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1. Introduction. Let {ai (modmi)}li=1 be a collection of arithmetic
progressions, where 2 ≤ m1 < · · · < ml ≤ x and

ai (modmi) ∩ aj (modmj) = ∅ if i 6= j.

Let f(x) be the maximum value for such l. In [4], Erdős and Szemerédi
proved that

x

exp((logx)1/2+ε)
< f(x) <

x

(log x)c

for some constant c > 0 (see also [3]). Let

L(c, x) = exp(c
√

log x log log x).

Recently, E. S. Croot III [2] has proved that

x

L(
√

2 + o(1), x)
< f(x) <

x

L(1/6− o(1), x)

and with the assumption that all mi are squarefree, the maximum value for
such l is less than x/L(1/2− o(1), x).

In this paper, we improve Croot’s methods and prove the following result:

Theorem.

f(x) <
x

L(1/2− o(1), x)
.

2. Proof of the Theorem. As a direct consequence of [1, Lemma 3.1],
we have (see also [2])
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Lemma 1. Let

ψ(x, y) = #{n ≤ x : p prime, p |n⇒ p ≤ y}.
Then, for any constant c > 0,

ψ(x,L(c, x)) =
x

L(1/(2c) + o(1), x)
.

Lemma 2 (Croot [2]). There are at most x/L(c/2− o(1), x) positive in-
tegers n ≤ x such that

ω(n) > c
√

log x/log log x,

where c is some positive constant and ω(n) =
∑
p|n, p prime 1.

Definition. Let r and n be positive integers. Write

n = ab, (a, b) = 1, a > 0, b > 0,

such that if p is a prime, pα | a and pα+1 - a, then either α = 0 or α > r, and
if p is a prime, pβ | b and pβ+1 - b, then β ≤ r. Define

hr(n) = a, lr(n) = b.

Here we may take a = 1 or b = 1.

Lemma 3. Let r be a given positive integer. Then there are at most
x/L(c/2− o(1), x) positive integers n ≤ x with n = lr(n) such that

Ω(n) > c
√

log x/log log x,

where c is some positive constant and Ω(n) =
∑
pα|n, p prime 1.

Proof. Let

T1 = {n : n ≤ x, ω(n) > c
√

log x/log log x},

T2 = {n : n ≤ x, n = lr(n), ω(n) ≤ c
√

log x/log log x,

Ω(n) > c
√

log x/log log x}.
By Lemma 2 we have

|T1| ≤
x

L(c/2− o(1), x)
.

Now we estimate |T2|. For a positive integer n, let n = pα1
1 · · · pαtt be the

standard factorization of n. Define

g(n) = α1! · · ·αt!.
By a multipolynomial expansion, we have

( ∑

p≤x, p prime

1
p

)j
≥

∑

n≤x,Ω(n)=j

j!
g(n)n

.
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Thus
∑

n≤x,Ω(n)≥c
√

log x/log log x

1
g(n)n

≤
∑

j≥c
√

log x/log log x

1
j!

( ∑

p≤x, p prime

1
p

)j

≤ 1
L(c/2− o(1), x)

.

For any integer n with n ∈ T2, we have

g(n) ≤ (r!)ω(n) ≤ (r!)c
√

log x/log log x.

Hence

|T2| ≤
∑

n∈T2

x

n
≤ x(r!)c

√
log x/log log x

∑

n∈T2

1
g(n)n

≤ x

L(c/2− o(1), x)
.

Lemma 4. For any integer k ≥ 3, we have

#{n : 1 ≤ n ≤ x, hk(k+1)(n) ≥ L(c, x)} ≤ 3x
L(c(1− 2/k), x)

.

Proof. It is well known that if an integer α > k(k + 1), then there exist
two positive integers u and v with α = uk+v(k+1). Thus, ifm = hk(k+1)(m),
then there exist two positive integers a and b such that m = akbk+1. So

Sk(k+1)(t) := #{m : 1 ≤ m ≤ t, m = hk(k+1)(m)} ≤ t 1
k+ 1

k+1 < t2/k.

Hence

#{n : 1 ≤ n ≤ x, hk(k+1)(n) ≥ L(c, x)}

≤
∑

m≥L(c,x),m=hk(k+1)(m)

x

m
= x

∞�

L(c,x)

1
t
dSk(k+1)(t) ≤

3x
L(c(1− 2/k), x)

.

Lemma 5. Let r′ and m be two integers with m > 0. Suppose that
{bi (modmi)}li=1 is a collection of disjoint arithmetic progressions, where

ω(mi) ≤M, mi > m,

m |mi, bi ≡ r′ (modm), i = 1, . . . , l.

