Exponential sums of the form $\sum \chi(x)^{a x} \zeta_{m}^{b x}$

by

S. Gurak (San Diego, CA)

This paper is dedicated to Basil Gordon on the occasion of his 75th birthday

1. Introduction. For any integer $m>1$ fix $\zeta_{m}=\exp (2 \pi i / m)$ and let \mathbb{Z}_{m}^{*} denote the group of reduced residues modulo m. Let a be any integer satisfying $a \equiv 0(\bmod p-1)$ for each prime $p \mid m$, and consider an exponential sum of the form

$$
\begin{equation*}
S(a, b, \chi, m)=\sum_{x \in \mathbb{Z}_{m}^{*}} \chi(x)^{a x} \zeta_{m}^{b x} \tag{1}
\end{equation*}
$$

where χ is any numerical character defined modulo m and b any integer. The sum (1) is readily expressed as a product of such sums defined for the prime powers dividing m. Indeed, if $m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ is a product of distinct prime powers, decompose $\chi=\prod_{i=1}^{r} \chi_{i}$ as a product of its p-components. Specifically, for any x prime to p_{i}, set $\chi_{i}(x)=\chi\left(x^{\prime}\right)$ with $x^{\prime} \equiv x\left(\bmod p_{i}^{\alpha_{i}}\right)$ and $x^{\prime} \equiv 1\left(\bmod m_{i}\right)$ where $m_{i}=m p_{i}^{-\alpha_{i}}(1 \leq i \leq r)$. Then

Proposition 1. We have

$$
S(a, b, \chi, m)=\prod_{i=1}^{r} S\left(a, b c_{i}, \chi_{i}, p_{i}^{\alpha_{i}}\right)
$$

where the c_{i} are integers satisfying $c_{i} m_{i} \equiv 1\left(\bmod p_{i}^{\alpha_{i}}\right)$ for $1 \leq i \leq r$.
Proof. The choice of the c_{i} gives $c_{1} m_{1}+\cdots+c_{r} m_{r} \equiv 1(\bmod m)$. Thus a typical term of $\prod_{i=1}^{r} S\left(a, b c_{i}, \chi_{i}, p_{i}^{\alpha_{i}}\right)$ has the form

$$
\chi_{1}\left(x_{1}\right)^{a x_{1}} \cdots \chi_{r}\left(x_{r}\right)^{a x_{r}} \zeta_{p_{1}^{\alpha_{1}}}^{b c_{1} x_{1}} \cdots \zeta_{p_{r}}^{b c_{r} x_{r}}=\chi_{1}(x)^{a x} \cdots \chi_{r}(x)^{a x} \zeta_{m}^{b x}=\chi(x)^{a x} \zeta_{m}^{b x}
$$

with $x=c_{1} m_{1} x_{1}+\cdots+c_{r} m_{r} x_{r}$, one for each choice of $x_{i} \in \mathbb{Z}_{p_{i}^{\alpha_{i}}}^{*}(1 \leq i \leq r)$, since $\chi_{i}^{a m_{j}}=1$ for $1 \leq i \neq j \leq r$. But as the x_{i} independently run
through $\mathbb{Z}_{p_{i}^{\alpha_{i}}}^{*}(1 \leq i \leq r), x$ runs through \mathbb{Z}_{m}^{*}. Thus $\prod_{i=1}^{r} S\left(a, b c_{i}, \chi_{i}, p_{i}^{\alpha_{i}}\right)=$ $S(a, b, \chi, m)$.

The above result reduces the determination of any sum (1) to the prime power case. My principal aim here is to explicitly evaluate the sums

$$
\begin{equation*}
S(a, b, \chi, q)=\sum_{x \in \mathbb{Z}_{q}^{*}} \chi(x)^{a x} \zeta_{q}^{b x} \tag{2}
\end{equation*}
$$

for prime powers $q=p^{\alpha}$ with $a \equiv 0(\bmod p-1)$. While there is an extensive literature [4] concerning exponential sums of the form $\sum \chi(g(x)) \zeta_{q}^{f(x)}$ for suitable types of functions $f(x)$ and $g(x)$, the choice $f(x)=b x$ and $g(x)=$ $\exp \left(x \log x^{a}\right)$ made here seems to have been overlooked. Indeed, I have found an elegant explicit evaluation of the sums (2).

To proceed I first make some elementary observations. When $q=p$, one trivially obtains

$$
S(a, b, \chi, p)= \begin{cases}p-1 & \text { if } b \equiv 0(\bmod p) \\ -1 & \text { if } b \not \equiv 0(\bmod p)\end{cases}
$$

and for $b \equiv 0(\bmod p)$ one finds the following reduction formula:
Proposition 2. For $b \equiv 0(\bmod p)$ in (2) with $\alpha>1$,

$$
S\left(a, b, \chi, p^{\alpha}\right)= \begin{cases}p S\left(a / p, b / p, \chi^{p}, p^{\alpha-1}\right) & \text { if } a \equiv 0(\bmod p) \\ p S\left(a, b / p, \chi, p^{\alpha-1}\right) & \text { if } \chi \text { is imprimitive modulo } p^{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. First note that any $0<x<p^{\alpha}, p \nmid x$, can be uniquely expressed as $x=i+j p^{\alpha-1}$ for $0<i<p^{\alpha-1}, 0 \leq j<p$ with $p \nmid i$. Thus

$$
\begin{aligned}
S\left(a, b, \chi, p^{\alpha}\right) & =\sum_{i=1, p \nmid i}^{p^{\alpha-1}} \sum_{j=0}^{p-1} \chi\left(i+j p^{\alpha-1}\right)^{a\left(i+j p^{\alpha-1}\right)} \zeta_{p^{\alpha}}^{b\left(i+j p^{\alpha-1}\right)} \\
& =\sum_{i=1, p \nmid i}^{p^{\alpha-1}} \chi(i)^{a i} \zeta_{p^{\alpha}}^{b i} \sum_{j=0}^{p-1} \chi\left(1+\bar{i} j p^{\alpha-1}\right)^{a i}
\end{aligned}
$$

where \bar{i} denotes the multiplicative inverse of i modulo p^{α}. Since we have $\chi\left(1+\bar{i} j p^{\alpha-1}\right)^{a i}=\zeta_{p}^{\lambda \bar{i} j}$ for some integer λ,

$$
\sum_{j=0}^{p-1} \chi\left(1+\bar{i} j p^{\alpha-1}\right)^{a i}=\sum_{j=0}^{p-1} \zeta_{p}^{a j \lambda}= \begin{cases}0 & \text { if } a \lambda \not \equiv 0(\bmod p) \\ p & \text { if } a \lambda \equiv 0(\bmod p)\end{cases}
$$

If $a \equiv 0(\bmod p)$ one finds $S\left(a, b, \chi, p^{\alpha}\right)=p S\left(a / p, b / p, \chi^{p}, p^{\alpha-1}\right)$. If $\lambda \equiv 0$ $(\bmod p)$ then χ is imprimitive and may be defined modulo $p^{\alpha-1}$, which yields $S\left(a, b, \chi, p^{\alpha}\right)=p S\left(a, b / p, \chi, p^{\alpha-1}\right)$. In the remaining cases $S\left(a, b, \chi, p^{\alpha}\right)=0$.

In view of the above observations, one may assume $b \not \equiv 0(\bmod p)$ in (2) with χ primitive modulo p^{α} for $\alpha>1$. I will show that such a non-zero sum (2) is up to conjugacy just

$$
\begin{equation*}
p^{\alpha / 2} \sum_{x \in H} \zeta_{q}^{x} \quad \text { or } \quad\left(\frac{-2}{p}\right) p^{(\alpha-1) / 2} i^{*} \sqrt{p} \sum_{x \in H}\left(\frac{x}{p}\right) \zeta_{q}^{x} \tag{3}
\end{equation*}
$$

according as α is even or odd when p is odd, where H is the group of $(p-1)$-roots of unity modulo q. For $p=2$ it is a conjugate of

$$
\begin{equation*}
2^{\alpha / 2} 2 i \sin \frac{2 \pi}{q} \quad \text { or } \quad 2^{\alpha / 2} 2 \cos \frac{2 \pi}{q} \tag{4}
\end{equation*}
$$

of algebraic degree $2^{\alpha-2}$ with minimal polynomial easy to determine (see [7], for instance). The sum (3) is an integer multiple of a classical Gaussian period or a quadratic twist of such of algebraic degree $p^{\alpha-1}$, whose minimal polynomial has recently been studied in [8]. In either case, the expressions (3) and (4) lead to a bound

$$
|S(a, b, \chi, q)| \leq(p-1) \sqrt{q} \quad \text { or } \quad 2 \sqrt{q}
$$

according as q is odd or even. This bound is of the same order of magnitude obtained by Cochrane [3] for sums of the form $\sum \chi(g(x)) \zeta_{q}^{f(x)}$ for rational functions $f(x)$ and $g(x)$ with integer coefficients, when the associated critical point congruence has $p-1$ zeros, all of multiplicity one (chiefly, Theorems 1.1 and 6.1 when $t=0$ in [3]).

