On disjoint arithmetic progressions

by
Yong-Gao Chen (Nanjing)

1. Introduction. Let $\left\{a_{i}\left(\bmod m_{i}\right)\right\}_{i=1}^{l}$ be a collection of arithmetic progressions, where $2 \leq m_{1}<\cdots<m_{l} \leq x$ and

$$
a_{i}\left(\bmod m_{i}\right) \cap a_{j}\left(\bmod m_{j}\right)=\emptyset \quad \text { if } i \neq j
$$

Let $f(x)$ be the maximum value for such l. In [4], Erdős and Szemerédi proved that

$$
\frac{x}{\exp \left((\log x)^{1 / 2+\varepsilon}\right)}<f(x)<\frac{x}{(\log x)^{c}}
$$

for some constant $c>0$ (see also [3]). Let

$$
L(c, x)=\exp (c \sqrt{\log x \log \log x})
$$

Recently, E. S. Croot III [2] has proved that

$$
\frac{x}{L(\sqrt{2}+o(1), x)}<f(x)<\frac{x}{L(1 / 6-o(1), x)}
$$

and with the assumption that all m_{i} are squarefree, the maximum value for such l is less than $x / L(1 / 2-o(1), x)$.

In this paper, we improve Croot's methods and prove the following result:
Theorem.

$$
f(x)<\frac{x}{L(1 / 2-o(1), x)}
$$

2. Proof of the Theorem. As a direct consequence of [1, Lemma 3.1], we have (see also [2])
[^0]Lemma 1. Let

$$
\psi(x, y)=\#\{n \leq x: p \text { prime }, p \mid n \Rightarrow p \leq y\}
$$

Then, for any constant $c>0$,

$$
\psi(x, L(c, x))=\frac{x}{L(1 /(2 c)+o(1), x)}
$$

Lemma 2 (Croot [2]). There are at most $x / L(c / 2-o(1), x)$ positive integers $n \leq x$ such that

$$
\omega(n)>c \sqrt{\log x / \log \log x}
$$

where c is some positive constant and $\omega(n)=\sum_{p \mid n, \text { p prime }} 1$.
Definition. Let r and n be positive integers. Write

$$
n=a b, \quad(a, b)=1, \quad a>0, b>0
$$

such that if p is a prime, $p^{\alpha} \mid a$ and $p^{\alpha+1} \nmid a$, then either $\alpha=0$ or $\alpha>r$, and if p is a prime, $p^{\beta} \mid b$ and $p^{\beta+1} \nmid b$, then $\beta \leq r$. Define

$$
h_{r}(n)=a, \quad l_{r}(n)=b
$$

Here we may take $a=1$ or $b=1$.
Lemma 3. Let r be a given positive integer. Then there are at most $x / L(c / 2-o(1), x)$ positive integers $n \leq x$ with $n=l_{r}(n)$ such that

$$
\Omega(n)>c \sqrt{\log x / \log \log x}
$$

where c is some positive constant and $\Omega(n)=\sum_{p^{\alpha} \mid n, \text { p prime }} 1$.
Proof. Let

$$
\begin{aligned}
& T_{1}=\{n: n \leq x, \omega(n)>c \sqrt{\log x / \log \log x}\} \\
& T_{2}=\left\{n: n \leq x, n=l_{r}(n), \omega(n) \leq c \sqrt{\log x / \log \log x}\right. \\
& \\
& \quad \Omega(n)>c \sqrt{\log x / \log \log x}\}
\end{aligned}
$$

By Lemma 2 we have

$$
\left|T_{1}\right| \leq \frac{x}{L(c / 2-o(1), x)}
$$

Now we estimate $\left|T_{2}\right|$. For a positive integer n, let $n=p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}}$ be the standard factorization of n. Define

$$
g(n)=\alpha_{1}!\cdots \alpha_{t}!
$$

By a multipolynomial expansion, we have

$$
\left(\sum_{p \leq x, p \text { prime }} \frac{1}{p}\right)^{j} \geq \sum_{n \leq x, \Omega(n)=j} \frac{j!}{g(n) n}
$$

Thus

$$
\begin{aligned}
\sum_{n \leq x, \Omega(n) \geq c \sqrt{\log x / \log \log x}} \frac{1}{g(n) n} & \leq \sum_{j \geq c \sqrt{\log x / \log \log x}} \frac{1}{j!}\left(\sum_{p \leq x, p \text { prime }} \frac{1}{p}\right)^{j} \\
& \leq \frac{1}{L(c / 2-o(1), x)}
\end{aligned}
$$

For any integer n with $n \in T_{2}$, we have

$$
g(n) \leq(r!)^{\omega(n)} \leq(r!)^{c \sqrt{\log x / \log \log x}}
$$

Hence

$$
\left|T_{2}\right| \leq \sum_{n \in T_{2}} \frac{x}{n} \leq x(r!)^{c \sqrt{\log x / \log \log x}} \sum_{n \in T_{2}} \frac{1}{g(n) n} \leq \frac{x}{L(c / 2-o(1), x)}
$$

