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On disjoint arithmetic progressions
by

YoNG-GAO CHEN (Nanjing)

1. Introduction. Let {a; (modm;)}._, be a collection of arithmetic
progressions, where 2 < my < --- < m; < x and

a; (modm;)Na; (modm;) =0 ifi#j.

Let f(x) be the maximum value for such [. In [4], Erdés and Szemerédi
proved that
x x

axp(Qog ) /27) ~ 1) = Tlogaye

for some constant ¢ > 0 (see also [3]). Let
L(c,x) = exp(cy/log xz loglog z).
Recently, E. S. Croot III [2] has proved that

< f(z) < 7

L(v2+0(1), ) (1/6 —o(1),z)

and with the assumption that all m; are squarefree, the maximum value for
such [ is less than x/L(1/2 — o(1), x).
In this paper, we improve Croot’s methods and prove the following result:

THEOREM.
X

J@) < TR =om.a)

2. Proof of the Theorem. As a direct consequence of [1, Lemma 3.1],
we have (see also [2])
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LEMMA 1. Let

Y(z,y) = #{n <x:p prime,p|n=p <y}

Then, for any constant ¢ > 0,
x

Ve e ) = TGe o), a)
LEMMA 2 (Croot [2]). There are at most x/L(c/2 — o(1),x) positive in-

tegers n < x such that
w(n) > cy/log z/loglog z,

where ¢ is some positive constant and w(n) = >

p|n, p prime L.
DEFINITION. Let r and n be positive integers. Write
n=ab, (a,b)=1, a>0,b>0,

such that if p is a prime, p® |a and p**!4a, then either o = 0 or o > r, and
if p is a prime, p? |b and p?*+1{b, then B < r. Define

hr(n) =a, I.(n)=0.
Here we may take a =1 or b= 1.

LEMMA 3. Let r be a given positive integer. Then there are at most
x/L(c/2 — o(1),x) positive integers n < x with n = l,.(n) such that

2(n) > ev/logz/loglog x,

where ¢ is some positive constant and 2(n) =

Proof. Let
Ty = {n:n < 3, w(n) > ey/loga/log gz},
Ty ={n:n<zn=1(n), wn) < cy/logz/loglogz,
2(n) > ev/log z/loglog }.

p|n, p prime

By Lemma 2 we have
T

(¢/2=o(1),2)

Now we estimate |T3|. For a positive integer n, let n = p{™* ---p"* be the
standard factorization of n. Define

Tl < ¢

g(n) =ag!---ayl.

By a multipolynomial expansion, we have

( 2 %)2 2 g(ﬁm'

p<a,pprime n<wz, Q(n)=j
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Thus

1 1 1)’
n<z, 2(n)>cy/log z/log log = j>cq/log z/loglog x p<z,p prime
< 1
~ L(c/2—-0(1),z)
For any integer n with n € Ty, we have

g(n) < (r)*™ < (r!)c\/m'

Hence

T < % < a(pl)eVoEe/lEToEs 3

ne€Ts neTs

1 T
gn = T2 —o(l).2)

LEMMA 4. For any integer k > 3, we have
3z
L(c(1—2/k),z)

Proof. 1t is well known that if an integer a > k(k + 1), then there exist
two positive integers u and v with o = uk4v(k+1). Thus, if m = hy 41y (m),
then there exist two positive integers a and b such that m = a*b**!. So

Sk(ean)(t) := #{m 1 1 <m < b, m = hypyny(m)} < tE+HmT < /-,
Hence
#{n:1<n <z hygen(n) > Lic,z)}

#{n:1<n <2 hygen(n) > Lic,z)} <

oo
x 3z

1
= 2. m =V SO s

m>L(c,x), m=hy(k41)(m) L(c,x)

LEMMA 5. Let ' and m be two integers with m > 0. Suppose that
{b; (modm;)},_, is a collection of disjoint arithmetic progressions, where

wim;) <M, m; >m,
m|m;, b =71 (modm), i=1,...,1I.