My principal tool in determining the explicit values for (2) is an adaptation of the classical method of Salié [12] for Kloosterman sums, together with basic facts about the p-adic exponential and logarithm functions and primitive characters. The case for odd primes p is treated first, with sums (2) explicitly evaluated in Section 2. The case $p=2$ is considered separately in Section 3. In the final section of the paper, I explicitly evaluate certain incomplete sums for odd prime powers $q=p^{\alpha}$ with $\alpha>1$ and primitive characters χ modulo q of the form

$$
\begin{equation*}
\sum_{x=1, p \nmid x}^{\phi(q) / f} \chi(x)^{a x} \zeta_{q}^{b x}, \quad a, b \not \equiv 0(\bmod p) \tag{5}
\end{equation*}
$$

with $f=\operatorname{gcd}(a \phi(q) / o(\chi), p-1)$ where $o(\chi)$ is the order of χ. There is a natural extension of the theory developed here for analogous exponential sums defined over residue rings of algebraic integers. This generalization will appear in a sequel.

It is an interesting exercise to adapt Cochrane's methods in [3] to the situation here to evaluate (2) using p-adic and algebraic techniques, though the more direct approach I employ here is simpler and particularly conve-
nient for evaluating the incomplete sums in (5). I include a discussion of the relationship, at least for odd primes p, at the end of Section 2.

Lastly, I should mention that my initial interest in the sums (2) and (5) arose from the problem of determining hyper-Kloosterman sums. The results here are applied in [9] to explicitly evaluate the multi-dimensional Kloosterman sums, thus generalizing the classical result of Salié [12] for prime powers in the one-dimensional case.
2. Evaluation of $\sum \chi(x)^{a x} \zeta_{q}^{b x}$ for q odd. Here I consider the sums in (2) with $b \not \equiv 0(\bmod p)$ when $q=p^{\alpha}$ is odd and $\alpha>1$. Fix a character ψ modulo q which generates the group of all numerical characters defined modulo q and is normalized so that

$$
\begin{align*}
\psi\left(1+p^{s}\right) & =\zeta_{p^{s}}^{-1} & \text { for } \alpha=2 s \\
\psi\left(1+p^{s}+\left(\frac{p+1}{2}\right) p^{2 s}\right) & =\zeta_{p^{s+1}}^{-1} & \text { for } \alpha=2 s+1 \tag{6}
\end{align*}
$$

Set $s^{\prime}=s$ or $s+1$ according as α is even or odd. Any given character χ defined modulo q equals ψ^{v} for some integer $v, 0 \leq v<\phi(q)$. Such a character χ is itself normalized if and only if $v \equiv 1\left(\bmod p^{s^{\prime}}\right)$.

Now choose a primitive root g for q, and let k be the least positive integer satisfying $\psi(g)=\zeta_{\phi(q)}^{k}$. The following lemma and proposition will be crucial in the determination of the sums (2). Here the multiplicative inverse of any x in \mathbb{Z}_{q}^{*} will be denoted by \bar{x}. The Legendre symbol is denoted by (\bar{p}) and $i^{*}=i^{(p-1)^{2} / 4}$.

Lemma 1. With a primitive root g for q chosen as above,

$$
g^{(p-1) p^{s-1} y} \equiv \begin{cases}1-y k p^{s}(\bmod q) & \text { if } \alpha=2 s \\ 1-y k p^{s}-k y(p-k y) p^{2 s} / 2(\bmod q) & \text { if } \alpha=2 s+1\end{cases}
$$

for any integer y.
Proof. I consider the case $\alpha=2 s$ first. By the choice of ψ and g, $\psi\left(g^{\left.-(p-1) p^{s-1} \bar{k}\right)}=\zeta_{p^{s}}^{-1}\right.$. But ψ is an isomorphism between \mathbb{Z}_{q}^{*} and the group of $\phi(q)$-roots of unity, so from $(6), g^{-(p-1) p^{s-1} \bar{k}} \equiv 1+p^{s}(\bmod q)$. From the p-adic negative binomial series

$$
\begin{equation*}
(1+x)^{-r}=\sum_{n=0}^{\infty}(-1)^{n}\binom{n+r-1}{r-1} x^{n} \tag{7}
\end{equation*}
$$

one finds for any integer y that

$$
g^{(p-1) p^{s-1} y}=g^{-(p-1) p^{s-1} \bar{k}(-k y)} \equiv\left(1+p^{s}\right)^{-k y} \equiv 1-k y p^{s}(\bmod q)
$$

Next consider the case $\alpha=2 s+1>1$. Arguing as above, one finds from (6) that

$$
g^{-(p-1) p^{s-1} \bar{k}} \equiv 1+p^{s}+\frac{p+1}{2} p^{2 s}(\bmod q)
$$

Using (7) one now finds $g^{(p-1) p^{s-1} y}=g^{-(p-1) p^{s-1} \bar{k}(-k y)}$ congruent modulo q to

$$
\left(1+p^{s}+\frac{p+1}{2} p^{2 s}\right)^{-k y} \equiv 1-k y p^{s}-k y \frac{p-k y}{2} p^{2 s}
$$

The proof of the lemma is now complete.
Now consider the congruence

$$
\begin{equation*}
p k v t \equiv v-1\left(\bmod p^{s^{\prime}}\right) \tag{8}
\end{equation*}
$$

When $v \equiv 1(\bmod p)$ let t be its unique solution with $0 \leq t<p^{s^{\prime}-1}$, and set

$$
\begin{equation*}
t(v)=g^{(p-1) t}(1+p k v t) \tag{9}
\end{equation*}
$$

With notation as above,
Proposition 3. For $\alpha \geq 2$,

$$
\begin{aligned}
& \sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q}^{g^{(p-1) j}(1+p k v j)} \\
& \quad= \begin{cases}p^{\alpha / 2} \zeta_{q}^{t(v)} & \text { if } \alpha \text { is even and } v \equiv 1(\bmod p), \\
\left(\frac{-2}{p}\right) i^{*} \sqrt{p} p^{(\alpha-1) / 2} \zeta_{q}^{t(v)} & \text { if } \alpha \text { is odd and } v \equiv 1(\bmod p), \\
0 & \text { if } v \not \equiv 1(\bmod p),\end{cases}
\end{aligned}
$$

with $t(v)$ as given in (9).
Proof. Noting that one may uniquely write each j in the summation as $j=t+i p^{s^{\prime}-1}$ for $0 \leq t<p^{s^{\prime}-1}, 0 \leq i<p^{s}$, one has

$$
\begin{aligned}
\sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q}^{g^{(p-1) j}(1+p k v j)} & =\sum_{t=0}^{p^{s^{\prime}-1}-1} \sum_{i=0}^{p^{s}-1} \zeta_{q}^{g^{(p-1)\left(t+i p^{s^{\prime}-1}\right)}\left(1+p k v t+p^{s^{\prime}} k v i\right)} \\
& =\sum_{t=0}^{p^{s^{\prime}-1}-1} \zeta_{q}^{g^{(p-1) t}(1+p k v t)} \sum_{i=0}^{p^{s}-1} \zeta_{q}^{g^{(p-1) t}\left(k p^{s^{\prime}} i\right)(v-1-p k v t)}
\end{aligned}
$$

since

$$
\begin{aligned}
g^{(p-1) p^{s^{\prime}-1} i}\left(1+p k v t+p^{s^{\prime}} k v i\right) & \equiv\left(1-i k p^{s^{\prime}}\right)\left(1+p k v t+p^{s^{\prime}} k v i\right) \\
& \equiv 1+p v k t+i k p^{s^{\prime}}(v-1-p k v t)(\bmod q)
\end{aligned}
$$

from Lemma 1. But

$$
\sum_{i=0}^{p^{s}-1} \zeta_{p^{s}}^{g^{(p-1) t} k i(v-1-p k v t)}= \begin{cases}p^{s} & \text { if } p k v t \equiv v-1\left(\bmod p^{s}\right) \tag{10}\\ 0 & \text { otherwise }\end{cases}
$$

Since $p k v t \equiv v-1\left(\bmod p^{s}\right)$ is solvable iff $v \equiv 1(\bmod p)$, the double sum above is zero when $v \not \equiv 1(\bmod p)$. When α is even and $v \equiv 1(\bmod p)$, the double sum above reduces to the single term $p^{s} \zeta_{q}^{g^{(p-1) t}(1+p k v t)}$, where t is the solution specified in (9). When α is odd and $v \equiv 1(\bmod p)$, the congruence $p k v t \equiv v-1\left(\bmod p^{s}\right)$ has p solutions, namely $t+y p^{s-1}(0 \leq y<p)$, where t is the solution specified in (9). In this case the double sum becomes

$$
\begin{equation*}
p^{s} \sum_{y=0}^{p-1} \zeta_{q}^{g^{(p-1)\left(t+y p^{s-1}\right)}\left(1+p k v t+p^{s} k v y\right)} \tag{11}
\end{equation*}
$$

which equals

$$
p^{s} \zeta_{q}^{g^{(p-1) t}(1+p k v t)} \sum_{y=0}^{p-1} \zeta_{p}^{-k^{2} y^{2} / 2}
$$

since by Lemma 1,

$$
\begin{aligned}
g^{(p-1) p^{s-1} y} & \left(1+p k v t+p^{s} k v y\right) \\
& \equiv\left(1-k y p^{s}-k y \frac{p-k y}{2} p^{2 s}\right)\left(1+p k v t+p^{s} k v y\right) \\
& \equiv 1+p k v t+p^{2 s}\left(\frac{v-1-p k v t}{p^{s}} k y\right)+p^{2 s}\left(\frac{1-2 v}{2} k^{2} y^{2}\right) \\
& \equiv 1+p k v t-p^{2 s} k^{2} y^{2} / 2(\bmod q)
\end{aligned}
$$

It follows from the standard evaluation $\sum_{y=0}^{p-1} \zeta_{p}^{d y^{2}}=\left(\frac{d}{p}\right) i^{*} \sqrt{p}$ for quadratic Gauss sums that the sum (11) equals

$$
p^{s} \zeta_{q}^{g^{(p-1) t}(1+p k v t)}\left(\frac{-2}{p}\right) i^{*} \sqrt{p}
$$

Thus, the result of the proposition holds in all the cases.
I note that the sum in Proposition 3 ordinarily depends on the choice of generator g and the value of v modulo $p^{\alpha-1}$. However, the special case $v \equiv 1\left(\bmod p^{s^{\prime}}\right)$ is exceptional. In this case $t=0$ in (9) so by Proposition 3 ,

Corollary 1. For $\alpha>1$ and $v \equiv 1\left(\bmod p^{s^{\prime}}\right)$,

$$
\sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q}^{g^{(p-1) j}(1+p k v j)}= \begin{cases}\sqrt{q} \zeta_{q} & \text { if } \alpha \text { is even } \\ \left(\frac{-2}{p}\right) i^{*} \sqrt{q} \zeta_{q} & \text { if } \alpha \text { is odd }\end{cases}
$$

independent of the choice of generator g.

