1. Introduction. Let X be a smooth projective variety over a finite extension field K of \mathbb{Q}_p. We will consider the structure of the Chow group $\text{CH}_0(X)$ of 0-cycles on X. The degree map $\text{CH}_0(X) \to \mathbb{Z}$ and the Albanese map $\text{Ker}[\text{CH}_0(X) \to \mathbb{Z}] \to \text{Alb}_X(K)$ have finite cokernels, and the structure of $\text{Alb}_X(K)$ is well understood by Mattuck [Mat55, Theorem 7] since the Albanese variety of X is an abelian variety. We denote by $T(X)$ the kernel of the Albanese map on X; then the structure of the quotient group $\text{CH}_0(X)/T(X)$ is well understood.

However, few results are known on $T(X)$ when X has dimension greater than 1. Colliot-Thélène [CT95, 1.4(d), (e), (f)] conjectured that the group $T(X)$ is the direct sum of a finite group and the maximal divisible subgroup of $T(X)$. This conjecture is known to be true for certain types of varieties. For example, Raskind and Spiess [RS00, Theorem 1.1] proved it when X is a product of curves whose Jacobians have a mixture of ordinary good and split multiplicative reduction.

In this paper, we will consider (not only the finiteness but also) the structure of $T(X)/p^n$ in detail when X is a product of two elliptic curves which have ordinary good or split multiplicative reduction. Our main result is as follows.

Theorem 1.1. Let E_1, E_2 be elliptic curves defined over K. Assume that their p^n-torsion points are K-rational. Put $X = E_1 \times E_2$ and let $T(X)$ be the kernel of the Albanese map on X. Then the structure of $T(X)/p^n$ is as follows:

1. If both E_1 and E_2 have ordinary good or split multiplicative reduction over K, then

 $$T(X)/p^n \cong \mathbb{Z}/p^n.$$
(2) If one of E_1, E_2 has split multiplicative reduction over K and the other has ordinary good reduction over K, then

$$T(X)/p^n \simeq (\mathbb{Z}/p^n)^{\oplus 2}.$$

Remark 1.2. The split multiplicative reduction case of (1) was proved by Yamazaki [Yam05, Theorem 5.1].

As mentioned above, the structure of the quotient group $\text{CH}_0(X)/T(X)$ is well understood. Taking it into consideration, we find the structure of $\text{CH}_0(X)/p^n$:

Corollary 1.3. Let the assumption and notation be as in Theorem 1.1. Let d be the extension degree of K/\mathbb{Q}_p. Then the structure of $\text{CH}_0(X)/p^n$ is as follows:

1. If both E_1 and E_2 have ordinary good or split multiplicative reduction over K, then

$$\text{CH}_0(X)/p^n \simeq (\mathbb{Z}/p^n)^{\oplus (2d+6)}.$$

2. If one of E_1, E_2 has split multiplicative reduction over K and the other has ordinary good reduction over K, then

$$\text{CH}_0(X)/p^n \simeq (\mathbb{Z}/p^n)^{\oplus (2d+7)}.$$

Let the assumption and notation be as in Theorem 1.1. To show the main result we will consider the cycle map

$$\text{(1.1)}$$

$$\text{cl : } T(X)/p^n \to H^4_{\text{ét}}(X, \mathbb{Q}_p^{\otimes 2}),$$

where μ_{p^n} is the étale sheaf of all p^nth roots of unity. In the case where E_1 and E_2 have the same reduction type as in Theorem 1.1 (1), (2), Raskind and Spiess [RS00, Remark 4.5.8(b)] proved the cycle map is injective under the assumption that the p^n-torsion points of E_1 and E_2 are K-rational. Note that the cycle map is not injective for certain types of varieties [PS95, Chap. 8]. Raskind and Spiess explained how to calculate the image of (1.1) by analyzing the proof of their main result [RS00, Theorem 4.5]. (For any integer m prime to p, they also considered the structure of $T(X)/m$ [RS00, Theorem 3.5].)

They also introduced another approach to calculating the image, which can be applied in the case where E_1 and E_2 have any reduction type. They showed the image is isomorphic to that of the composition of the connecting homomorphism, the cup product and the norm map:

$$\text{(1.2)}$$

$$\bigoplus_{K'/K} E_1(K') \otimes E_2(K') \to \bigoplus_{K'/K} H^1(K', E_1[p^n]) \otimes H^1(K', E_2[p^n])$$

$$\to \bigoplus_{K'/K} H^2(K', E_1[p^n] \otimes E_2[p^n]) \to H^2(K, E_1[p^n] \otimes E_2[p^n]),$$
where K' runs through all finite extensions of K. Following this approach, Yamazaki [Yam05, Theorem 5.1] obtained the result mentioned in Remark 1.2.

In the same way as above we will show Theorem 1.1. In Section 2, to calculate the cup product of (1.2) we consider the Hilbert symbol $K^n / p^n \times K^{n^2} / p^n \rightarrow \mu_{p^n}$, which can be seen as the cup product $H^1(K, \mu_{p^n}) \otimes H^1(K, \mu_{p^n}) \rightarrow H^2(K, \mu_{p^n})$. In Section 3, to calculate the first arrow in (1.2) we consider the image of the connecting homomorphism $\delta : E(K) \rightarrow H^1(K, E[p^n])$ for an elliptic curve E over K. In Section 4, we calculate the image of the composition of (1.2) and complete the proof of our main result.