Lemma 4. For any integer $k \geq 3$, we have

$$
\#\left\{n: 1 \leq n \leq x, h_{k(k+1)}(n) \geq L(c, x)\right\} \leq \frac{3 x}{L(c(1-2 / k), x)}
$$

Proof. It is well known that if an integer $\alpha>k(k+1)$, then there exist two positive integers u and v with $\alpha=u k+v(k+1)$. Thus, if $m=h_{k(k+1)}(m)$, then there exist two positive integers a and b such that $m=a^{k} b^{k+1}$. So

$$
S_{k(k+1)}(t):=\#\left\{m: 1 \leq m \leq t, m=h_{k(k+1)}(m)\right\} \leq t^{\frac{1}{k}+\frac{1}{k+1}}<t^{2 / k}
$$

Hence

$$
\begin{aligned}
& \#\left\{n: 1 \leq n \leq x, h_{k(k+1)}(n) \geq L(c, x)\right\} \\
& \quad \leq \sum_{m \geq L(c, x), m=h_{k(k+1)}(m)} \frac{x}{m}=x \int_{L(c, x)}^{\infty} \frac{1}{t} d S_{k(k+1)}(t) \leq \frac{3 x}{L(c(1-2 / k), x)}
\end{aligned}
$$

Lemma 5. Let r^{\prime} and m be two integers with $m>0$. Suppose that $\left\{b_{i}\left(\bmod m_{i}\right)\right\}_{i=1}^{l}$ is a collection of disjoint arithmetic progressions, where

$$
\begin{gathered}
\omega\left(m_{i}\right) \leq M, \quad m_{i}>m \\
m \mid m_{i}, \quad b_{i} \equiv r^{\prime}(\bmod m), \quad i=1, \ldots, l
\end{gathered}
$$

Then there exists a prime p and an integer $r^{\prime \prime}$ such that $p m \mid m_{i}$ for at least l / M values of i, and

$$
p m \mid m_{i}, \quad b_{i} \equiv r^{\prime \prime}(\bmod p m)
$$

for at least $l /(p M)$ values of i.
Proof. If $l=1$, then we may take $r^{\prime \prime}=b_{1}$ and p to be any prime divisor of m_{1} / m. Now we assume that $l \geq 2$. Let p_{1}, \ldots, p_{t} be all distinct prime factors of m_{1} / m. For any $i \geq 2$, since the arithmetic progressions are disjoint, we have $\left(m_{1}, m_{i}\right) \nmid b_{1}-b_{i}$. By $b_{1} \equiv r^{\prime} \equiv b_{i}(\bmod m)$, we have $\left(m_{1}, m_{i}\right) \neq m$. That is, $\left(m_{1} / m, m_{i} / m\right) \neq 1(i=2, \ldots, l)$. Hence, each m_{i} / m must be divisible by
at least one of p_{1}, \ldots, p_{t}. Thus, there exists an index j such that p_{j} divides m_{i} / m for at least l / t values of i. Let $b_{i}=r^{\prime}+m s_{i}(i=1, \ldots, l)$. Then there exists an integer s such that

$$
s_{i} \equiv s\left(\bmod p_{j}\right), \quad p_{j} \left\lvert\, \frac{m_{i}}{m}\right.
$$

for at least $l /\left(p_{j} t\right)$ values of i. Thus, by $t \leq M, p_{j}$ divides m_{i} / m for at least l / M values of i, and

$$
b_{i} \equiv r^{\prime}+m s\left(\bmod p_{j} m\right), \quad p_{j} m \mid m_{i}
$$

for at least $l /\left(p_{j} M\right)$ values of i.
Lemma 6. Let r be a given positive integer. If $\left\{b_{i}\left(\bmod m_{i}\right)\right\}_{i=1}^{l}$ is a collection of disjoint arithmetic progressions with $m_{i}=l_{r}\left(m_{i}\right)(i=1, \ldots, l)$ and $2 \leq m_{1}<\cdots<m_{l} \leq x$, then

$$
l<\frac{x}{L(1 / 2-o(1), x)}
$$

Proof. Let S be the collection of all m_{i} 's such that
(A) $\Omega\left(m_{i}\right) \leq \sqrt{\log x / \log \log x}$;
(B) There exists a prime $p>L(1, x)$ such that $p \mid m_{i}$.