Here are a couple of examples to illustrate Proposition 3 and the corollary above.

Example 1. Consider $q=27$ in Proposition 3 with primitive root $g=2$ and normalized character ψ in (6) satisfying $\psi(2)=\zeta_{18}^{5}$ with $k=5$. One finds for $v \equiv 1(\bmod 3)$ that

$$
\sum_{j=0}^{8} \zeta_{27}^{4^{j}(1+15 v j)}=3 i \sqrt{3} \zeta_{27}^{t(v)}
$$

with $t(v)$ given by

$$
\begin{array}{cccc}
v & 1 & 4 & 7 \\
\hline t(v) & 1 & 19 & 19
\end{array}
$$

It suffices to determine $t(v)$ for $v(\bmod 9)$ here by the remark above. For this example the values of $t(v)$ happen to be independent of the choice of generator g since $t(4)=t(7)$ in view of Corollary 1.

With $q=81$ in Proposition 3 and normalized character ψ in (6) satisfying $\psi(2)=\zeta_{54}^{11}$ with $k=11$, one finds for $v \equiv 1(\bmod 3)$ that

$$
\sum_{j=0}^{26} \zeta_{81}^{4^{j}(1+33 v j)}=81 \zeta_{81}^{t(v)}
$$

with $t(v)$ given by

v	1	4	7	10	13	16	19	22	25
$t(v)$	1	28	37	1	55	10	1	1	64

Example 2. Consider $q=343$ in Proposition 3 with primitive root $g=3$ and normalized character ψ in (6) satisfying $\psi(3)=\zeta_{294}^{71}$ with $k=71$. One finds for $v \equiv 1(\bmod 7)$ here that

$$
\sum_{j=0}^{48} \zeta_{343}^{3^{6 j}(1+154 v j)}=-7 i \sqrt{7} \zeta_{343}^{t(v)}
$$

with $t(v)$ given by

$$
\begin{array}{cccccccc}
v & 1 & 8 & 15 & 22 & 29 & 36 & 43 \\
\hline t(v) & 1 & 197 & 99 & 50 & 50 & 99 & 197
\end{array}
$$

In the examples above the values $t(v)$ all satisfy $t(v) \equiv 1\left(\bmod p^{2}\right)$, a relation that is readily confirmed to hold in general when p is odd.

I am ready to state the main result concerning the sums (2).
Theorem 1. Suppose $\chi=\psi^{v}$ in (2) where $a \equiv 0(\bmod p-1)$ and $b \not \equiv 0$ $(\bmod p)$ with $\alpha>1$. If $a v \not \equiv b(\bmod p)$ then $S(a, b, \chi, q)=0$ else $S(a, b, \chi, q)$

$$
= \begin{cases}p^{\alpha / 2} \sum_{x \in H} \zeta_{q}^{b x g^{(p-1) t}(1+p a \bar{b} v k t)} & \text { if } \alpha \text { is even } \\ \left(\frac{-2}{p}\right) p^{(\alpha-1) / 2} i^{*} \sqrt{p} \sum_{x \in H}\left(\frac{b x}{p}\right) \zeta_{q}^{b x g^{(p-1) t}(1+p a \bar{b} v k t)} & \text { if } \alpha \text { is odd }\end{cases}
$$

Here H is the group of $(p-1)$-roots of unity modulo q, and t satisfies

$$
p k a v t \equiv a v-b\left(\bmod p^{s^{\prime}}\right) \quad \text { with } 0 \leq t<p^{s^{\prime}-1}
$$

when $a v \equiv b(\bmod p)$.
Proof. First note that since $o\left(\chi^{a}\right) \mid q$,

$$
\sum_{x \in \mathbb{Z}_{q}^{*}} \psi^{v}(x)^{a x} \zeta_{q}^{b x}=\sum_{w=0}^{\phi(q)-1} \psi^{v}\left(g^{w}\right)^{a g^{w}} \zeta_{q}^{b g^{w}}
$$

which equals

$$
\sum_{i=0}^{p-2} \sum_{j=0}^{p^{\alpha-1}-1} \psi^{v}\left(g^{i p^{\alpha-1}+j(p-1)}\right)^{a g^{i p^{\alpha-1}+j(p-1)}} \zeta_{q}^{b g^{i p^{\alpha-1}+j(p-1)}}
$$

where each w is uniquely expressed modulo $\phi(q)$ as $w=i p^{\alpha-1}+j(p-1)$ with $0 \leq i<p-1,0 \leq j<p^{\alpha-1}$. This last sum in turn becomes

$$
\begin{aligned}
& \sum_{i=0}^{p-2} \sum_{j=0}^{p^{\alpha-1}-1} \psi^{v}\left(g^{i p^{\alpha-1}}\right)^{a g^{i p^{\alpha-1}} g^{j}(p-1)} \psi^{v}\left(g^{(p-1) j}\right)^{a g^{i p^{\alpha-1}} g^{j(p-1)}} \zeta_{q}^{b g^{i p^{\alpha-1}} g^{(p-1) j}} \\
& =\sum_{i=0}^{p-2} \sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q}^{g^{(p-1) j}(1+p k a \bar{b} v j) b g^{i p^{\alpha-1}}}=\sum_{x \in H} \sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q}^{b x g^{(p-1) j}(1+p k a \bar{b} v j)},
\end{aligned}
$$

since $\psi\left(g^{p^{\alpha-1}}\right)^{a}=1$ as $g^{p^{\alpha-1}}$ has order $p-1$ and generates H. Thus from Proposition 3 with $a \bar{b} v$ replacing v, the sum $S(a, b, \chi, q)$ equals 0 if $a v \not \equiv b$ $(\bmod p)$, and otherwise

$$
S(a, b, \chi, q)= \begin{cases}\sum_{x \in H} p^{\alpha / 2} \zeta_{q}^{b x t(a \bar{b} v)} & \text { if } \alpha \text { is even } \\ \sum_{x \in H}\left(\frac{-2}{p}\right) p^{(\alpha-1) / 2} i^{*} \sqrt{p}\left(\frac{b x}{p}\right) \zeta_{q}^{b x t(a \bar{b} v)} & \text { if } \alpha \text { is odd }\end{cases}
$$

when $a v \equiv b(\bmod p)$ in terms of the function $t()$ in (9). The statement of the theorem now follows.

The special case where $a v \equiv b\left(\bmod p^{s^{\prime}}\right)$ again warrants separate consideration.

Corollary 2. For any numerical character $\chi=\psi^{v}$ with $a v \equiv b$ $\left(\bmod p^{s^{\prime}}\right)$ in (2), where $a \equiv 0(\bmod p-1), b \not \equiv 0(\bmod p)$ and $\alpha>1$,

$$
S(a, b, \chi, q)= \begin{cases}p^{\alpha / 2} \sum_{x \in H} \zeta_{q}^{b x} & \text { if } \alpha \text { is even } \\ \left(\frac{-2}{p}\right) p^{(\alpha-1) / 2} i^{*} \sqrt{p} \sum_{x \in H}\left(\frac{b x}{p}\right) \zeta_{q}^{b x} & \text { if } \alpha \text { is odd }\end{cases}
$$

independent of the choice of normalized character ψ in (6).
Proof. The above follows readily from Theorem 1 and Corollary 1 upon replacing v by $a \bar{b} v$ and noting that $t=0$ in Theorem 1.

It is worth noting the connection here with the general mixed exponential sums of the form $\sum \chi(g(x)) \zeta_{q}^{f(x)}$ recently studied by T. Cochrane and Z. Zheng [3-5] for prime powers $q=p^{\alpha}(\alpha>1)$. In [3] Cochrane considers the case $f(x)$ and $g(x)$ are rational functions with integer entries, and shows how to explicitly evaluate such a sum when its associated critical point congruence has no multiple zeros modulo p. For appropriately chosen Taylor series expansions for $f(x)$ and $g(x)$ he extends the classic method of Salié to determine the contribution to the sum $\sum \chi(g(x)) \zeta_{q}^{f(x)}$ from each zero of the critical point congruence. Cochrane and Zheng's techniques will extend to more general settings, where $f(x)$ and $g(x)$ have nice enough p-adic analytic properties. Such an adaptation is possible here, which I shall sketch below, but first I make some preliminary remarks about the p-adic logarithm and exponential functions.

