∣∣∣∣
p2

A
− p1 −

B · 10i

A

∣∣∣∣ < 1,

where 10i ≤ p1, p2 < 2 · 10i are primes. To do this, we modify the proof of
Lemma 8.6 in [3] to take into account the B · 10i/A term: By Dirichlet’s

theorem there exist a, q ∈ Z with 1 ≤ a ≤ q ≤ 103i/4 and (a, q) = 1 such
that ∣∣∣∣

1

A
− a

q

∣∣∣∣ <
1

q · 103i/4
.

Let

% =
1

A
− a

q
> 0.

We split the range for p2 into blocks [H,H + Z] where Z = q · 10i/20. Then
in this range we have

p2

A
− p1 −

B · 10i

A
=
p2a

q
− p1 +H%− B · 10i

A
+O(10−7i/10).

If we let

C =

[
H%− B · 10i

A
+

1

2

]

then we need an upper bound for the number of solutions of
∣∣∣∣
p2a

q
− p1 + C

∣∣∣∣ < 2.

This is equivalent to the number of solutions of

p2a = (p1 − C)q + b where |b| < 2q.

For each b the solutions have the form

p2 = āb+ xq, p1 = C + xa+ b

(
aā− 1

q

)

where aā = 1 mod q and ā is the least positive residue. We can use The-
orem 2.3 of [1] to obtain a bound for the number of solutions in x of this
equation. This is

� Z

q log2 10i
aq

φ(aq)

∑

|b|<2q
(b,q)=1=(qC+b,a)

qC + b

φ(qC + b)

� Z

q log2 10i
aq

φ(aq)

∑

(n,aq)=1
|n−Cq|<2q

n

φ(n)
� Z

i2
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if C is not so large that logC is of order equal to a power of q, since by
Lemma 7.4 of [3],

∑

(n,aq)=1
|n−Cq|<2q

n

φ(n)
= 4q

φ(aq)

aq

∏

p-aq

(
1 +

1

p(p− 1)

)

+O(τ(aq) log 2(Cq + 2q))

where τ(q) represents the number of divisors of q. Now by summing over the
blocks we obtain O(10i/i2) as required. In the case when C is large relative
to q, we make use of the averaging over C. Write

C0 =

[
% · 10i− B ·10i

A
+

1

2

]
, C1 = C0− 2, C2 =

[
2% · 10i− B ·10i

A

]
+ 3.

We can assume that C0 ≥ q2. Then our bound is now

�
∑

0≤m≤10i/Z

Z

qi2
aq

φ(aq)

∑

|b|<2q
(b,q)=1=(qC+b,a)

C=[(10i+mZ)%−(B·10i/A)+1/2]

qC + b

φ(qC + b)

� Z

qi2
aq

φ(aq)

1

Z%

∑

(n,aq)=1
qC1≤n≤qC2

n

φ(n)
� 10i

i2

since by Lemma 7.4 of [3],

∑

(n,aq)=1
qC1≤n≤qC2

n

φ(n)
=

(
2% · 10i − B · 10i

A
+ 3− % · 10i +

B · 10i

A
+ 2

)
q
φ(aq)

q

+O

(
τ(aq) log 2

(
2% · 10i − B · 10i

A
+ 3

)
q

)
.

For the case A < 1, the range of the intersection is ≤ 1/10i and we need
the number of solutions of 0 < p2−Ap1−B · 10i < A. By the same method
this gives the required result.

Suppose now that A = 1. In this case we need to find the number of
solutions of

|p2 − p1 −B · 10i| < 1.

By Lemma 8.5 of [3] this is at most

K · 10i

i2

∑

|B·10i−n|<2

n

φ(n)
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provided that |B| · 10i > 3. This is equal to

K · 10i

i2
630ζ(3)

π4
+O(log(|B| · 10i + 2))

by Lemma 2.5 of [3]. For any B 6= 0, we can choose i sufficiently large to

ensure that |B| · 10i ≥ 3 and so we obtain the required bound.
There are three other ways the intervals can intersect.

Case 2. We have
p2

10iA
− B

A
≤ p1

10i
<
p2 + 1

10iA
− B

A
.

We write this as

0 ≤ Ap1 − p2 +B · 10i < 1 if A < 1

and as

0 ≤ p1 −
p2

A
+
B · 10i

A
<

1

A
if A > 1.

Case 3. We have
p2

10iA
− B

A
≤ p1

10i
≤ p2 + 1

10iA
− B

A
− 1

10i
,

which gives

0 ≤ Ap1 − p2 +B · 10i ≤ 1− A
where we must have A < 1 in this case.

Case 4. We have
p1

10i
≤ p2

10iA
− B

A
≤ p1 + 1

10i
− 1

10iA
,

which gives

0 ≤ p2

A
− p1 +

B · 10i

A
≤ 1− 1

A
where we must have A > 1 in this case.

It is clear that these cases give the same result as before so we deduce
that

λ(Ai ∩Bi) = O

(
10i

i2
1

A · 10i

)
= O(1/i2)

and therefore since
∑∞

i=1 λ(Ai ∩ Bi) converges, by the first Borel–Cantelli
lemma [3, p. 8], we find that almost all α belong to only finitely many Ai∩Bi.
Hence the set of α that belong to infinitely many of the Ai∩Bi has measure
zero. This completes the proof of the final part of the theorem.
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