When either E_1 or E_2 has supersingular good reduction, the injectivity of the cycle map cI is not known. However, in the same way as above the image of the cycle map (1.1) can be calculated. We have the following result when $n = 1$.

Theorem 1.4. Let E_1, E_2 be elliptic curves defined over K and assume that their p-torsion points are K-rational. Put $X = E_1 \times E_2$. Then:

1. If one of E_1, E_2 has split multiplicative reduction over K and the other has supersingular good reduction over K, then the image of $T(X)/p$ under the cycle map is isomorphic to $(\mathbb{Z}/p)^{\oplus 2}$.
2. If one of E_1, E_2 has ordinary good reduction over K and the other has supersingular good reduction over K, then the image of $T(X)/p$ under the cycle map is isomorphic to $(\mathbb{Z}/p)^{\oplus 2}$.
3. If both E_1 and E_2 have supersingular good reduction over K, then the image of $T(X)/p$ under the cycle map is isomorphic to

$$
\begin{cases}
(\mathbb{Z}/p)^{\oplus 2} & \text{if } t_1 \neq t_2 \text{ and } t_1 + t_2 \neq \frac{e}{p-1}, \\
\mathbb{Z}/p & \text{if } t_1 = t_2 \neq \frac{e}{2(p-1)} \text{ or } t_1 = t_2 \neq \frac{e}{2(p-1)} \text{, and } t_1 + t_2 = \frac{e}{p-1}, \\
0 & \text{if } t_1 = t_2 = \frac{e}{2(p-1)},
\end{cases}
$$

where e is the ramification index of K/\mathbb{Q}_p, and t_1 and t_2 are respectively the invariants of E_1 and E_2 defined in (3.4).

This result is obtained by using Kawachi’s result [Kaw02, Theorem 1.1(2)] on the image of $\delta : E(K) \rightarrow H^1(K, E[p^n])$ for $n = 1$. Theorem 1.4 generalizes to the case of $n \geq 1$ once the image of δ has been calculated for that n.

Notation. Throughout this paper, let K be a finite extension of \mathbb{Q}_p. Let O_K be the ring of integers of K, U_K the unit group of O_K, and M_K the maximal ideal of O_K. Let $U_{K}^{0} = U_K$ and $U_{K}^{s} = 1 + M_{K}^{s}$ for $s \geq 1$. This gives a filtration $K^{\times} \supset U_{K}^{0} \supset U_{K}^{1} \supset U_{K}^{2} \supset \cdots$ on the unit group of K. It also induces a filtration $K^{\times}/p^{n} \supset U_{K, n}^{0} \supset U_{K, n}^{1} \supset U_{K, n}^{2} \supset \cdots$, 203
where \(U_{K,n}^{(s)} = U_{K}^{(s)}/((K^\times)^{p^n} \cap U_{K}^{(s)}) \) for \(s \geq 0 \). Similar notation applies to any discrete valuation field. For each positive integer \(k \), let \(\zeta_p^k \) be a primitive \(p^k \)th root of unity and \(\mu_{p^k} \) the group of all \(p^k \)th roots of unity. Given an abelian group \(A \) and a nonzero integer \(m \), let \(A[m] \) (resp. \(A/m \)) be the kernel (resp. cokernel) of multiplication by \(m \) on \(A \).

2. The Hilbert symbol and a filtration on the unit group. We fix a positive integer \(n \), and assume that \(\mu_{p^n} \subset K \) throughout this section. Then the Hilbert symbol over the local field \(K \) is defined by

\[
\left(\frac{a}{b} \right)_{p^n} : K^\times/p^n \times K^\times/p^n \rightarrow \mu_{p^n}, \quad (a, b) \mapsto \frac{\rho_K(a)(\sqrt[p^n]{b})}{\sqrt[p^n]{b}},
\]

where \(\rho_K : K^\times \rightarrow \text{Gal}(K_{ab}/K) \) is the reciprocity map of \(K \).

Lemma 2.1. Let \(a, b \in K^\times \). Then the Hilbert symbol has the following properties:

1. The Hilbert symbol is a nondegenerate bilinear pairing.
2. \((1-a, a)_n = (a, 1-a)_n = 1 \) for \(a \neq 1 \).
3. \((a, b)_n = (b, a)_n^{-1} \).
4. \((a, b)_{p^n}^k = (a, b)_{p^n-k} \) for each \(1 \leq k \leq n \).

Proof. See [FV02, Chap. 4, (5.1)].