Let \mathbb{Q}_{p} denote the field of p-adic numbers, \mathbb{O}_{p} the ring of p-adic integers and $\mathbb{U}_{p}=\left\{x \in \mathbb{O}_{p} \mid x \equiv 1(\bmod p)\right\}$ the group of principal units. Any character χ modulo q extends to \mathbb{O}_{p} in the natural way; namely $\chi(u)=$ $\chi(\widehat{u})$ where \widehat{u} denotes the residue class of u modulo q, and similarly for $\zeta_{q}^{u}=\exp (2 \pi i \widehat{u} / q)$. The p-adic logarithm and exponential functions given by

$$
\begin{equation*}
\log (1+p u)=\sum_{j=1}^{\infty}(-1)^{j+1} \frac{(p u)^{j}}{j} \quad \text { and } \quad e^{p u}=\sum_{j=0}^{\infty} \frac{(p u)^{j}}{j!} \tag{12}
\end{equation*}
$$

are analytic on \mathbb{O}_{p} and satisfy the identity $e^{\log (1+p u)}=1+p u$ for $u \in \mathbb{O}_{p}$. Corresponding to the primitive root g for q chosen before, let R be the p-adic unit $R=\frac{1}{p} \log g^{p-1}$. One defines the exponential function

$$
\begin{equation*}
z=g^{(p-1) t}=e^{R p t} \quad\left(t \in \mathbb{O}_{p}\right) \tag{13}
\end{equation*}
$$

which maps \mathbb{O}_{p} isomorphically onto \mathbb{U}_{p}. With respect to the filtration $\mathbb{U}_{p}^{(i)}=$ $\left\{u \in \mathbb{U}_{p} \mid u \equiv 1\left(\bmod p^{i}\right)\right\}(i>0)$ of the principal units, the image $z\left(p^{\gamma-1} \mathbb{O}_{p}\right)$ equals $\mathbb{U}_{p}^{(\gamma)}$ for any positive integer γ. The inverse map for (13) is

$$
\begin{equation*}
t=R^{-1} p^{-1} \log z \quad\left(z \in \mathbb{U}_{p}\right) \tag{14}
\end{equation*}
$$

With $\chi=\psi^{v}$ here in terms of the normalized character ψ chosen in (6), one finds (chiefly Lemma 2.1 in [3]) that

$$
\begin{equation*}
\chi(1+p u)=\zeta_{q}^{\bar{R} k v \log (1+p u)} \quad\left(u \in \mathbb{O}_{p}\right) \tag{15}
\end{equation*}
$$

Since ψ satisfies (6) one readily sees from (15) that $k \equiv-R\left(\bmod p^{s^{\prime}}\right)$ with $q=27$ being the only exception.

For the application here $f(x)=b x$ and $g(x)=\exp \left(x \log x^{a}\right)$ are both defined for \mathbb{U}_{p} since $a \equiv 0(\bmod p-1)$. Relying on (15) and the power series
expansions (12), one can show that

$$
\chi\left(x+p^{s^{\prime}} y\right)^{a\left(x+p^{s^{\prime}} y\right)}=\chi(x)^{a x} \zeta_{q}^{\bar{R} k v\left(\log x^{a}+a\right) y p^{s^{\prime}}}
$$

for any $y \in \mathbb{O}_{p}$, analogous to relation (3.5) in [3]. The associated critical point congruence may be expressed as

$$
W(x):=R b+k v \log x^{a}+k a v \equiv 0\left(\bmod p^{s^{\prime}}\right), \quad x \not \equiv 0(\bmod p)
$$

in place of $C(x) / g(x)=R f^{\prime}(x)+k v g^{\prime}(x) / g(x) \equiv 0$ there. Since ψ is normalized, R may be replaced by $-k$ in view of the comments above (except for $q=27$), so the critical point congruence becomes

$$
\begin{equation*}
W(x): \equiv k(a v-b)+k v \log x^{a} \equiv 0\left(\bmod p^{s^{\prime}}\right), \quad x \not \equiv 0(\bmod p) \tag{16}
\end{equation*}
$$

But $x^{a} \equiv 1(\bmod p)$ so $W(x) \equiv 0(\bmod p)$ is solvable if and only if $a v \equiv b$ $(\bmod p)$, and then for any $x \not \equiv 0(\bmod p)$. Additionally $W^{\prime}(x) \equiv k v a / x \not \equiv 0$ $(\bmod p)$ so each zero of $W(x) \equiv 0(\bmod p)$ is simple.

To find the lift x^{*} for $x \equiv 1(\bmod p)$ in (16) one may algebraically solve for x^{*} making use of (13) and (14). Indeed, from (16), one has $\log x^{*} \equiv$ $-(a v-b) / a v\left(\bmod p^{s^{\prime}}\right)$ or $t \equiv \bar{R} p^{-1} \log x^{*} \equiv(a v-b) / p k a v\left(\bmod p^{s^{\prime}-1}\right)$ since $k \equiv-R\left(\bmod p^{s^{\prime}}\right)$. Thus $x^{*} \equiv g^{(p-1) t}$, where $t \equiv(a v-b) / p k a v\left(\bmod p^{s^{\prime}-1}\right)$, is the lift for $x \equiv 1(\bmod p)$ with the contribution

$$
S_{1}= \begin{cases}p^{\alpha / 2} \zeta_{q}^{b g^{(p-1) t}(1+p k a \bar{b} v t)} & \text { if } \alpha \text { is even } \\ p^{(\alpha-1) / 2} i^{*} \sqrt{p}\left(\frac{-2 b}{p}\right) \zeta_{q}^{b g^{(p-1) t}(1+p b a \bar{b} v t)} & \text { if } \alpha \text { is odd }\end{cases}
$$

from Theorem 1.1 in [3] since

$$
\chi\left(g^{(p-1) t a g^{(p-1) t}}\right) \zeta_{q}^{b g^{(p-1) t}}=\zeta_{p^{\alpha-1}(p-1)}^{k(p-1) a v t g^{(p-1) t}} \zeta_{q}^{b g^{(p-1) t}}=\zeta_{q}^{b g^{(p-1) t}(1+p k a v \bar{b} t)}
$$

and $-2 k W^{\prime}(1) \equiv-2 b(\bmod p)$.
To find lifts for the remaining solutions of $W(x) \equiv 0(\bmod p)$, note that the group H of $(p-1)$-roots of unity modulo q is isomorphic to \mathbb{Z}_{p}^{*} so one may as well take H as the solution set of the critical point congruence (16) modulo p. But now for each $\mu \in H, \mu x^{*}$ is a lift of μ satisfying (16) since $\mu^{a} \equiv 1\left(\bmod p^{s^{\prime}}\right)$. Moreover, $\chi\left(\mu x^{*}\right)^{a v \mu x^{*}} \zeta_{q}^{b \mu x^{*}}=\chi\left(x^{*}\right)^{a v x^{*} \mu} \zeta_{q}^{b x^{*} \mu}$ with $-2 k W^{\prime}(\mu) \equiv-2 b / \mu(\bmod p)$ so the contribution due to μ is $S_{\mu}=\sigma_{\mu}\left(S_{1}\right)$, where σ_{μ} is the automorphism of $\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}$ satisfying $\sigma_{\mu}\left(\zeta_{q}\right)=\zeta_{q}^{\mu}$. Thus $\sum_{x \in \mathbb{Z}_{q}^{*}} \chi(x)^{a x} \zeta_{q}^{b x}=\sum_{\mu \in H} S_{\mu}$ yielding the expressions appearing in Theorem 1. A slight modification of the argument above yields the same result in the exceptional case $q=27$.
3. Evaluation of $\sum \chi(x)^{a x} \zeta_{q}^{b x}$ for $q=2^{\alpha}$. Here I consider the sums in (2) when $q=2^{\alpha}$ with b odd and $\alpha>1$. It is straightforward to compute these sums for $q=4$ or 8 . Here ξ denotes the quadratic character $\xi(x)=$
$(-1)^{(x-1) / 2}$, and $\left(\frac{2}{x}\right)$ and $\left(\frac{-2}{x}\right)$ the usual Kronecker symbols associated with $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{-2})$, respectively.

Proposition 4. For b odd

$$
\begin{align*}
& S(a, b, \chi, 4)= \begin{cases}0 & \text { if } \chi^{a}=1 \\
2 i^{b} & \text { if } \chi^{a} \neq 1,\end{cases} \tag{i}\\
& S(a, b, \chi, 8)= \begin{cases}0 & \text { if } \chi^{a}=1 \text { or } \xi \\
\left(\frac{2}{b}\right) 2 \sqrt{2} & \text { if } \chi(x)=\left(\frac{2}{x}\right) \text { and } a \text { is odd } \\
\left(\frac{2}{x}\right) 2 i^{b} \sqrt{2} & \text { if } \chi(x)=\left(\frac{-2}{x}\right) \text { and } a \text { is odd. }\end{cases} \tag{ii}
\end{align*}
$$

The above result is readily obtained by direct calculation from (2).
I now assume $\alpha>3$ throughout the remainder of this section. Fix a numerical character ψ modulo q which generates the group of all even numerical characters defined modulo q and is normalized so that

$$
\begin{align*}
& \psi\left(1+2^{s}\right)=\zeta_{2^{s}}^{-1} \quad \text { for } \alpha=2 s, s \geq 2 \\
& \psi\left(1+2^{s}+2^{2 s-1}\right)=\zeta_{2^{s+1}}^{-1} \text { for } \alpha=2 s+1, s \geq 2 \tag{17}
\end{align*}
$$

Set $s^{\prime}=s$ or $s+1$ again as α is even or odd. Note that ψ has order $2^{\alpha-2}$ and that any given numerical character χ defined modulo q equals ψ^{v} or $\xi \psi^{v}$ for some integer $v, 0 \leq v<2^{\alpha-2}$. Additionally one sees that such a character χ is itself normalized if and only if $v \equiv 1\left(\bmod 2^{s^{\prime}}\right)$.