Then there exists a prime p and an integer r′′ such that pm |mi for at least
l/M values of i, and

pm |mi, bi ≡ r′′ (mod pm)

for at least l/(pM) values of i.

Proof. If l = 1, then we may take r′′ = b1 and p to be any prime divisor of
m1/m. Now we assume that l ≥ 2. Let p1, . . . , pt be all distinct prime factors
of m1/m. For any i ≥ 2, since the arithmetic progressions are disjoint, we
have (m1,mi) - b1−bi. By b1 ≡ r′ ≡ bi (modm), we have (m1,mi) 6= m. That
is, (m1/m,mi/m) 6= 1 (i = 2, . . . , l). Hence, each mi/m must be divisible by
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at least one of p1, . . . , pt. Thus, there exists an index j such that pj divides
mi/m for at least l/t values of i. Let bi = r′+msi (i = 1, . . . , l). Then there
exists an integer s such that

si ≡ s (mod pj), pj

∣∣∣∣
mi

m

for at least l/(pjt) values of i. Thus, by t ≤M , pj divides mi/m for at least
l/M values of i, and

bi ≡ r′ +ms (mod pjm), pjm |mi

for at least l/(pjM) values of i.

Lemma 6. Let r be a given positive integer. If {bi (modmi)}li=1 is a
collection of disjoint arithmetic progressions with mi = lr(mi) (i = 1, . . . , l)
and 2 ≤ m1 < · · · < ml ≤ x, then

l <
x

L(1/2− o(1), x)
.

Proof. Let S be the collection of all mi’s such that

(A) Ω(mi) ≤
√

log x/log log x;
(B) There exists a prime p > L(1, x) such that p |mi.

Beginning with m = 1 and r′ = 1, by using Lemma 5 step by step, we
obtain a sequence p1, . . . , pv of primes (and a sequence r1, . . . , rv of integers)
such that for each j, p1 · · · pj |mi for at least

|S|
p1 · · · pj−1(

√
log x/log log x)j

values of i with mi ∈ S and p1 · · · pv is some mi0 . Hence, there exists a pu
with pu > L(1, x), and

x

p1 · · · pu−1L(1, x)
≥ #{n ≤ x : p1 · · · pu |n}

≥ #{mi : mi ∈ S, p1 · · · pu |mi}

≥ |S|
p1 · · · pu−1(

√
log x/log log x)u

≥ |S|
p1 · · · pu−1L(1/2, x)

.

Thus

|S| ≤ x

L(1/2, x)
.
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By Lemmas 1 and 3, we have

|S| ≥ l −#{m ≤ x : m = lr(m), Ω(m) >
√

log x/log log x} − ψ(x,L(1, x))

≥ l − 2x
L(1/2− o(1), x)

.

Therefore
l ≤ x

L(1/2− o(1), x)
.

Proof of the Theorem. Suppose that {ai (modmi)}f(x)
i=1 is a collection of

disjoint arithmetic progressions, where 2 ≤ m1 < · · · < mf(x) ≤ x. Let k
be any given integer with k ≥ 4, and let U be the collection of all mi with
hk(k+1)(mi) < L(2, x). By the proof of Lemma 4, we have

#{m : 1 ≤ m ≤ L(2, x), m = hk(k+1)(m)} ≤ L(2, x)2/k = L(4/k, x).

So there must exist a positive integer m < L(2, x) for which there are at
least |U |/L(4/k, x) of mi’s with hk(k+1)(mi) = m. Thus, there must exist
an integer a such that

ai ≡ a (modm), hk(k+1)(mi) = m

for at least |U |/(mL(4/k, x)) of mi. In this way, we obtain a collection
{ai (modmi/m)} which has at least |U |/(mL(4/k, x)) disjoint arithmetic
progressions. Noting that lk(k+1)(mi/m) = mi/m for those mi with
hk(k+1)(mi) = m, by Lemma 6, we have

|U |
mL(4/k, x)

≤ x

mL(1/2− o(1), x/m)
≤ x

mL(1/2− o(1), x)
.

So
|U | ≤ x

L(1/2− 4/k − o(1), x)
.

By Lemma 4 we have

#{n : 1 ≤ n ≤ x, hk(k+1)(n) ≥ L(2, x)} ≤ 3x
L(2(1− 2/k), x)

≤ 3x
L(1, x)

.

Therefore

f(x) ≤ x

L(1/2− 4/k − o(1), x)
+

3x
L(1, x)

.

Since k is arbitrary, the Theorem follows.
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