We shall calculate the order of the image \((U_{K,n}^{(s)}, U_{K,n}^{(t)})_{p^n}\) of the subgroup \(U_{K,n}^{(s)} \times U_{K,n}^{(t)} \) under the Hilbert symbol. To calculate them we shall investigate ramification for the extensions \(K(\sqrt[p^n]{b})/K \), where \(b \in K^\times \). Let \(L = K(\sqrt[p^n]{b}) \) and \(\rho_{L/K} : K^\times \rightarrow \text{Gal}(L/K) \) be the reciprocity map of \(L/K \). By [Iwa86, Theorem 7.12],

\[
(2.2) \quad \rho_{L/K}(U_{K}^{(s)}) = \text{Gal}(L/K)^s
\]

for all \(s \geq 0 \), where \(\text{Gal}(L/K)^s \) is the \(s \)th ramification subgroup in the upper numbering for \(L/K \). We will calculate the Hasse–Herbrand function of \(L/K \), which is used to define \(\text{Gal}(L/K)^s \) (cf. [FV02, Chap. 3, § 3]). This function is the inverse function of

\[
(2.3) \quad \phi_{L/K}(s) = \int_0^s \frac{1}{(\text{Gal}(L/K)_0 : \text{Gal}(L/K)_r)} dr,
\]

where \(\text{Gal}(L/K)_s \) is the \(s \)th ramification subgroup in the lower numbering for \(L/K \). Note that the function \(\phi_{L/K} \) is continuous and piecewise linear on \(s \geq 0 \).

Lemma 2.2. Let \(L = K(\sqrt[p^n]{b}) \) and let \(\psi_{L/K} \) be the Hasse–Herbrand function of \(L/K \). For each \(1 \leq k \leq n \), we put \(c_k = e/(p-1) + ke \), where \(e \) is
the ramification index of K/\mathbb{Q}_p. Then:

1. If b is a prime element of K, then

 $$
 \psi_{L/K}(r) = \begin{cases}
 r & (0 \leq r \leq c_1), \\
 p^k r - kp^k e & (c_k \leq r \leq c_{k+1}) \ (k = 1, \ldots, n-1), \\
 p^n r - np^n e & (r \geq c_n).
 \end{cases}
 $$

 In particular, the breaks of $\text{Gal}(L/K)^s$ occur at c_k for each $1 \leq k \leq n$.

2. If $b \in U_{K,1}^{(t)} \setminus U_{K,1}^{(t+1)}$, $1 \leq t < c_1$ and $p \nmid t$, then

 $$
 \psi_{L/K}(r) = \begin{cases}
 r & (0 \leq r \leq c_1 - t), \\
 p^k r - kp^k e + (p^k - 1)t & (c_k - t \leq r \leq c_{k+1} - t) \ (k = 1, \ldots, n-1), \\
 p^n r - np^n e + (p^n - 1)t & (r \geq c_n - t).
 \end{cases}
 $$

 In particular, the breaks of $\text{Gal}(L/K)^s$ occur at $c_k - t$ for each $1 \leq k \leq n$.

Proof. Since the proofs of (1) and (2) are similar, we shall prove only (2). Let v_L be the normalized valuation on L. Since $\zeta_{p^n} \in K$ and $b \not\in (K^\times)^p$, we see L/K is a cyclic extension of degree p^n. Let σ be the generator of $\text{Gal}(L/K)$ such that $\sigma(p\sqrt[n]{b}) = \zeta_{p^n} p^n \sqrt[n]{b}$. Then

$$
 p^n v_L(p^n \sqrt[n]{b} - 1) = \sum_{j=1}^{p^n} v_L(\sigma^j(p^n \sqrt[n]{b} - 1)) = \sum_{j=1}^{p^n} v_L(\zeta_{p^n} p^n \sqrt[n]{b} - 1)
$$

$$
 = v_L(\prod_{j=1}^{p^n} (\zeta_{p^n} p^n \sqrt[n]{b} - 1)) = v_L(b - 1) = e(L/K)t,
$$

where $e(L/K)$ is the ramification index of L/K. Since $p \nmid t$, the field extension L/K is totally ramified and $v_L(p^n \sqrt[n]{b} - 1) = t$. Therefore the ring of integers of L is generated by a prime element of L. We can choose integers g, h such that $g > 0$ and $gt + hp^n = 1$. Then $\pi' = (p^n \sqrt[n]{b} - 1)^g \pi^h$ is a prime element of L, where π is a prime element of K. Therefore

$$
\sigma^j(\pi') - \pi' = \pi' \left\{ \left(\frac{\zeta_{p^n} p^n \sqrt[n]{b} - 1}{p^n \sqrt[n]{b} - 1} \right)^g - 1 \right\}
$$

$$
= \pi' \left\{ \left(1 + \frac{\zeta_{p^n} - 1}{p^n \sqrt[n]{b} - 1} \right)^g - 1 \right\}
$$

If p^k divides j exactly, then $v_L((\zeta_{p^n} - 1)/(p^n \sqrt[n]{b} - 1)) = p^{k+1} e/(p - 1) - t > 0$. Thus the valuation of the terms in the above sum assumes the minimum for $l = 1$, and we have $v_L(\sigma^j(\pi') - \pi') = d_{k+1} + 1 - t$, where we put $d_k =$
\[p^ke/(p - 1). \] Hence the order \(g_r \) of \(\text{Gal}(L/K)_r \) is
\[
g_r = \begin{cases}
p^n & (0 \leq r \leq d_1 - t),
p^{n-k} & (d_k - t < r \leq d_{k+1} - t) \ (k = 1, \ldots, n - 1),
1 & (r > d_n - t).
\end{cases}
\]
By definition (2.3), we see (2) is proved.