Next choose a generator $g \equiv 1(\bmod 4)$ for the $\operatorname{subgroup} T=\left\{v \in \mathbb{Z}_{2^{\alpha}}^{*} \mid\right.$ $v \equiv 1(\bmod 4)\}$ of $\mathbb{Z}_{2^{\alpha}}^{*}$, say with the least positive integer k satisfying $\psi(g)=\zeta_{2^{\alpha-2}}^{k}$.

The following lemma and propositions are the natural analogs of those given at the beginning of Section 2 for the situation at hand.

Lemma 2. With generator g chosen as above

$$
g^{2^{s-2} y} \equiv \begin{cases}1-y k 2^{s}(\bmod q) & \text { if } \alpha=2 s \\ 1-y k 2^{s}+(y k)^{2} 2^{2 s-1}(\bmod q) & \text { if } \alpha=2 s+1\end{cases}
$$

for any integer y.
Proof. In case $\alpha=2 s$ one has $\psi\left(g^{-\bar{k} 2^{s-2}}\right)=\zeta_{2^{s}}^{-1}$ by the choice of ψ and g. Now ψ is an isomorphism between T and the group of $2^{\alpha-2}$-roots of unity, so from (17),

$$
g^{-\bar{k} 2^{s-2}} \equiv 1+2^{s}(\bmod q)
$$

In particular using (7) one finds that

$$
g^{2^{s-2} y} \equiv g^{-\bar{k} 2^{s-2}(-k y)} \equiv\left(1+2^{s}\right)^{-k y} \equiv 1-k y 2^{s}(\bmod q)
$$

In the alternative case $\alpha=2 s+1$, one finds similarly that

$$
g^{-\bar{k} 2^{s-2}} \equiv 1+2^{s}+2^{2 s-1}(\bmod q)
$$

Using (7) again, one has $g^{2^{s-2} y}=g^{-\bar{k} 2^{s-2}(-k y)} \equiv\left(1+2^{s}+2^{2 s-1}\right)^{-k y}$ or $-k y\left(2^{s}+2^{2 s-1}\right)+\frac{k y(k y+1)}{2}\left(2^{s}+2^{2 s-1}\right)^{2} \equiv 1-k y 2^{s}+(k y)^{2} 2^{2 s-1}(\bmod q)$.

Now consider the congruence

$$
\begin{equation*}
4 k v t \equiv v-1\left(\bmod 2^{s^{\prime}}\right) \tag{18}
\end{equation*}
$$

When $v \equiv 1(\bmod 4)$ let t be its unique solution with $0 \leq t<2^{s^{\prime}-2}$, and set

$$
t(v)= \begin{cases}g^{t}(1+4 k v t) & \text { if } \alpha \text { is even } \tag{19}\\ g^{t}\left(1+4 k v t+\left(1-2(-1)^{t}\right) 2^{\alpha-3}\right) & \text { if } \alpha \text { is odd }\end{cases}
$$

With notation as above, we have
Proposition 5. For $\alpha>3$ and $v \equiv 1(\bmod 4)$,

$$
\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{2^{\alpha}}^{g^{j}(1+4 k v j)}=2^{(\alpha-4) / 2} \zeta_{2^{\alpha}}^{t(v)}
$$

with $t(v)$ as given in (19).
Proof. When $\alpha=4$, the sum consists of the single term ζ_{16} with $t=0$ in (19) so the formula holds. When $\alpha=5$, the sum equals $\zeta_{32}+\zeta_{32}^{g(1+4 k v)}$ with $t=0$ or 1 according as $v \equiv 1$ or $5(\bmod 8)$. A straightforward computation shows this sum equals $\sqrt{2} \zeta_{32}^{-3}$ or $\sqrt{2} \zeta_{32}^{5}$ respectively, independent of the choice of g, so the result of the proposition follows for $\alpha=5$. Now assume $\alpha>5$ and write $j=t+i 2^{s^{\prime}-2}$ for $0 \leq i<2^{s-2}$ and $0 \leq t<2^{s^{\prime}-2}$. Then

$$
\begin{aligned}
\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{q}^{g^{j}(1+4 k v j)} & =\sum_{t=0}^{2^{s^{\prime}-2}-1} \sum_{i=0}^{2^{s-2}-1} \zeta_{q}^{g^{t+i 2^{s^{\prime}-2}}\left(1+4 k v t+2^{s^{\prime}} k v i\right)} \\
& =\sum_{t=0}^{2^{s^{\prime}-2}-1} \zeta_{q}^{g^{t}(1+4 k v t)} \sum_{i=0}^{2^{s-2}-1} \zeta_{2^{s}}^{g^{t} k i(v-1-4 k v t)}
\end{aligned}
$$

since

$$
\begin{aligned}
g^{i 2^{s^{\prime}-2}}\left(1+4 k v t+2^{s^{\prime}} k v i\right) & \equiv\left(1-i k 2^{s^{\prime}}\right)\left(1+4 k v t+2^{s^{\prime}} k v i\right) \\
& \equiv 1+4 k v t+i k 2^{s^{\prime}}(v-1-4 k v t)(\bmod q)
\end{aligned}
$$

from Lemma 2. But

$$
\sum_{i=0}^{2^{s-2}-1} \zeta_{2^{s-2}}^{g^{t} k i((v-1) / 4-k v t)} \equiv \begin{cases}2^{s-2} & \text { if }(v-1) / 4 \equiv k v t\left(\bmod 2^{s-2}\right) \tag{20}\\ 0 & \text { otherwise }\end{cases}
$$

For α even, the double sum above reduces to the single term $2^{s-2} \zeta_{q}^{g^{t}(1+4 k v t)}$, where t is the solution specified in (19). For α odd, the double sum be-
comes

$$
\begin{aligned}
& 2^{s-2}\left(\zeta_{q}^{g^{t}(1+4 k v t)}+\zeta_{q}^{g^{t+2^{s-2}}\left(1+4 k v t+2^{s} k v\right)}\right) \\
& \quad=2^{s-2}\left(\zeta_{q}^{g^{t}(1+4 k v t)}+\zeta_{q}^{g^{t}\left(1+4 k v t+k(v-1) 2^{s}-k^{2} v 2^{2 s}-k^{2} v t 2^{s+2}+2^{2 s-1}\right)}\right)
\end{aligned}
$$

where t is the solution specified in (19). Since $g^{2^{s-2}} \equiv 1-k 2^{s}+2^{2 s-1}(\bmod q)$ from Lemma 2 as k is odd, the last expression is seen to equal

$$
2^{s-2} \zeta_{q}^{g^{t}\left(1+4 k v t-2^{2 s-2}\right)}\left(\zeta_{8}^{g^{t}}+\zeta_{8}^{-g^{t}}\right)=\left(\frac{2}{g^{t}}\right) 2^{s-2} \sqrt{2}\left(\zeta_{q}^{1+4 k v t} \zeta_{8}^{-1}\right)^{g^{t}}
$$

The result of the proposition now follows as stated for α odd with the expression for $t(v)$ since $g \equiv 5(\bmod 8)$. Thus the proof of the proposition is complete.

I note that the sum in Proposition 5 ordinarily depends on the choice of generator g for T and value of v modulo $2^{\alpha-2}$. However, the special case $v \equiv 1\left(\bmod 2^{s^{\prime}}\right)$ is exceptional. In this case $t=0$ in (19) so by Proposition 5 ,

Corollary 3. For $\alpha>3$ and $v \equiv 1\left(\bmod 2^{s^{\prime}}\right)$,

$$
\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{q}^{g^{j}(1+4 k v j)}= \begin{cases}2^{(\alpha-4) / 2} \zeta_{q} & \text { if } \alpha \text { is even } \\ 2^{(\alpha-5) / 2} \sqrt{2} \zeta_{q} \zeta_{8}^{-1} & \text { if } \alpha \text { is odd }\end{cases}
$$

independent of the choice of generator g for T.
Corollary 4. For $\alpha>3$ odd with $v \equiv 1+2^{s}\left(\bmod 2^{s+1}\right)$,

$$
\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{q}^{g^{j}(1+4 k v j)}=2^{(\alpha-5) / 2} \sqrt{2} \zeta_{q} \zeta_{8}
$$

independent of the choice of generator g for T.
Proof. With $v \equiv 1+2^{s}\left(\bmod 2^{s+1}\right)$ one finds $t=2^{s-2}$ in (19). Direct computation shows $t(5)=5$ when $\alpha=5$. For $\alpha>5, t$ is even so from Lemma 2 and Proposition 5, $t(v)$ is congruent modulo q to $g^{2^{s-2}}\left(1+2^{s} k v-2^{2 s-2}\right) \equiv\left(1-k 2^{s}+2^{2 s-1}\right)\left(1+2^{s} k v-2^{2 s-2}\right) \equiv 1+2^{2 s-2}$. This yields the value stated above.

