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1. Presentation

1.1. The Beckmann–Black problem. This paper is about a question
in inverse Galois theory known as the Beckmann–Black problem and which
we denote by BB. More precisely, if K is a field and G is a finite group,
then the BB problem asks whether each Galois extension E/K of the group
G is the specialization of some regular Galois extension F/K(T ) of G at
some unramified point t0 ∈ P1(K). Recall that “regular” means that F ∩K
= K. Briefly, we will say “a G-extension of a group G” for a regular Ga-
lois extension of G. And if F/K(T ) is a G-extension F/K(T ) of G defined
over K, then we define the specialization of F/K(T ) at t0, denoted by Ft0 ,
to be the residue field of F at some point over t0 (see §1.3.3).

The BB problem is known to have a positive answer in the following
situations:

• G is a symmetric group (Beckmann [Be] if K is a number field, Black
[Bl2] for an arbitrary field).

• G is an abelian group (Beckmann [Be] and Black [Bl1] if K is a number
field, Dèbes [De1] for an arbitrary field).
• G is the dihedral group Dn of order 2n when n is odd (Black [Bl1]).
• G is a finite group and K is P(seudo) A(lgebraically) C(losed) [De1].

Recall that a field K is PAC if and only if each geometrically irre-
ducible variety V defined overK has infinitely manyK-rational points.
Moreover P. Dèbes proves in [De1] this stronger version of BB: any
Galois extension E/K is the specialization of any G-extension of K(T )
of G at infinitely many unramified K-rational points.
• K is an ample field, i.e. each geometrically irreducible smooth curve
C defined over K has infinitely many K-rational points provided that
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C(K) (the set of all K-rational points on C) is not empty (Colliot-
Thélène [CT] in characteristic 0, Moret-Bailly [MB2] and Haran–Jar-
den [HJ] in general).

1.2. Main result. The goal of this paper is to prove the following
statement:

Theorem 1.1. Let G be a finite group, H be a subgroup of G, K be a
number field, E/K be a Galois extension of the group H, t0 ∈ P1(K) be a
fixed point and S be a finite set of finite places of K. Then there exists a
finite Galois extension L/K totally split in Kv for all v ∈ S and a G-exten-
sion F/L(T ) of G such that the specialization Ft0/L at T = t0 satisfies the
following:

(1) Ft0/L is a Galois extension of H isomorphic to EL/L.
(2) The v-completion Ft0Kv/Kv is isomorphic to EKv/Kv for each v∈S.

The special case when S = ∅ and G = H asserts that the BB problem
has a positive answer over some finite extension L of K, while conclusion
(2) in case S 6= ∅ shows that the problem can be solved locally, i.e. after
scalar extension to any given completion of K. Theorem 1.1 shows in fact
that these two conclusions, local and global, can be combined.

The following statement provides two further conclusions: the first one is
a uniformizing moduli space version (to be compared with the main result
of B. Deschamps [Des]): we show that the G-extensions F/L(T ) from Theo-
rem 1.1 can all be found on a curve on a Hurwitz space (the same for all S).
The second one considers the more general case where K is a Hilbertian
field (1) of characteristic 0.

Theorem 1.1 (continued).

(3) The G-extensions F/L(T ) can be constructed in such a way that the
branch point number r and the ramification type C (2) are inde-
pendent of S. That is, the corresponding point on the moduli space
lies on the same Hurwitz space Hr(G,C) (3). More precisely, these
points can all be picked on a curve C contained in Hr(G,C) and
for a given S, infinitely many points from C provide a G-extension
F/L(T ) as in Theorem 1.1.

(4) In the special situation S = ∅, the global conclusion (1) holds more
generally if K is a Hilbertian field of characteristic 0.

(1) A field K is said to be Hilbertian if for each irreducible polynomial f(T, Y ) ∈
K(T )[Y ], there are infinitely many t ∈ K such that the specialized polynomial f(t, Y ) is
irreducible in K[Y ] (see [V]).

(2) For definition, see §1.3.1.

(3) For more details, see §1.3.4.
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1.3. Preliminary reminders

1.3.1. Ramification type of G-extensions. Let G be a finite group, K be
an algebraically closed field of characteristic 0, and F/K(T ) be a G-extension
of group G. Denote the unordered set of all branch points of this extension
by t = {t1, . . . , tr}, which can be viewed as a K-rational divisor of P1.