Corollary 2.3. Let \(s \geq 0. \) For each \(1 \leq k \leq n, \) the following are equivalent:

1. \(s > c_k. \)
2. \((U^{(s)}_{K,k}, K^\times/p^k)_{p^k} = 1. \)
3. \(U^{(s)}_{K} \subseteq (K^\times)^{p^k}. \)

Proof. Since the Hilbert symbol is a nondegenerate pairing, (2) is equivalent to (3). By [FV02, Chap. 1, (5.8)], if \(s > c_k, \) we have \(U^{(s)}_{K,k} \subseteq (K^\times)^{p^k}. \)

Assume that \(s \leq c_k. \) Let \(L = K(\sqrt[k]{\pi}), \) where \(\pi \) is a prime element of \(K. \) By Lemma 2.2(1), \(\psi_{L/K}(s) \leq \psi_{L/K}(c_k) = pke/(p - 1). \)
Therefore \(\text{Gal}(L/K)^s \neq 1. \) Hence \((U^{(s)}_{K,k}, K^\times/p^k)_{p^k} \neq 1 \) by (2.1) and (2.2).

Lemma 2.4 (cf. [Kat79, Lemma 2 in §1]). For all \(s, t \geq 1 \) and \(1 \leq k \leq n, \) we have \((U^{(s)}_{K,k}, U^{(t)}_{K,k})_{p^k} \subseteq (U^{(s+t)}_{K,k}, K^\times/p^k)_{p^k}. \)

Proof. Let \(1 + x \in U^{(s)}_{K} \) and \(1 + y \in U^{(t)}_{K}. \) Note that \((1 - a, a)_{p^k} = 1 \) for \(a \neq 1 \) (Lemma 2.1(3)). Then
\[
(1 + x, 1 + y)_{p^k} \quad (1 + x, 1 + y)_{p^k} \quad (1 + x, 1 + y)_{p^k} = (1 + x, 1 + y)_{p^k} = (1 + x, 1 + y)_{p^k} = (1 + x, 1 + y)_{p^k}
\]
\[
(1 + x, 1 + y)_{p^k} = (1 + x, 1 + y)_{p^k} = (1 + x, 1 + y)_{p^k} = (1 + x, 1 + y)_{p^k}
\]
As \(1 + x + y)/(1 + x) \in U^{(s+t)}_{K}, \) we have \((U^{(s)}_{K,k}, U^{(t)}_{K,k})_{p^k} \subseteq (U^{(s+t)}_{K,k}, K^\times/p^k)_{p^k}. \)

Proposition 2.5. Let \(s, t \geq 0 \) and \(c_k = e/(p - 1) + ke \) for each \(1 \leq k \leq n \). Then:

1. \[
\#(U_{K,n}^{(s)}, K^\times /p^n)_{p^n} = \begin{cases}
 p^n & (s \leq c_1), \\
 p^{n-k} & (c_k < s \leq c_{k+1}) (k = 1, \ldots, n - 1), \\
 1 & (s > c_n).
\end{cases}
\]

2. If \(p \nmid s \) or \(p \nmid t \), then

\[
\#(U_{K,n}^{(s)}, U_{K,n}^{(t)})_{p^n} = \begin{cases}
 p^n & (s + t \leq c_1), \\
 p^{n-k} & (c_k < s + t \leq c_{k+1}) (k = 1, \ldots, n - 1), \\
 1 & (s + t > c_n).
\end{cases}
\]

3. If \(p \mid s \) and \(p \mid t \), then

\[
\#(U_{K,n}^{(s)}, U_{K,n}^{(t)})_{p^n} = \begin{cases}
 p^n & (s + t < c_1), \\
 p^{n-k} & (c_k \leq s + t < c_{k+1}) (k = 1, \ldots, n - 1), \\
 1 & (s + t \geq c_n).
\end{cases}
\]

Proof. (1) By Lemma 2.4(4) and Corollary 2.3, for each \(1 \leq k \leq n \), we have \((U_{K,n}^{(s)}, K^\times /p^n)_{p^n} \subseteq \mu_{p^n-k} \) if and only if \(s > c_k \). Hence (1) follows by decreasing induction on \(k \).

(2) By an argument similar to (1), it is sufficient to show that for each \(1 \leq k \leq n \), \((U_{K,n}^{(s)}, U_{K,n}^{(t)})_{p^k} = 1 \) if and only if \(s + t > c_k \). If \(s + t > c_k \), then by Lemma 2.4 and (1), \((U_{K,n}^{(s)}, U_{K,n}^{(t)})_{p^k} \subseteq (U_{K,n}^{(s+t)}, K^\times /p^k)_{p^k} = 1 \). We shall prove the converse by induction on \(k \). We may suppose that \(s + t = c_k \) and \(s \geq t \). Then \(p \nmid c_k \). When \(k = 1 \) or \(2 \), we have \(t < c_1 \).