The following example illustrates Proposition 5 and the corollaries above.
Example 3. Here I evaluate $t(v)$ in Proposition 5 for $q=2^{\alpha}$ with $5 \leq$ $\alpha \leq 8$, where $g=5$ has been chosen to generate the subgroup T. It suffices to consider only $v \equiv 1(\bmod 4)$ and less than $2^{\alpha-2}$.

For $q=32$ a normalized character ψ in (17) must satisfy $\psi(5)=\zeta_{8}$ with $k=1$. From Proposition 5, one obtains

$$
\begin{array}{ccc}
v & 1 & 5 \\
\hline t(v) & -3 & 5
\end{array}
$$

For $q=64$, choosing a normalized character ψ in (17) satisfying $\psi(5)=$ ζ_{16}^{-3} with $k=-3$, one finds from Proposition 5 that

v	1	5	9	13
$t(v)$	1	25	1	-7

Choosing a different normalized character $\widehat{\psi}$ in (17) satisfying $\widehat{\psi}(5)=\zeta_{16}^{5}$ with $k=5$, one finds instead that

v	1	5	9	13
$t(v)$	1	-7	1	25

Similarly for $q=128$ in Proposition 5 and normalized character ψ satisfying $\psi(5)=\zeta_{32}^{1}$ with $k=1$ one obtains

v	1	5	9	13	17	21	25	29
$t(v)$	-15	-39	17	25	-15	25	17	-39

With normalized character ψ satisfying $\psi(5)=\zeta_{64}^{25}$ in (17) for $k=25$ where $q=256$, one finds

v	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61
$t(v)$	1	-55	-31	-55	1	9	97	137	1	73	-31	73	1	137	97	9

Choosing a different normalized character $\widehat{\psi}$ in (17) satisfying $\widehat{\psi}(5)=\zeta_{64}^{9}$ one finds instead

v	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61
$t(v)$	1	137	97	9	1	-55	-31	-55	1	9	97	137	1	73	-31	73

In the examples above the values $t(v)$ all satisfy $t(v) \equiv 1(\bmod 8)$, a relation that is readily confirmed to hold here in general.

In addition to the patterns exhibited among the values $t(v)$ in the examples above that are predicted by Corollaries 3 and 4 , there are others worth noting which depend on the choice of generator g for T and value k used to determine the normalized generating character ψ in (17). To present them I describe a canonical choice of normalized characters ψ_{α} modulo 2^{α} satisfying (17) for $\alpha>3$ corresponding to the generator $g=5$ for T.

Let \mathbb{Q}_{2} and \mathbb{O}_{2} denote the field of 2-adic numbers and ring of 2-adic integers, respectively, and consider a character χ modulo q extended to \mathbb{O}_{2} as before and similarly for ζ_{q}^{u}. The 2-adic logarithmic and exponential functions given by

$$
\begin{equation*}
\log (1+4 u)=\sum_{j=1}^{\infty}(-1)^{j-1}(4 u)^{j} / j \quad \text { and } \quad e^{4 u}=\sum_{j=0}^{\infty}(4 u)^{j} / j! \tag{21}
\end{equation*}
$$

are analytic on \mathbb{O}_{2} and satisfy the identity $e^{\log (1+4 u)}=1+4 u$. Let R be the 2 -adic unit $R=\frac{1}{4} \log 5$. The exponential function

$$
z=5^{t}=e^{4 R t} \quad\left(t \in \mathbb{O}_{2}\right)
$$

has inverse $t=\frac{1}{4 R} \log z$ for $z \equiv 1(\bmod 4)$. For any character $\chi=\psi^{v}$, in terms of the normalized character ψ chosen in (17), one has (chiefly, (6.4) in [3])

$$
\begin{equation*}
\chi(1+4 u)=\zeta_{q}^{\bar{R} k v \log (1+4 u)} \quad\left(u \in \mathbb{O}_{2}\right) \tag{22}
\end{equation*}
$$

Now define a sequence of integers $\left\{k_{\alpha}\right\}(\alpha>3)$ given by the congruences

$$
k_{\alpha} \equiv \begin{cases}-R\left(1-2^{s-1}\right) & \text { if } \alpha=2 s \geq 4 \tag{23}\\ -R & \text { if } \alpha=2 s+1 \geq 5\end{cases}
$$

modulo $2^{\alpha-2}$. The characters ψ_{α} given by

$$
\begin{equation*}
\psi_{\alpha}(5)=\zeta_{2^{\alpha-2}}^{k_{\alpha}}, \quad \psi_{\alpha}(-1)=1 \quad(\alpha>3) \tag{24}
\end{equation*}
$$

are seen to be even and normalized modulo 2^{α}, and were the ones chosen for ψ in Example 3 for $5 \leq \alpha \leq 8$.

Proposition 6. Each character ψ_{α} above is normalized modulo 2^{α}.
Proof. From (22) and (24) one has for any $u \in \mathbb{O}_{2}$,

$$
\psi_{\alpha}(1+4 u)=\zeta_{q}^{\bar{R}} k_{\alpha} \log (1+4 u)
$$

For $\alpha>3$ odd one finds using (21) that

$$
\psi_{\alpha}\left(1+2^{s}+2^{2 s-1}\right)=\zeta_{q}^{-\left(2^{s}+2^{2 s-1}\right)+\left(2^{s}+2^{2 s-1}\right)^{2} / 2-\cdots}=\zeta_{2^{s^{\prime}}}^{-1}
$$

since $k_{\alpha} \equiv-R(\bmod q)$. So ψ_{α} is normalized in this case. For $\alpha>2$ even one similarly has

$$
\psi_{\alpha}\left(1+2^{s}\right)=\zeta_{q}^{\left(2^{s-1}-1\right)\left(2^{s}-2^{2 s-1}+2^{3 s} / 3-\cdots\right)}=\zeta_{q}^{2^{s}\left(2^{s-1}-1\right)\left(1-2^{s-1}\right)}=\zeta_{2^{s}}^{-1}
$$

since $k_{\alpha} \equiv-R\left(1-2^{s-1}\right)(\bmod q)$. Thus ψ_{α} is normalized also for α even.
For the choices made in (23) and (24) I find
Corollary 5. Let $q=2^{\alpha}$ with $\alpha=2 s>4$ and $k \equiv k_{\alpha}\left(\bmod 2^{s+1}\right)$ in (23). For $v \equiv 1+2^{s-1}\left(\bmod 2^{s+1}\right)$,

$$
\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{q}^{5^{j}(1+4 k v j)}= \begin{cases}2^{(\alpha-4) / 2} \zeta_{q} \zeta_{8}^{-1} & \text { if } s>3 \\ -2^{(\alpha-4) / 2} \zeta_{q} \zeta_{8}^{-1} & \text { if } s=3\end{cases}
$$

For $v \equiv 1-2^{s-1}\left(\bmod 2^{s+1}\right)$ the above sum has the same values but with the alternatives interchanged.

Proof. The choice $v \equiv 1\left(\bmod 2^{s+1}\right)$ yields $t=2^{s-3}$ with $v-1-4 k v t \equiv 0$ $\left(\bmod 2^{s}\right)$ in (18). Then $t(v)=g^{t}(1+4 k v t)=5^{2^{s-3}}\left(1+2^{s-1} k v\right)$ is congruent
to $\left(1+2^{s-1} R+2^{2 s-3}\right)\left(1-2^{s-1} R\left(1-2^{s-1}\right)\left(1+2^{s-1}\right)\right)$ modulo q from the 2-adic expansion of $5^{2^{s-3}}=e^{2^{s-1} R}$ in (21). But this expression for $t(v)$ becomes

$$
\left(1+2^{s-1} R+2^{2 s-3}\right)\left(1-R 2^{s-1}\right) \equiv 1-2^{2 s-3}+2^{3 s-4}(\bmod q)
$$

which is readily seen to be congruent to $1-2^{2 s-3}$ or $1+3 \cdot 2^{2 s-3}$ according as $s>3$ or $s=3$. The result stated in the corollary now follows. Note that with $v \equiv 1-2^{s-1}\left(\bmod 2^{s+1}\right)$ instead, a similar computation yields the same values with alternatives interchanged.

Corollary 6. Let $q=2^{\alpha}$ with $\alpha=2 s>4$ and $k \equiv k_{\alpha}\left(1+2^{s}\right)$ $\left(\bmod 2^{s+1}\right)$ in (23). For $v \equiv 1+2^{s-1}\left(\bmod 2^{s+1}\right)$,

$$
\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{q}^{5^{j}(1+4 k v j)}= \begin{cases}-2^{(\alpha-4) / 2} \zeta_{q} \zeta_{8}^{-1} & \text { if } s>3 \\ 2^{(\alpha-4) / 2} \zeta_{q} \zeta_{8}^{-1} & \text { if } s=3\end{cases}
$$

For $v \equiv 1-2^{s-1}\left(\bmod 2^{s+1}\right)$ the above sum has the same values but with the alternatives interchanged.

Proof. I first note that $1+4 k v j$ is invariant modulo q if k and v are replaced by $k\left(1+2^{s}\right)$ and $v\left(1-2^{s}\right)$ respectively in Corollary 5. But $\left(1+2^{s-1}\right)\left(1-2^{s}\right) \equiv 1-2^{s-1}$ and $\left(1-2^{s-1}\right)\left(1-2^{s}\right) \equiv 1+2^{s-1}$ modulo 2^{s+1} so the result follows from Corollary 5 .