With each j = 1, . . . , r, we can associate a conjugacy class Cj of the
group G as follows: The point tj is a branch point of our G-extension, so
its inertia groups are conjugate and cyclic of order equal to the ramification
index. Given one of these inertia groups Ij , an element σ ∈ Ij is said to
be a distinguished generator of Ij if σ(π)/π = e2πi/ej , where π is equal to
(T − tj)1/ej . Then all the distinguished generators can be shown to be in the
same conjugacy class of G: this is the conjugacy class Cj .

Denote by C = (C1, . . . , Cr) the ramification type of F/K(T ). We refer
to [De2, Chapter 3] for more details.

By branch points and ramification type of some G-extension E/K(T )
over some non-algebraically closed field K of characteristic 0 we mean those
of the G-extension EK(T )/K(T ) (in a given algebraic closure of K(T )).

1.3.2. The fundamental group. Let r ≥ 1 be an integer and K be a field
of characteristic 0. Denote by K an algebraic closure of K and by GK the
absolute Galois group of K. Let Ur be the variety of all unordered r-uples
t = {t1, . . . , tr} of (P1)r such that ti 6= tj for all 1 ≤ i 6= j ≤ r. We fix an
algebraic closure K(T ) of K(T ). Take t ∈ Ur(K). The fundamental group
of P1 \ t is defined as follows:

Denote by Ωt the maximal Galois extension of K(T ) unramified above
P1 \ t. Then the geometric fundamental group, π1(P1 \ t)K , of P1 \ t is the
Galois group of Ωt/K(T ). Moreover, as t ∈ Ur(K), it follows that Ωt/K(T )
is a Galois extension. By definition, its Galois group is the K-fundamental
group of P1 \ t and it is denoted by π1(P1 \ t)K .

Ωt

π1(P1\t)K

π1(P1\t)K

																	

K(T )

GKwwwwwwwww

K(T )

Moreover, the following exact sequence (given by Galois theory) is split
as each K-rational point t0 ∈ P1(K)\t provides a section st0 of the canonical
surjection of this sequence:
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1 // π1(P1 \ t)K // π1(P1 \ t)K // GK //

st0

��
1

For more details, we refer to [De2, Chapter 3].

1.3.3. Specialization. Let G be a finite group, K be a field of char-
acteristic 0, and F/K(T ) be a G-extension of group G with a K-rational
branch divisor t. This G-extension corresponds to some epimorphism φ :
π1(P1 \ t)K → G and the extension FK/K(T ) corresponds to the restric-
tion φ : π1(P1 \ t)K → G of φ to π1(P1 \ t)K ; it is still surjective as F/K is
a regular extension. Let t0 ∈ P1(K) \ t be a K-rational point and consider
the section st0 corresponding to this point.

1 // π1(P1 \ t)K //

φ

��

π1(P1 \ t)K //

φ

��

GK //

st0

��
1

G G

The specialization Ft0 of F/K(T ) at T = t0 (i.e. the residue field of
F at some prime above t0 in the extension F/K(T )) corresponds to the
homomorphism φ ◦ st0 ([De2, Proposition (2.1)]). More precisely, Ft0 is the
fixed field in K of ker(φ ◦ st0). In particular, the specialization Ft0/K is a
Galois field extension of the group Im(φ ◦ st0). For more details, we refer to
[De2, Chapter 3] and to [De1].

1.3.4. Hurwitz spaces. Assume that G is a finite group and r > 2 is an
integer. Denote by Hr(G) the moduli space of all G-extensions of the group
G with r branch points. This moduli space is a smooth (not necessarily
connected) variety defined over Q and, for all algebraically closed fields k of
characteristic 0, the k-rational points in Hr(G) correspond to the isomor-
phism classes of G-extensions F/k(T ) of G defined over k with r branch
points (see [FrV]).

We fix an r-tuple C = (C1, . . . , Cr) of conjugacy classes of G. We denote
by Hr(G,C) ⊆ Hr(G) the subset of all G-extensions F/k(T ) of G with r
branch points and of ramification type C. We refer to [V] for more details.

2. Proof of the main result. Let G be a finite group, K be a field of
characteristic 0, t0 ∈ P1(K) be a fixed point and E/K be a Galois extension
of a group H ⊂ G.