By Lemma 2.2(2), we see \(\text{Gal}(K^{(\sqrt[p^2]{b})}/K)^s \neq 1 \) \((b \in U_K^{(t)} \setminus U_K^{(t+1)}) \). Hence \((U_{K,k}^{(s)}, U_{K,k}^{(t)})_{p^k} \neq 1 \) by (2.1) and (2.2). When \(k \geq 3 \), by induction on \(k \), there exist \(a \in U_{K,k-1}^{(s-1)} \) and \(b \in U_{K,k-1}^{(t)} \) such that \((a, b)_{p^{k-1}} = \zeta_p \). Thus \((a^p, b)_{p^k} = (a, b)_{p^{k-1}} \zeta_p = \zeta_p \neq 1 \). Since \(k \geq 3 \), we have \(s > c_1 \). Hence \(a^p \in U_{K,k}^{(s)} \) and \(U_{K,k}^{(s)}_{p^k} \neq 1 \).

(3) By an argument similar to (1), for each \(1 \leq k \leq n \), it is sufficient to show that \((U_{K,n}^{(s)}, U_{K,n}^{(t)})_{p^k} = 1 \) if and only if \(s + t \geq c_k \). If \(s + t < c_k \), then by (2), \((U_{K,n}^{(s)}, U_{K,n}^{(t)})_{p^k} \supseteq (U_{K,n}^{(s+t)}, U_{K,n}^{(t)})_{p^k} \neq 1 \). Suppose that \(s + t \geq c_k \). Since \(U_{K,k}^{(0)} = U_{K,k}^{(1)} \), we may assume \(s, t \geq 1 \). Let \(1 + x \in U_{K,n}^{(s)} \) and \(1 + y \in U_{K,n}^{(t)} \). Write \(x = u\pi^{ps'} \), where \(\pi \) is a prime element of \(K, u \in U_K \) and \(s' = s/p \). By (2.4) in the proof of Lemma 2.4.
\[(2.5) \quad (1 + x, 1 + y)p^k = \left(\frac{1 + x + xy}{1 + x}, -x \right)^{-1} \left(\frac{1 + x + xy}{1 + x}, 1 + y \right)^{-1} \]
\[= \left(\frac{1 + x + xy}{1 + x}, \pi' \right)^{-p} \left(\frac{1 + x + xy}{1 + x}, -x \right)^{-1} \left(\frac{1 + x + xy}{1 + x}, 1 + y \right)^{-1}.\]

We see from \(s + t \geq c_k\) that \((1 + x + xy)/(1 + x) \in U_{K}^{(c_k)}\). Therefore each term in (2.5) vanishes by (1) and (2). Hence \((U_{K,k}^{(s)}, U_{K,k}^{(t)})p^k = 1.\]

3. Elliptic curves over \(K\). Let \(E\) be an elliptic curve defined over \(K\). We fix a positive integer \(n\) and assume that the \(p^n\)-torsion points of \(E\) are \(K\)-rational. Then we see that \(\mu_{p^n} \subset K\) by using the Weil pairing.

The exact sequence
\[0 \rightarrow E[p^n] \rightarrow E[p^n] \rightarrow E \rightarrow 0\]
induces a long exact sequence
\[(3.1) \quad 0 \rightarrow E[p^n] \rightarrow E(K) \xrightarrow{[p^n]} E(K) \xrightarrow{\delta^n_1} H^1(K, E[p^n]) \rightarrow H^1(K, E) \rightarrow \cdots,\]
where \(\delta^n_1\) is the connecting homomorphism. If we choose an isomorphism
\[(3.2) \quad E[p^n] \simeq \mu_{p^n} \oplus \mu_{p^n},\]
then we have an isomorphism
\[\kappa : H^1(K, E[p^n]) \xrightarrow{\sim} H^1(K, \mu_{p^n} \oplus \mu_{p^n}).\]

By Kummer theory, there exists an isomorphism
\[\delta^n_2 : K^\times/p^n \oplus K^\times/p^n \xrightarrow{\sim} H^1(K, \mu_{p^n} \oplus \mu_{p^n}).\]

Let
\[\delta^n : E(K) \rightarrow K^\times/p^n \oplus K^\times/p^n\]
be the composite map \((\delta^n_2)^{-1} \circ \kappa \circ \delta^n_1\). To investigate the image of \(\delta^n\), we choose the isomorphism (3.2) more carefully. Let \(E[p^n]^0\) be the subgroup of \(E[p^n]\) consisting of the \(K\)-valued points of the maximal connected finite flat \(p^n\)-torsion subgroup scheme of the Néron model of \(E\) over \(\text{Spec} \mathcal{O}_K\). Then choose an isomorphism \(E[p^n] \simeq \mu_{p^n} \oplus \mu_{p^n}\) which maps \(E[p^n]^0\) onto the first factor \(\mu_{p^n}\).

In the case where \(E\) has split multiplicative reduction over \(K\), Yamazaki [Yam05, Lemma 4.5] showed
\[(3.3) \quad \text{Im} \, \delta^n = K^\times/p^n \oplus 1.\]

We consider the case where \(E\) has ordinary good reduction over \(K\).
Proposition 3.1. If E has ordinary good reduction over K and we take
the isomorphism (3.2) as above, then

$$\text{Im} \delta^n = U^{(0)}_{K,n} \oplus A,$$

where A is the annihilator of $U^{(0)}_{K,n}$ in the pairing (2.1), and is cyclic of
order p^n.