Incidentally, the alternative choice of characters in Example 3 for $q=64$ and $q=256$ was made to illustrate Corollaries 5 and 6 above.

I finally remark that if one replaces $-R\left(1-2^{s-1}\right)$ by $-R\left(1+2^{s-1}\right)$ in (23) for $\alpha=2 s \geq 4$ to define the characters ψ_{α}, then Proposition 6 remains valid, and also Corollaries 5 and 6 but with the alternatives interchanged for the value of the sum $\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{q}^{5^{j}(1+4 k v j)}$.

I am now ready to state the main result concerning the sums (2) when $p=2$ and b is odd.

Theorem 2. For b odd and $q=2^{\alpha}$ with $\alpha>3$, let $\chi=\psi^{v}$ or $\xi \psi^{v}$. If $a v \not \equiv b(\bmod 4)$ then $S(a, b, \chi, q)=0$ else

$$
S(a, b, \chi, q)= \begin{cases}\left(\frac{2}{b}\right)^{\alpha} 2 \sqrt{q} \cos \left(\frac{2 \pi b t(a \bar{b} v)}{q}\right) & \text { if } \chi=\psi^{v} \\ \left(\frac{2}{b}\right)^{\alpha} 2 i \sqrt{q} \sin \left(\frac{2 \pi b t(a \bar{b} v)}{q}\right) & \text { if } \chi=\xi \psi^{v}\end{cases}
$$

Here $t()$ is the function given in (19).
Proof. To begin set

$$
\begin{equation*}
W(a, b, \chi, q)=\sum_{x \in T} \chi(x)^{a x} \zeta_{q}^{b x} \tag{25}
\end{equation*}
$$

for any numerical character χ modulo q, where T is the subgroup $\left\{x \in \mathbb{Z}_{q}^{*} \mid\right.$ $x \equiv 1(\bmod 4)\}$ of \mathbb{Z}_{q}^{*} as before. One has

$$
\sum_{x \in \mathbb{Z}_{q}^{*}} \chi(x)^{a x} \zeta_{q}^{b x}=W(a, b, \chi, q)+\chi^{a}(-1) W(-a,-b, \chi, q)
$$

reducing the computations to sums of the form (25) with χ even, say $\chi=\psi^{v}$ for some integer v. Now $\psi^{v}\left(1+2^{\alpha-2}\right)^{a\left(1+2^{\alpha-2}\right)}=\psi^{a v}\left(1+2^{\alpha-2}\right)=\zeta_{4}^{-a v}$ since ψ satisfies (17) with $s \geq 2$. In addition, any element of T has a unique representation modulo q as a product $x y$ with $x \in X=\left\{1,5, \ldots, 2^{\alpha-2}-3\right\}$ and $y \in\left\{1,1+2^{\alpha-2}, 1+2^{\alpha-1}, 1+3 \cdot 2^{\alpha-2}\right\}$. Thus

$$
\begin{aligned}
W(a, b, \chi, q)= & \sum_{x \in X}\left(\psi(x)^{a v x} \zeta_{q}^{b x}+\psi\left(x\left(1+2^{\alpha-2}\right)\right)^{a v x\left(1+2^{\alpha-2}\right)} \zeta_{q}^{b x\left(1+2^{\alpha-2}\right)}\right. \\
& +\psi\left(x\left(1+2^{\alpha-1}\right)\right)^{a v x\left(1+2^{\alpha-1}\right)} \zeta_{q}^{b x\left(1+2^{\alpha-1}\right)} \\
& \left.+\psi\left(x\left(1+3 \cdot 2^{\alpha-2}\right)\right)^{a v x\left(1+3 \cdot 2^{\alpha-2}\right)} \zeta_{q}^{b x\left(1+3 \cdot 2^{\alpha-2}\right)}\right) \\
= & \sum_{x \in X} \psi(x)^{a v x} \zeta_{q}^{b x}\left(1+\psi\left(1+2^{\alpha-2}\right)^{a v} \zeta_{4}^{b}\right. \\
& \left.+\psi\left(1+2^{\alpha-1}\right)^{a v} \zeta_{4}^{2 b}+\psi\left(1+3 \cdot 2^{\alpha-2}\right)^{a v} \zeta_{4}^{3 b}\right)
\end{aligned}
$$

since $x \equiv 1(\bmod 4)$. This in turn equals

$$
\sum_{x \in X} \psi(x)^{a v x} \zeta_{q}^{b x}\left(1+\zeta_{4}^{b-a v}+\zeta_{4}^{2(b-a v)}+\zeta_{4}^{3(b-a v)}\right)
$$

So

$$
W\left(\psi^{v}\right)= \begin{cases}4 \sum_{x \in X} \psi(x)^{a v x} \zeta_{q}^{b x} & \text { if } a v \equiv b(\bmod 4) \tag{26}\\ 0 & \text { if } a v \not \equiv b(\bmod 4)\end{cases}
$$

Moreover, the value of any term $\psi(x)^{a v x} \zeta_{q}^{b x}$ in $\sum_{x \in X} \psi(x)^{a v x} \zeta_{q}^{b x}$ for $a v \equiv b$ $(\bmod 4)$ depends only on the choice of x modulo $2^{\alpha-2}$. Taking the values $\left\{g^{j} \mid 0 \leq j<2^{\alpha-4}-1\right\}$ to represent the elements of X modulo $2^{\alpha-2}$, one now obtains

$$
\begin{equation*}
\sum_{x \in X} \psi^{a v x}(x) \zeta_{q}^{b x}=\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{2^{\alpha-2}}^{a v k j g^{j}} \zeta_{q}^{b g^{j}}=\sum_{j=0}^{2^{\alpha-4}-1} \zeta_{q}^{b g^{j}(1+4 k a \bar{b} v j)} \tag{27}
\end{equation*}
$$

just a conjugate of the sum evaluated in Proposition 5. A straightforward computation using Proposition 5 with v replaced by $a \bar{b} v$ yields

$$
S(a, b, \chi, q)=\left(\frac{2}{b}\right)^{\alpha} 2^{\alpha / 2}\left(\zeta_{q}^{b t(a \bar{b} v)}+\chi(-1) \zeta_{q}^{-b t(a \bar{b} v)}\right)
$$

in view of (26) above. The expressions for $S(a, b, \chi, q)$ as stated in the theorem immediately follow.

The special case when $a v \equiv b\left(\bmod 2^{s^{\prime}}\right)$ warrants separate mention.

Corollary 7. For any character $\chi=\psi^{v}$ or $\chi=\xi \psi^{v}$ in (2) with $a v \equiv b$ $\left(\bmod 2^{s^{\prime}}\right)$ when $p=2, b$ is odd and $\alpha>3$,
$S(a, b, \chi, q)$

$$
= \begin{cases}2^{\alpha / 2}\left(\zeta_{q}^{b}+\chi(-1) \zeta_{q}^{-b}\right) & \text { if } \alpha \text { is even } \\ 2^{(\alpha-1) / 2} \sqrt{2}\left(\frac{2}{b}\right)\left(\zeta_{q}^{b\left(1-2^{\alpha-3}\right)}+\chi(-1) \zeta_{q}^{-b\left(1-2^{\alpha-3}\right)}\right) & \text { if } \alpha \text { is odd }\end{cases}
$$

independent of the choice of even normalized character ψ in (17).
The following results treat the special case when $2^{s^{\prime}-1} \|(a v-b)$ and are readily deduced from Corollaries 4 and 5 , respectively, in view of Theorem 2. The details are left to the reader.

Corollary 8. For any character $\chi=\psi^{v}$ or $\xi \psi^{v}$ in (2) with $2^{s} \|(a v-$ b), where b is odd and $q=2^{2 s+1}>8$,

$$
S(a, b, \chi, q)=\left(\frac{2}{b}\right) 2^{s} \sqrt{2}\left(\zeta_{q}^{b\left(1+2^{\alpha-3}\right)}+\chi(-1) \zeta_{q}^{-b\left(1+2^{\alpha-3}\right)}\right)
$$

Corollary 9. Let $\chi=\psi^{v}$ or $\xi \psi^{v}$ in (2) in terms of the canonical characters ψ_{α} given in (24). If $2^{s-1} \|(a v-b)$ where b is odd and $q=2^{2 s}>16$, then

$$
S(a, b, \chi, q)= \begin{cases}\varepsilon 2^{s}\left(\zeta_{q}^{b\left(1-2^{\alpha-3}\right)}+\chi(-1) \zeta_{q}^{-b\left(1-2^{\alpha-3}\right)}\right) & \text { if } s>3 \\ -\varepsilon 2^{s}\left(\zeta_{q}^{b\left(1-2^{\alpha-3}\right)}+\chi(-1) \zeta_{q}^{-b\left(1-2^{\alpha-3}\right)}\right) & \text { if } s=3\end{cases}
$$

Here $\varepsilon= \pm 1$ is determined by the congruence $a v-b \equiv \varepsilon b 2^{s-1}\left(\bmod 2^{s+1}\right)$.

4. Evaluation of some incomplete sums for primitive characters.

In this section I consider the sums $\sum_{x=1, p \nmid x}^{\phi(q) / f} \chi(x)^{a x} \zeta_{q}^{b x}$ in (5), with $p \nmid b$, $f=\operatorname{gcd}(a v, p-1)$ and χ a primitive character modulo q of the form $\chi=\psi^{v}$, where $a v \equiv b(\bmod p)$ and ψ is normalized as in (6) with $\psi(g)=\zeta_{\phi(q)}^{k}$ as in Section 2.