2.1. BB over a curve. The starting ingredient of the proof is the
following:
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(∗) Under the above hypotheses, there exist:

(1) a smooth projective geometrically irreducible curve C defined over K
with a K-rational point,

(2) a G-extension F/K(C)(T ) of the group G defined over the function
field K(C),

with the following property: For all x ∈ C(K) off a proper Zariski closed
subset Z, the extension F/K(C)(T ) specializes to some G-extension
Fx/K(x)(T ) of G which is unramified above T = t0 and whose spe-
cialization Fx,t0/K(x) at T = t0 is a Galois extension isomorphic to
E(x)/K(x).

The following diagram illustrates this double specialization process:

F Fx Fx,t0 ∼= E(x)

x∈C(K)\Z///o/o/o
T=t0 ///o/o/o

K(C)(T ) K(x)(T ) K(x)

This starting ingredient is essentially an arithmetic translation of The-
orem 2.7 of [MB2] which was expressed in geometric terms. In §3, we show
in a pure field arithmetic language how to deduce this result from the fact,
mentioned in the introduction, that the BB problem has a positive answer
if the base field is the complete (thus ample) field K((X)) of formal Laurent
series with coefficients in K.

Denote the branch point number of F/K(C)(T ) by r, the branch point
set by t = {t1, . . . , tr} ∈ P1(K(C)) and its ramification type by C =
(C1, . . . , Cr).

2.2. Proof of Theorem 1.1. Assume further K is a number field. The
next step uses the Chebotarev density theorem [FJ, Theorem (5.6)]: we can
find, for each g ∈ H, a finite valuation vg of K, not in S, unramified in
E/K and such that its decomposition group, Gal(Ev/Kv), is conjugate to
〈g〉 in H; and the vg can further be chosen pairwise distinct. Let S′ denote
the set of all places vg with g ∈ H, and S′′ the union of the set of places S
from the statement of Theorem 1.1 and the set S′.

Let KtotS′′
be the field of all totally S′′-adic algebraic numbers, i.e. of

all x ∈ K such that all K-conjugates of x lie in the completion Kv, for all
v ∈ S′′. As C contains a K-rational point and K ⊆ KtotS′′

, the set C(KtotS′′
)

is not empty. The field KtotS′′
is known to be ample [MB1]. Using this fact,

we deduce that C(KtotS′′
) is an infinite set.

Fix x ∈ C(KtotS′′
) \ Z, let L be the Galois closure of K(x), and denote

the specialization Fx by F. From statement (∗), F/L(T ) is a G-extension of
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G whose specialization at T = t0 is a Galois extension isomorphic to EL/L.
As L ⊆ KtotS′′ ⊆ Kv, the extension Ft0Kv/Kv is isomorphic to EKv/Kv

(for all v ∈ S). This completes the proof of (2).
It remains to prove that Ft0/L is a Galois extension of H. In fact, we

know that Gal(Ft0/L) is a subgroup of H and for each v ∈ S′′ it contains
Gal(Ft0Kv/Kv) up to conjugation: more precisely, there exists σv ∈ H such
that

〈g〉σv ⊆ H.

Via a classical lemma due to Jordan, which states that there is no proper
subgroup of H that meets all conjugacy classes of H, we conclude that
H = Gal(Ft0/L). This ends the proof of (1)–(2) of Theorem 1.1.

2.3. Proof of Theorem 1.1 (continued). Up to enlarging the Zariski
closed subset Z, we can claim that F/L(T ) has the same number of branch
points r and the same ramification type C as F/K(C)(T ). Thus if the field
L depends on S, the number of branch points and the ramification type of
F/L(T ) do not. Furthermore, the constructed extensions F/L(T ) correspond
to points on the curve C which is contained in the Hurwitz space Hr(G,C).
This completes the proof of (3).

Finally we prove property (4). Assume that K is more generally a Hilber-
tian field of characteristic 0. From (∗), we have the following property: for
all x ∈ C(K) \ Z, there exists a G-extension F/K(x)(T ) of G defined over
K(x) such that its specialization at T = t0 is a Galois extension isomorphic
to E(x)/K(x). To prove our last claim, it suffices to find infinitely many
points x ∈ C(K)\Z such that the extensions K(x)/K and E/K are linearly
disjoint (then E(x)/K(x) is a Galois extension of the group H).