Proof. Let v be the map $(K^\times /p^n)^{\oplus 2} \to (\mathbb{Z}/p^n)^{\oplus 2}$
duced by the normalized valuation on K. We will show that the composition of v and δ^n
is the zero map. To see this we may replace K by the completion of the
maximal unramified extension of K, which is denoted by L. Since E
has ordinary good reduction over K, we have the exact sequence

$$\hat{E}(\mathcal{M}_L)/p^n \xrightarrow{s} E(L)/p^n \to \hat{E}(\mathcal{F})/p^n \to 0,$$

where \hat{E} is the formal group attached to E, \hat{E} is the reduction of E, and \mathcal{F} is the residue field of L. Since the field \mathcal{F} is algebraically closed, we have $\hat{E}(\mathcal{F})/p^n = 0$. Therefore it is sufficient to show that $v \circ \delta^n \circ s = 0$. Since E
has ordinary good reduction, \hat{G}_m is isomorphic to the multiplicative group \hat{G}_m
over O_L by [Maz72, Lemma 4.27]. We fix isomorphisms $\hat{G}_m(\mathcal{M}_L) \cong \hat{G}_m(\mathcal{M}_L)$
and $\hat{G}_m[p^n] \cong \hat{G}_m[p^n] = \mu_{p^n}$ such that the following diagram is commutative:

where the map i_1 is defined by $\zeta \mapsto (\zeta, 1)$ and the rightmost vertical isomorphism is the one of (3.2). This is possible because of our choice of the
isomorphism (3.2). Then we have the following commutative diagram:

$$\begin{align*}
\hat{G}_m(\mathcal{M}_L)/p^n &\xrightarrow{} H^1(L, \hat{G}_m[p^n]) \xrightarrow{\sim} L^\times/p^n \xrightarrow{} \mathbb{Z}/p^n \\
\hat{E}(\mathcal{M}_L)/p^n &\xrightarrow{s} H^1(L, \hat{E}[p^n]) \xrightarrow{\sim} L^\times/p^n \xrightarrow{} \mathbb{Z}/p^n \\
E(L)/p^n &\xrightarrow{\delta^n} H^1(L, \hat{E}[p^n]) \xrightarrow{\sim} (L^\times/p^n)^{\oplus 2} \xrightarrow{v} (\mathbb{Z}/p^n)^{\oplus 2}
\end{align*}$$

where the maps i_2 and i_3 are defined by $a \mapsto (a, 1)$ and $N \mapsto (N, 0)$, respectively. Since $\hat{G}_m(\mathcal{M}_L)/p^n = U^{(1)}_{L,n} = U^{(0)}_{L,n}$, we have $v \circ \delta^n \circ s = 0$ by the
above diagram. It follows from $\text{Ker}[K^\times/p^n \to \mathbb{Z}/p^n] = U^{(0)}_{K,n}$ that we have
\[\text{Im} \delta^n \subseteq U_{K,n}^{(0)} \oplus A, \text{ where } A = \text{Ker} \left[K^\times/p^n \to L^\times/p^n \right]. \]

Since
\[A \simeq \text{Ker} \left[H^1(K, \mu_{p^n}) \to H^1(L, \mu_{p^n}) \right] \simeq H^1(L/K, \mu_{p^n}) \simeq \mathbb{Z}/p^n, \]
the group \(A \) is cyclic of order \(p^n \) and is the annihilator of \(U_{K,n}^{(0)} \) in the pairing (2.1). Furthermore, by Mattuck [Mat55, Theorem 7],
\[E(K) \simeq \mathbb{Z}_p^{\oplus d} \oplus \text{(torsion)}, \]
where \(d \) is the extension degree of \(K/\mathbb{Q}_p \). Since all \(p^n \)-torsion points of \(E \) are \(K \)-rational, the order of \(E(K)/p^n \) is \((p^n)^{d+2}\). On the other hand, the order of \(U_{K,n}^{(0)} \oplus A \) equals that of \(K^\times/p^n \simeq (\mathbb{Z}/p^n)^{\oplus(d+2)} \). Since \(\delta^n : E(K)/p^n \to (K^\times/p^n)^{\oplus 2} \) is injective, we have \(\text{Im} \delta^n = U_{K,n}^{(0)} \oplus A. \]

Remark 3.2. When \(n = 1 \), the image of \(\delta^n \) has already been calculated by Kawachi [Kaw02, Theorem 1.1] including the case of other types of reduction. Her results are as follows.

Let \(E \) be an elliptic curve over \(K \). Assume that the \(p \)-torsion points are \(K \)-rational. Then:

1. If \(E \) has split multiplicative reduction over \(K \), then
 \[\text{Im} \delta^1 = K^\times/p \oplus 1. \]
2. If \(E \) has ordinary good reduction over \(K \), then
 \[\text{Im} \delta^1 = U_{K,1}^{(0)} \oplus U_{K,1}^{(e_1)}. \]
3. If \(E \) has supersingular good reduction over \(K \), then
 \[\text{Im} \delta^1 = U_{K,1}^{(1-p^t+c_1)} \oplus U_{K,1}^{(1+p^t)}, \]
where \(t \) is an invariant depending on \(E \), which is defined below.