Beginning with $m=1$ and $r^{\prime}=1$, by using Lemma 5 step by step, we obtain a sequence p_{1}, \ldots, p_{v} of primes (and a sequence r_{1}, \ldots, r_{v} of integers) such that for each $j, p_{1} \cdots p_{j} \mid m_{i}$ for at least

$$
\frac{|S|}{p_{1} \cdots p_{j-1}(\sqrt{\log x / \log \log x})^{j}}
$$

values of i with $m_{i} \in S$ and $p_{1} \cdots p_{v}$ is some $m_{i_{0}}$. Hence, there exists a p_{u} with $p_{u}>L(1, x)$, and

$$
\begin{aligned}
\frac{x}{p_{1} \cdots p_{u-1} L(1, x)} & \geq \#\left\{n \leq x: p_{1} \cdots p_{u} \mid n\right\} \\
& \geq \#\left\{m_{i}: m_{i} \in S, p_{1} \cdots p_{u} \mid m_{i}\right\} \\
& \geq \frac{|S|}{p_{1} \cdots p_{u-1}(\sqrt{\log x / \log \log x})^{u}} \\
& \geq \frac{|S|}{p_{1} \cdots p_{u-1} L(1 / 2, x)}
\end{aligned}
$$

Thus

$$
|S| \leq \frac{x}{L(1 / 2, x)}
$$

By Lemmas 1 and 3, we have

$$
\begin{aligned}
|S| & \geq l-\#\left\{m \leq x: m=l_{r}(m), \Omega(m)>\sqrt{\log x / \log \log x}\right\}-\psi(x, L(1, x)) \\
& \geq l-\frac{2 x}{L(1 / 2-o(1), x)}
\end{aligned}
$$

Therefore

$$
l \leq \frac{x}{L(1 / 2-o(1), x)}
$$

Proof of the Theorem. Suppose that $\left\{a_{i}\left(\bmod m_{i}\right)\right\}_{i=1}^{f(x)}$ is a collection of disjoint arithmetic progressions, where $2 \leq m_{1}<\cdots<m_{f(x)} \leq x$. Let k be any given integer with $k \geq 4$, and let U be the collection of all m_{i} with $h_{k(k+1)}\left(m_{i}\right)<L(2, x)$. By the proof of Lemma 4, we have

$$
\#\left\{m: 1 \leq m \leq L(2, x), m=h_{k(k+1)}(m)\right\} \leq L(2, x)^{2 / k}=L(4 / k, x)
$$

So there must exist a positive integer $m<L(2, x)$ for which there are at least $|U| / L(4 / k, x)$ of m_{i} 's with $h_{k(k+1)}\left(m_{i}\right)=m$. Thus, there must exist an integer a such that

$$
a_{i} \equiv a(\bmod m), \quad h_{k(k+1)}\left(m_{i}\right)=m
$$

for at least $|U| /(m L(4 / k, x))$ of m_{i}. In this way, we obtain a collection $\left\{a_{i}\left(\bmod m_{i} / m\right)\right\}$ which has at least $|U| /(m L(4 / k, x))$ disjoint arithmetic progressions. Noting that $l_{k(k+1)}\left(m_{i} / m\right)=m_{i} / m$ for those m_{i} with $h_{k(k+1)}\left(m_{i}\right)=m$, by Lemma 6 , we have

$$
\frac{|U|}{m L(4 / k, x)} \leq \frac{x}{m L(1 / 2-o(1), x / m)} \leq \frac{x}{m L(1 / 2-o(1), x)}
$$

So

$$
|U| \leq \frac{x}{L(1 / 2-4 / k-o(1), x)}
$$

By Lemma 4 we have

$$
\#\left\{n: 1 \leq n \leq x, h_{k(k+1)}(n) \geq L(2, x)\right\} \leq \frac{3 x}{L(2(1-2 / k), x)} \leq \frac{3 x}{L(1, x)}
$$

Therefore

$$
f(x) \leq \frac{x}{L(1 / 2-4 / k-o(1), x)}+\frac{3 x}{L(1, x)}
$$

Since k is arbitrary, the Theorem follows.
Acknowledgements. I am grateful to Professor E. S. Croot III for his help to make me understand his paper and the referee for his/her suggestions.

References

[1] E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", J. Number Theory 17 (1983), 1-28.
[2] E. S. Croot III, On non-intersecting arithmetic progressions, Acta Arith. 110 (2003), 233-238.
[3] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monograph. Enseign. Math. 28, Univ. Genève, 1980.
[4] P. Erdős and E. Szemerédi, On a problem of P. Erdős and S. Stein, Acta Arith. 15 (1968), 85-90.

Department of Mathematics
Nanjing Normal University
Nanjing 210097, P.R. China
E-mail: ygchen@njnu.edu.cn

Received on 23.2.2004
and in revised form on 13.2.2005

[^0]: 2000 Mathematics Subject Classification: Primary 11B25.
 Supported by the National Natural Science Foundation of China, Grant No. 10471064 and the Teaching and Research Award Program for Outstanding Young Teachers at Nanjing Normal University.