In fact, let h(w, z) = 0 be an affine equation of C with h(W,Z) ∈ K[W,Z]
irreducible in K[W,Z]. As E is a finite extension of the Hilbertian field K,
we can find infinitely many points w0 in K (and not only in E) such that
h(w0, Z) ∈ K[Z] is irreducible in E[Z] ([V, Corollary (1.8)]).

Pick z0 ∈ K such that h(w0, z0) = 0. As Z is a finite set and infinitely
many w0 ∈ K satisfy this equality, there exist infinitely many points x :=
(w0, z0) ∈ C(K) \Z (with w0 ∈ K) such that h(w0, Z) ∈ K[Z] is irreducible
in E[Z]. We deduce that [K(x) : K] = degZ(h) = [E(x) : E]. So the
extensions K(x)/K and E/K are linearly disjoint.

3. Proof of BB over a curve

3.1. The starting result. The BB problem is known to have a posi-
tive answer over any complete valued field. This has been proved by Colliot-
Thélène [CT] in characteristic 0, and, more generally, by Moret-Bailly [MB2]
and Haran–Jarden [HJ], thanks to some deformation techniques. The com-
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plete valued field we will be using is the field K((X)) of formal Laurent
series with coefficients in K.

As E/K is a Galois extension of H, the extension E((X))/K((X)) is
also a Galois extension of H. From the paper [HJ] which uses as we do
field-theoretic language, there exists a G-extension FK((X))/K((X))(T ) of G
unramified above T = t0 whose specialization at T = t0 is a Galois extension
of H isomorphic to E((X))/K((X)). The construction of FK((X)) makes it
possible to assume further that all branch points of FK((X))/K((X))(T ) lie
in P1(N) where N = K((X)) ∩K(X).

Furthermore, by Section 1.3.3, there exists a split exact sequence of fun-
damental groups

1 // π1(P1 \ t)
K((X))

//

φ

��

π1(P1 \ t)K((X))
//

φ

��

GK((X)) //

st0

}}

1

G G

As the specialization of FK((X))/K((X))(T ) at T = t0 is a Galois exten-
sion of K((X)) with the group H isomorphic to E((X))/K((X)), the image
of the homomorphism φ ◦ st0 is exactly H.

FK((X)) E((X))

T=t0∈P1(K)−−−−−−−−→
K((X))(T ) K((X))

3.2. Descent to N = K((X)) ∩ K(X). We use an argument (see
[DeDes, Theorem (3.4)]) showing that the natural restriction morphism
π1(P1 \ t)K((X)) → π1(P1 \ t)N is an isomorphism.

Indeed, first, the restriction morphism π1(P1 \ t)
K((X))

→ π1(P1 \ t)N
is an isomorphism (via Riemann’s existence theorem). Second, the restric-
tion morphism ρ : GK((X)) → GN is also an isomorphism. We deduce that
the natural restriction morphism γ : π1(P1 \ t)K((X)) → π1(P1 \ t)N is an
isomorphism.

Furthermore, as t0 is a point in P1(K) \ t, the section st0 induces a
section, still denoted by st0 , of π1(P1 \ t)N → GN .
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1 // π1(P1 \ t)
K((X))

//

∼=
��

π1(P1 \ t)K((X))
//

γ

��

GK((X)) //

ρ∼=
��

st0

}}

1

1 // π1(P1 \ t)N // π1(P1 \ t)N // GN //

st0

aa
1

This implies that there exists a unique G-extension FN/N(T ) defined
over N of the group G such that FNK((X)) = FK((X)). Namely this exten-
sion, FN/N(T ), corresponds to the epimorphism φN = γ−1 ◦φ : π1(P1 \ t)N
→ G. Furthermore, the specialization FN,t0/N of FN/N(T ) at T = t0 is
a Galois extension of H such that FN,t0K((X)) equals the specialization of
FK((X)) at t0. By construction of FK((X)), we obtain FN,t0K((X)) = E((X)).
On the other hand, as ρ is an isomorphism, we deduce that FN,t0 = EN.

To sum up, we now have a G-extension FN/N(T ) defined over N of the
group G whose specialization FN,t0/N at T = t0 is a Galois extension of H
isomorphic to EN/N.