For \(i \geq 1 \), let \(E^i = \hat{E}(\mathcal{M}_K^i) \subset E(\mathcal{M}_K) \). We define
\[t = \max\{i \geq 1 \mid Q \in E^i \text{ for all } Q \in \hat{E}[p]\}. \]
Then \(1 \leq t < e/(p - 1) \) (see [Kaw02 Lemma 2.3]). Note that Proposition 3.1 is a generalization of (2) for arbitrary \(n \geq 1 \). The group \(U_{K,1}^{(e_1)} \) is cyclic of order \(p \), and is the annihilator of \(U_{K,1}^{(0)} \) in the pairing (2.1) by Proposition 2.5(3).

4. The structure of \(\text{CH}_0(E_1 \times E_2)/p^n \). Let \(E_1, E_2 \) be elliptic curves defined over \(K \) and assume that their \(p^n \)-torsion points are \(K \)-rational. We put \(X = E_1 \times E_2 \) and consider the structure of \(\text{CH}_0(X)/p^n \). Let \(A_0(X) \) be the subgroup of \(\text{CH}_0(X) \) generated by the 0-cycles of degree 0 and \(T(X) \) the kernel of the Albanese map \(A_0(X) \to X(K) \) (since the variety \(X \) is abelian, the Albanese variety of \(X \) is identified with \(X \)). For any abelian variety \(X \),
since the degree map $\text{CH}_0(X) \to \mathbb{Z}$ and the Albanese map $A_0(X) \to X(K)$ are surjective, we have

$$\text{CH}_0(X)/T(X) \simeq \mathbb{Z} \oplus X(K).$$

By Mattuck [Mat55, Theorem 7],

$$X(K) \simeq \mathbb{Z}^{\oplus 2[K:\mathbb{Q}_p]} \oplus \text{(torsion)}.$$

Since $X(K)$ contains the p^n-torsion points of both E_1 and E_2, we have

$$\text{CH}_0(X)/p^n \simeq \left(\mathbb{Z}/p^n\right)^{\oplus (2d+5)} \oplus T(X)/p^n,$$

where d is the degree of K/\mathbb{Q}_p. Therefore we see that Theorem 1.1 and Corollary 1.3 are equivalent.

We will study the structure of $T(X)/p^n$. For that, we consider the cycle map

$$\text{cl} : T(X)/p^n \to H^4_{\text{ét}}(X, \mu_{p^n}).$$

When E_1 and E_2 have the same reduction type as in Theorem 1.1(1), (2), Raskind and Spiess [RS00, Remark 4.5.8(b)] showed that the cycle map is injective under the assumption that the p^n-torsion points of E_1 and E_2 are K-rational. Furthermore by the argument similar to the proof of [Yam05, Theorem 4.3], the image of $T(X)/p^n$ under the cycle map is isomorphic to the image of the composition

$$\bigoplus_{K'/K} E_1(K') \otimes E_2(K') \overset{\delta_n}{\longrightarrow} \bigoplus_{K'/K} H^1(K', E_1[p^n]) \otimes H^1(K', E_2[p^n])$$

$$\overset{\text{cup}}{\longrightarrow} \bigoplus_{K'/K} H^2(K', E_1[p^n] \otimes E_2[p^n]) \overset{N}{\longrightarrow} H^2(K, E_1[p^n] \otimes E_2[p^n]),$$

where K' runs through all finite extensions of K, δ_n is the connecting homomorphism, and N is the norm map. For each finite extension K'/K, by [Ser79, Chap. XIV, Proposition 5] and $\mu_{p^n} \subset K'$ we have the following commutative diagram:

$$H^1(K', E_1[p^n]) \otimes H^1(K', E_2[p^n]) \overset{\text{cup}}{\longrightarrow} H^2(K', E_1[p^n] \otimes E_2[p^n])$$

$$\overset{\simeq}{\longrightarrow} H^2(K', E_1[p^n] \otimes E_2[p^n])$$

$$\overset{\mu_{p^n}^{\oplus 4}}{\longrightarrow} \mu_{p^n}^{\oplus 4}$$

where the lower horizontal map is the direct sum of four Hilbert symbols. Thus the study of $T(X)/p^n$ boils down to the calculation of the image of the composition

$$\bigoplus_{K'/K} E_1(K') \otimes E_2(K') \overset{\delta_n}{\longrightarrow} \left(\left(K'/\mathbb{Q}_p\right)^{\oplus 2} \otimes \left(K'/\mathbb{Q}_p\right)^{\oplus 2}\right) \overset{(\ ,)_{p^n}^{\oplus 4}}{\longrightarrow} \mu_{p^n}^{\oplus 4}$$

for each finite extension K'/K.

Theorem 4.1. Let E_1, E_2 be elliptic curves defined over K. Assume that their p^n-torsion points are K-rational. Put $X = E_1 \times E_2$. Then $T(X)/p^n$ has the following structure:

(1) If both E_1 and E_2 have ordinary good reduction over K, then $T(X)/p^n \simeq \mathbb{Z}/p^n$.