The following lemma plays a key role in evaluating these incomplete sums.

Lemma 3. For any character χ modulo q of the form $\chi=\psi^{v}$, where $a v \equiv b(\bmod p)$ with ψ satisfying (6) and $x, y \not \equiv 0(\bmod p)$,

$$
\chi(x)^{a x} \zeta_{q}^{b x}=\chi(y)^{a y} \zeta_{q}^{b y} \quad \text { if } x \equiv y\left(\bmod p^{\alpha-1}(p-1) / f\right)
$$

Proof. First note that since ψ is normalized $\psi\left(1+v p^{\alpha-1}\right)=\zeta_{p}^{-v}$ for any integer v from (6). Now write $y=x+p^{\alpha-1}(p-1) t / f$ for some integer t. Then

$$
\chi(y)^{a y}=\chi(x)^{a y} \chi\left(1+p^{\alpha-1}(p-1) \bar{x} t / f\right)^{a y}=\chi(x)^{a x} \zeta_{p}^{-(p-1) a v t / f}
$$

since $\chi^{a}=\psi^{a v}$ has order dividing $\phi(q) / f$. Thus

$$
\begin{aligned}
\chi(y)^{a y} \zeta_{q}^{b y} & =\chi(x)^{a x} \zeta_{p}^{-(p-1) a v t / f} \zeta_{q}^{b x+p^{\alpha-1}(p-1) b t / f} \\
& =\chi(x)^{a x} \zeta_{q}^{b x} \zeta_{p}^{-(p-1)(a v-b) t / f}=\chi(x)^{a x} \zeta_{q}^{b x}
\end{aligned}
$$

I am ready to state the main result.
THEOREM 3. Let $\chi=\psi^{v}$ be a primitive character modulo $q=p^{\alpha}$ where $f=\operatorname{gcd}(a v, p-1)$ and $p \nmid b$ with $a v \equiv b(\bmod p)$. Then $\sum_{x=1, p \nmid x}^{\phi(q) / f} \chi(x)^{a x} \zeta_{q}^{b x}=\left\{\begin{array}{l}\frac{p-1}{f} p^{(\alpha-2) / 2} \sum_{x \in H} \zeta_{q}^{b x g^{p-1}(1+p k a \bar{b} v t)}, \\ \left(\frac{-2}{p}\right) \frac{p-1}{f} p^{(\alpha-3) / 2} i^{*} \sqrt{p} \sum_{x \in H}\left(\frac{b x}{p}\right) \zeta_{q}^{b x g^{(p-1) t}(1+p k a \bar{b} v t)}\end{array}\right.$ according as $\alpha \geq 2$ is even or odd, where t satisfies pkavt $\equiv a v-b\left(\bmod p^{s^{\prime}}\right)$ for $0 \leq t<p^{s^{\prime}-1}$. Here H is the group of f-roots of unity modulo q.

Proof. From Lemma 3,

$$
\begin{aligned}
\sum_{x=1, p \nmid x}^{\phi(q) / f} \chi(x)^{a x} \zeta_{q}^{b x} & =\frac{1}{p} \sum_{x=1, p \nmid x}^{q(p-1) / f} \chi(x)^{a x} \zeta_{q}^{b x} \\
& =\frac{1}{p} \sum_{j=0}^{(p-1) / f-1} \sum_{i=0}^{\phi(q)-1} \chi\left(g^{i}\right)^{a v\left(g^{i}+j q\right)} \zeta_{q}^{b g^{i}},
\end{aligned}
$$

where each x is uniquely written as $x=g^{i}+j q(\bmod q(p-1))$ for $0 \leq i<\phi(q)$ and $0 \leq j<(p-1) / f$. But the rightmost sum above equals

$$
\begin{aligned}
& \frac{1}{p} \sum_{j=0}^{(p-1) / f-1} \sum_{i=0}^{\phi(q)-1} \zeta_{q(p-1)}^{a p k v i\left(g^{i}+j q\right)+b(p-1) g^{i}} \\
&=\frac{1}{p} \sum_{i=0}^{\phi(q)-1} \zeta_{q(p-1)}^{b(a \bar{b} p k v i+p-1) g^{i}} \sum_{j=0}^{(p-1) / f-1} \zeta_{p-1}^{a p k v i j}
\end{aligned}
$$

Since $f=\operatorname{gcd}(a v, p-1)$,

$$
\sum_{j=0}^{(p-1) / f-1} \zeta_{p-1}^{a p k v i j}= \begin{cases}(p-1) / f & \text { if } i \equiv 0(\bmod (p-1) / f) \\ 0 & \text { otherwise }\end{cases}
$$

so the last summation becomes

$$
\begin{equation*}
\frac{1}{p} \frac{p-1}{f} \sum_{i=0}^{f p^{\alpha-1}-1} \zeta_{q(p-1)}^{b(a \bar{b} k v p(p-1) i / f+p-1) g^{(p-1) i / f}} \tag{28}
\end{equation*}
$$

Noting that each integer i with $0 \leq i<f p^{\alpha-1}$ can be uniquely expressed modulo $f p^{\alpha-1}$ as

$$
i=w p^{\alpha-1}+j f \quad \text { for } 0 \leq w<f, 0 \leq j<p^{\alpha-1}
$$

the sum (28) may be written as

$$
\begin{aligned}
\frac{p-1}{p f} \sum_{w=0}^{f-1} \sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q(p-1)}^{b\left(a \bar{b} k v p\left(w(p-1) p^{\alpha-1} / f+j(p-1)\right)+p-1\right) g^{\phi(q) w / f} g^{(p-1) j}} \\
=\frac{p-1}{p f} \sum_{w=0}^{f-1} \sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q}^{g^{(p-1) j}(1+p k a \bar{b} v j) b g^{\phi(q) w / f}}
\end{aligned}
$$

or

$$
\frac{p-1}{p f} \sum_{x \in H} \sum_{j=0}^{p^{\alpha-1}-1} \zeta_{q}^{b x g^{(p-1) j}(1+p k a \bar{b} v j)}
$$

Here I use the facts that $f \mid a v$ and $g^{\phi(q) / f}$ generates the group H of f roots of unity modulo q. The result stated in the theorem now follows from Proposition 3.

For the special case when $a v \equiv b\left(\bmod p^{s^{\prime}}\right)$ one finds from Corollary 1 that

Corollary 10. With the same hypotheses as in Theorem 3, if $a v \equiv b$ $\left(\bmod p^{s^{\prime}}\right)$ then

$$
\sum_{x=1, p \nmid x}^{\phi(q) / f} \chi(x)^{a x} \zeta_{q}^{b x}=\left\{\begin{array}{l}
\frac{p-1}{f} p^{(\alpha-2) / 2} \sum_{x \in H} \zeta_{q}^{b x} \\
\left(\frac{-2}{p}\right) \frac{p-1}{f} p^{(\alpha-3) / 2} i^{*} \sqrt{p} \sum_{x \in H}\left(\frac{b x}{p}\right) \zeta_{q}^{b x}
\end{array}\right.
$$

according as $\alpha \geq 2$ is even or odd, independent of the choice of generating character ψ satisfying (6).

Comparing the results of Theorems 1 and 3 one also notes
Corollary 11. With the same hypotheses as in Theorem 3, if $a v \equiv b$ $(\bmod p)$ and $a \equiv 0(\bmod p-1)$ then

$$
\sum_{x=1, p \nmid x}^{p^{\alpha-1}} \chi(x)^{a x} \zeta_{q}^{b x}=\frac{1}{p} S(a, b, \chi, q)
$$

In closing, I remark that to determine the incomplete sum (5) when $a v \not \equiv b(\bmod p)$ remains an open question.

References

[1] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
[2] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
[3] T. Cochrane, Exponential sums modulo prime powers, Acta Arith. 101 (2002), 131-149.
[4] T. Cochrane and Z. Y. Zheng, A survey on pure and mixed exponential sums modulo prime powers, in: Number Theory for the Millennium, I, M. A. Bennett et al. (eds.), A K Peters, Natick, MA, 2002, 273-300.
[5] -, -, Exponential sums with rational function entries, Acta Arith. 95 (2000), 67-95.
[6] R. J. Evans, Twisted hyper-Kloosterman sums over finite rings of integers, in: Number Theory for the Millennium, I, M. A. Bennett et al. (eds.), A K Peters, Natick, MA, 2002, 429-448.
[7] S. Gurak, Minimal polynomials for Gauss periods with $f=2$, Acta Arith. 121 (2006), 233-257.
[8] -, On the minimal polynomial of Gauss periods for prime powers, Math. Comp. 75 (2006), 2021-2035.
[9] -, Explicit values of multi-dimensional Kloosterman sums for prime powers, to appear.
[10] J. L. Mauclaire, Sommes de Gauss modulo p^{α}, I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 109-112.
[11] -, Sommes de Gauss modulo p^{α}, II, ibid., 161-163.
[12] H. Salié, Über die Kloostermanschen Summen $S(u, v ; q)$, Math. Z. 34 (1932), 91-109.

Department of Mathematics
University of San Diego
San Diego, CA 92110, U.S.A.
E-mail: gurak@sandiego.edu

Received on 19.5.2006
and in revised form on 28.9.2006