FN EN

T=t0∈P1(K)−−−−−−−−→
N(T ) N

3.3. Descent to the curve C. We will prove the following claim:

(∗∗) There exists a finite extension L/K(X) with L ⊂ N satisfying the
following property:

(i) There exists a G-extension FL/L(T ) of G such that FLN = FN .
(ii) The specialization FL,t0/L of FL/L(T ) at t0 is a Galois extension

of H such that FL,t0 = EL.

In fact, denote by y(T ) a primitive element of the extension FN/N(T )
integral over N [T ]. All conjugates of y(T ) over N(T ) can be expressed as
rational functions of T and y(T ) with coefficients in N. Consider the field L1

generated over K(X) by all coefficients of such expressions together with the
coefficients in N of the irreducible polynomial of y(T ) over N(T ). This field,
L1, is a finite extension of K(X) contained in N. We deduce that FL1 =
L1(T, y(T )) satisfies condition (i) of the claim above (with L1 replacing L).

To study condition (ii), we view y(T ) as a formal power series∑
j≥0

aj(T − t0)j ∈ L1[[T − t0]].
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This is possible because t0 is unramified in FL1/L1(T ). Then we have FL1,t0

= L1(a), where a = {a0, a1, . . . }. As FL1,t0/L1 is a finite extension, we can
find a finite subset aI of a such that L1(a) = L1(aI). We also have

N(aI) = FN,t0 = EN.

Consequently, there exists a finite subset N0 ⊂ N such that

L1(N0)(aI) ⊂ L1(N0)E.

Finally, let α be a primitive element of E/K. As N(aI) = FN,t0 = EN,
we can find a finite subset N1 ⊂ N such that α ∈ L1(N1)(aI).

Set L = L1(N0 ∪N1) and FL = FL1L. It is easily checked that L(aI) =
EL and so FL,t0 = LE. We conclude that (∗∗) is satisfied for this L and
this FL.

The containment L ⊆ N = K((X)) ∩ K(X) implies that L is regular
over K and so is the function field of a smooth projective geometrically
irreducible curve C defined over K. It follows from L = K(C) ⊆ K((X))
that C(K) is not empty.

(∗∗) above shows that there exists a G-extension F/K(C)(T ) of G such
that E(C)/K(C) is the specialization of F/K(C)(T ) at T = t0.

F E(C)
T=t0∈P1(K)−−−−−−−−→

K(C)(T ) K(C)

3.4. Specialization to points on the curve C. As the extension
F/K(C)(T ) is regular, the Bertini–Noether theorem [FJ, Proposition (8.8)]
can be applied. Thus there exists a Zariski closed subset Z of C such that for
each x ∈ C(K)\Z, the extension F/K(C)(T ) specializes to some G-extension
Fx/K(x)(T ) of G, unramified at T = t0. Furthermore, the specialization
Fx,t0/K(x) of Fx/K(x)(T ) at T = t0 is a Galois extension such that Fx,t0L =
Ft0 = EL.

To finish the proof, we should show that Fx,t0 = EK(x). Indeed, we have,
first, Fx,t0 = Fx,t0L ∩K(x) because the extensions Fx,t0/K(x) and L/K(x)
are linearly disjoint. As Fx,t0L = EL, we deduce that Fx,t0 = EL ∩K(x).
But EL ∩ K(x) = EK(x) because the extensions EK(x)/K(x) and L/K
are linearly disjoint. Thus Fx,t0 = EK(x) = E(x).
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Dèbes for his help in providing me with useful comments, explanations and
suggestions as well as for his support and encouragement.



274 N. Ghazi

References

[Be] S. Beckmann, Is every extension of Q the specialization of a branched covering?,
J. Algebra 164 (1994), 430–451.

[Bl1] E. Black, Arithmetic lifting of dihedral extensions, ibid. 203 (1998), 12–29.
[Bl2] —, Deformations of dihedral 2-group extensions of fields, Trans. Amer. Math.

Soc. 351 (1999), 3229–3241.
[CT] J.-L. Colliot-Thélène, Rational connectedness and Galois cover of projective line,

Ann. of Math. 151 (2000), 359–373.
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Norm. Sup. 22 (1989), 181–195.

[MB2] —, Construction de revêtements de courbes pointées, J. Algebra 240 (2001),
505–534.

[V] H. Völklein, Groups as Galois Groups, Cambridge Stud. Adv. Math. 53, Cam-
bridge Univ. Press, Cambridge, 1996.

Nour Ghazi
Laboratoire Paul Painlevé, Mathématiques
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