Then there exists a prime p and an integer r" such that pm |m; for at least
l/M wvalues of i, and

1

pm|m;, by =r" (modpm)

for at least 1/(pM) values of i.

Proof. Ifl = 1, then we may take "’ = b; and p to be any prime divisor of
m1/m. Now we assume that [ > 2. Let py,...,p; be all distinct prime factors
of my/m. For any i > 2, since the arithmetic progressions are disjoint, we
have (mqy,m;)1b;—b;. By by =7’ = b; (modm), we have (mq,m;) # m. That
is, (m1/m,m;/m) # 1 (i = 2,...,1). Hence, each m;/m must be divisible by



146 Y .-G. Chen

at least one of p1,...,ps. Thus, there exists an index j such that p; divides
m;/m for at least [/t values of i. Let b; = ' +ms; (i =1,...,1). Then there
exists an integer s such that

e
si =s (modp;), pj El

for at least [ /(p;t) values of ¢. Thus, by t < M, p; divides m;/m for at least
l/M values of i, and

b; =" +ms (modp;m), p;m|m;
for at least I/(p,; M) values of i. m

LEMMA 6. Let v be a given positive integer. If {b; (modm;)}_, is a
collection of disjoint arithmetic progressions with m; = l,.(m;) (i =1,...,1)
and 2 <mq < --- <my <z, then

(1/2=o(1),z)’

Proof. Let S be the collection of all m;’s such that

(A) 2(m;) < \/logz/loglog z;

(B) There exists a prime p > L(1,z) such that p|m;.

I
<I

Beginning with m = 1 and ' = 1, by using Lemma 5 step by step, we

obtain a sequence p1, ..., p, of primes (and a sequence r1, ..., 7, of integers)
such that for each j, p1 ---p; | m; for at least
5]

p1---pj-1(y/log z/loglog z)7
values of ¢ with m; € S and p; - - - p, is some m;,. Hence, there exists a p,
with p, > L(1,z), and
T

>#{n<z:p-puln
L) = vopuln}

> #{m; :m; € S;p1---pu|mi}

> 51

~ pr o pu_1(y/log z/loglog x)v
s

T op1- pu—lL(1/27x)

Thus

5= Ay
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By Lemmas 1 and 3, we have

IS| > 1 —#{m <z:m=1.(m),2(m) > +/logx/loglogz} — ¢(x, L(1,x))
2z
2 AR o))

Therefore

1< ¢
= I(/2-o(1),2) "

Proof of the Theorem. Suppose that {a; (mod mi)}i:ﬁ) is a collection of
disjoint arithmetic progressions, where 2 < m; < --- < my) < x. Let k
be any given integer with k > 4, and let U be the collection of all m; with
Pikt1)(mi) < L(2,z). By the proof of Lemma 4, we have

#{m:1<m < L(2,2), m = hypsny(m)} < L(2,2)* = L(4/k, 2).

So there must exist a positive integer m < L(2,z) for which there are at
least |U|/L(4/k, ) of m;’s with hy(;11)(m;) = m. Thus, there must exist
an integer a such that

a; =a (modm),  hppgr)(m:) =m

for at least |U|/(mL(4/k,x)) of m;. In this way, we obtain a collection
{a; (modm;/m)} which has at least |U|/(mL(4/k,x)) disjoint arithmetic

progressions. Noting that [lyxi1)(mi/m) = m;/m for those m; with
Pi(k41)(mi) = m, by Lemma 6, we have
|U| x x

ML/ ) = mL(1/2 —o(1).2/m) = mL(1/2 —o(1).2)

So
x

(1/2—-4/k —o(1),x)"

<
UES

By Lemma 4 we have

3z < 3z
L(2(1—-2/k),x) — L(1,x)’

#{n:1<n<x hygyen(n) > L(2,2)} <

Therefore
T 3z

(1/2—4/k—o(l).2) "I a)

Since k is arbitrary, the Theorem follows. m

f) < 5
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