(2) If one of E_1, E_2 has split multiplicative reduction over K and the other has ordinary good reduction over K, then $T(X)/p^n \simeq (\mathbb{Z}/p^n)^{\oplus 2}$.

Proof. (1) For each finite extension K'/K, by Proposition 3.1, the image of (4.3) is isomorphic to the direct sum of the following four images:

$$(U_{K',n}^{(0)}, U_{K',n}^{(0)}, A)_{p^n}, (A, U_{K',n}^{(0)})_{p^n}, (A, A)_{p^n},$$

where A is the annihilator of $U_{K',n}^{(0)}$ in the pairing (2.1). By Proposition 2.5(3), we have

$$(U_{K',n}^{(0)}, U_{K',n}^{(0)}, A)_{p^n} = \mu_{p^n}.$$

By the definition of A, we have

$$(U_{K',n}^{(0)}, A)_{p^n} = (A, U_{K',n}^{(0)})_{p^n} = (A, A)_{p^n} = 1.$$

These images are independent of the finite extension K'/K. Therefore $T(X)/p^n$ is isomorphic to \mathbb{Z}/p^n by (4.2) and the injectivity of the cycle map (4.1).

(2) For each finite extension K'/K, the image of (4.3) is isomorphic to the direct sum of the following images: $(K'/p^n, U_{K',n}^{(0)})_{p^n}, ((K')^{\times}/p^n, A)_{p^n}, (1, U_{K',n}^{(0)})_{p^n}, (1, A)_{p^n}$ by (3.3) and Proposition 3.1. By Proposition 2.5(1), we have $(K'/p^n, U_{K',n}^{(0)})_{p^n} = \mu_{p^n}$. Since the group A is cyclic of order p^n and the Hilbert symbol is a nondegenerate pairing, we have $(K'/p^n, A)_{p^n} = \mu_{p^n}$. Hence $T(X)/p^n \simeq (\mathbb{Z}/p^n)^{\oplus 2}$ by an argument similar to (1).

When an elliptic curve E has supersingular good reduction over K, we have not succeeded in calculating the image of δ^n yet. It is also not clear whether the cycle map is injective in this case. However, when $n = 1$, the image was calculated by Kawachi (Remark 3.2(3)). Thus we have the following result.

Theorem 4.2. Let E_1, E_2 be elliptic curves defined over K and assume that their p-torsion points are K-rational. Put $X = E_1 \times E_2$. Then:

(1) If one of E_1, E_2 has split multiplicative reduction over K and the other has supersingular good reduction over K, then the image of $T(X)/p$ under the cycle map is isomorphic to $(\mathbb{Z}/p)^{\oplus 2}$.
(2) If one of E_1, E_2 has ordinary good reduction over K and the other has supersingular good reduction over K, then the image of $T(X)/p$ under the cycle map is isomorphic to $(\mathbb{Z}/p)^{\oplus 2}$.

(3) If both E_1 and E_2 have supersingular good reduction over K, then the image of $T(X)/p$ under the cycle map is isomorphic to

\[
\begin{cases}
(\mathbb{Z}/p)^{\oplus 2} & \text{if } t_1 \neq t_2 \text{ and } t_1 + t_2 \neq \frac{e}{p-1}, \\
\mathbb{Z}/p & \text{if } t_1 = t_2 \neq \frac{e}{2(p-1)} \text{ or } \left[t_1 \neq t_2 \text{ and } t_1 + t_2 = \frac{e}{p-1} \right], \\
0 & \text{if } t_1 = t_2 = \frac{e}{2(p-1)},
\end{cases}
\]

where e is the ramification index of K/\mathbb{Q}_p, and t_1 and t_2 are the respective invariants of E_1 and E_2 defined in (3.4).

Proof. Since the proofs of (1), (2) and (3) are similar, we shall prove only (1). We argue as in the proof of Theorem 4.1. By Remark 3.2(1), (3), it is sufficient to calculate the four images $(K^\times/p, U_{K,1}^{(1-pt+c_1)})_p$, $(K^\times/p, U_{K,1}^{(1+pt)})_p$, $(1, U_{K,1}^{(1-rt+c_1)})_p$, and $(1, U_{K,1}^{(1+rt)})_p$. Since $1 \leq t < e/(p-1)$, we have $(K^\times/p, U_{K,1}^{(1-rt+c_1)})_p = (K^\times/p, U_{K,1}^{(1+rt)})_p = \mu_p$ by Proposition 2.5(1). Hence the image of $T(X)/p$ under the cycle map is isomorphic to $(\mathbb{Z}/p)^{\oplus 2}$.

Acknowledgements. The author wishes to thank Professor Takao Yamazaki for his valuable advice. He is also grateful to Professor Yuichiro Taguchi for his helpful comments.

References

Takashi Takemoto
Graduate School of Mathematics
Kyushu University
Fukuoka 819-0395, Japan
E-mail: takemoto@math.kyushu-u.ac.jp, subcaptain7@gmail.com

*Received on 30.5.2007
and in revised form on 19.4.2011*