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1. Introduction. For any integer m > 1 fix ζm = exp(2πi/m) and let
Z∗

m denote the group of reduced residues modulo m. Let a be any integer
satisfying a ≡ 0 (modp−1) for each prime p |m, and consider an exponential
sum of the form

S(a, b, χ,m) =
∑

x∈Z∗

m

χ(x)axζbx
m ,(1)

where χ is any numerical character defined modulo m and b any integer.
The sum (1) is readily expressed as a product of such sums defined for the
prime powers dividing m. Indeed, if m = pα1

1 · · · pαr
r is a product of distinct

prime powers, decompose χ =
∏r

i=1 χi as a product of its p-components.
Specifically, for any x prime to pi, set χi(x) = χ(x′) with x′ ≡ x (mod pαi

i )
and x′ ≡ 1 (modmi) where mi = mp−αi

i (1 ≤ i ≤ r). Then

Proposition 1. We have

S(a, b, χ,m) =
r∏

i=1

S(a, bci, χi, p
αi
i )

where the ci are integers satisfying cimi ≡ 1 (modpαi
i ) for 1 ≤ i ≤ r.

Proof. The choice of the ci gives c1m1 + · · · + crmr ≡ 1 (modm). Thus
a typical term of

∏r
i=1 S(a, bci, χi, p

αi
i ) has the form

χ1(x1)
ax1 · · ·χr(xr)

axrζbc1x1

p
α1
1

· · · ζbcrxr

pαr
r

= χ1(x)
ax · · ·χr(x)

axζbx
m = χ(x)axζbx

m

with x = c1m1x1 + · · ·+crmrxr, one for each choice of xi ∈Z∗

p
αi
i

(1≤ i≤ r),

since χ
amj

i = 1 for 1 ≤ i 6= j ≤ r. But as the xi independently run
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through Z∗

p
αi
i

(1 ≤ i ≤ r), x runs through Z∗

m. Thus
∏r

i=1 S(a, bci, χi, p
αi
i ) =

S(a, b, χ,m).

The above result reduces the determination of any sum (1) to the prime
power case. My principal aim here is to explicitly evaluate the sums

S(a, b, χ, q) =
∑

x∈Z∗

q

χ(x)axζbx
q(2)

for prime powers q = pα with a ≡ 0 (modp−1). While there is an extensive

literature [4] concerning exponential sums of the form
∑
χ(g(x))ζ

f(x)
q for

suitable types of functions f(x) and g(x), the choice f(x) = bx and g(x) =
exp(x log xa) made here seems to have been overlooked. Indeed, I have found
an elegant explicit evaluation of the sums (2).

To proceed I first make some elementary observations. When q = p, one
trivially obtains

S(a, b, χ, p) =

{
p− 1 if b ≡ 0 (modp),

−1 if b 6≡ 0 (modp),

and for b ≡ 0 (modp) one finds the following reduction formula:

Proposition 2. For b ≡ 0 (modp) in (2) with α > 1,

S(a, b, χ, pα) =






pS(a/p, b/p, χp, pα−1) if a ≡ 0 (mod p),

pS(a, b/p, χ, pα−1) if χ is imprimitive modulo pα,

0 otherwise.

Proof. First note that any 0 < x < pα, p ∤x, can be uniquely expressed
as x = i+ jpα−1 for 0 < i < pα−1, 0 ≤ j < p with p ∤ i. Thus

S(a, b, χ, pα) =

pα−1∑

i=1, p∤i

p−1∑

j=0

χ(i+ jpα−1)a(i+jpα−1)ζ
b(i+jpα−1)
pα

=

pα−1∑

i=1, p∤i

χ(i)aiζbi
pα

p−1∑

j=0

χ(1 + ijpα−1)ai,

where i denotes the multiplicative inverse of i modulo pα. Since we have

χ(1 + ijpα−1)ai = ζλij
p for some integer λ,

p−1∑

j=0

χ(1 + ijpα−1)ai =

p−1∑

j=0

ζajλ
p =

{
0 if aλ 6≡ 0 (modp),

p if aλ ≡ 0 (modp).

If a ≡ 0 (modp) one finds S(a, b, χ, pα) = pS(a/p, b/p, χp, pα−1). If λ ≡ 0
(modp) then χ is imprimitive and may be defined modulo pα−1, which yields
S(a, b, χ, pα) = pS(a, b/p, χ, pα−1). In the remaining cases S(a, b, χ, pα) = 0.
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In view of the above observations, one may assume b 6≡ 0 (modp) in (2)
with χ primitive modulo pα for α > 1. I will show that such a non-zero
sum (2) is up to conjugacy just

pα/2
∑

x∈H

ζx
q or

(−2

p

)
p(α−1)/2i∗

√
p

∑

x∈H

(
x

p

)
ζx
q(3)

according as α is even or odd when p is odd, where H is the group of
(p− 1)-roots of unity modulo q. For p = 2 it is a conjugate of

2α/22i sin
2π

q
or 2α/22 cos

2π

q
,(4)

of algebraic degree 2α−2 with minimal polynomial easy to determine (see [7],
for instance). The sum (3) is an integer multiple of a classical Gaussian
period or a quadratic twist of such of algebraic degree pα−1, whose minimal
polynomial has recently been studied in [8]. In either case, the expressions (3)
and (4) lead to a bound

|S(a, b, χ, q)| ≤ (p− 1)
√
q or 2

√
q

according as q is odd or even. This bound is of the same order of magnitude

obtained by Cochrane [3] for sums of the form
∑
χ(g(x))ζ

f(x)
q for rational

functions f(x) and g(x) with integer coefficients, when the associated critical
point congruence has p−1 zeros, all of multiplicity one (chiefly, Theorems 1.1
and 6.1 when t = 0 in [3]).

My principal tool in determining the explicit values for (2) is an adap-
tation of the classical method of Salié [12] for Kloosterman sums, together
with basic facts about the p-adic exponential and logarithm functions and
primitive characters. The case for odd primes p is treated first, with sums (2)
explicitly evaluated in Section 2. The case p = 2 is considered separately
in Section 3. In the final section of the paper, I explicitly evaluate certain
incomplete sums for odd prime powers q = pα with α > 1 and primitive
characters χ modulo q of the form

φ(q)/f∑

x=1, p∤x

χ(x)axζbx
q , a, b 6≡ 0 (modp),(5)

with f = gcd(aφ(q)/o(χ), p − 1) where o(χ) is the order of χ. There is a
natural extension of the theory developed here for analogous exponential
sums defined over residue rings of algebraic integers. This generalization
will appear in a sequel.

It is an interesting exercise to adapt Cochrane’s methods in [3] to the
situation here to evaluate (2) using p-adic and algebraic techniques, though
the more direct approach I employ here is simpler and particularly conve-
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nient for evaluating the incomplete sums in (5). I include a discussion of the
relationship, at least for odd primes p, at the end of Section 2.

Lastly, I should mention that my initial interest in the sums (2) and (5)
arose from the problem of determining hyper-Kloosterman sums. The results
here are applied in [9] to explicitly evaluate the multi-dimensional Klooster-
man sums, thus generalizing the classical result of Salié [12] for prime powers
in the one-dimensional case.

2. Evaluation of
∑
χ(x)axζbx

q for q odd. Here I consider the sums
in (2) with b 6≡ 0 (mod p) when q = pα is odd and α > 1. Fix a character
ψ modulo q which generates the group of all numerical characters defined
modulo q and is normalized so that

ψ(1 + ps) = ζ−1
ps for α = 2s,

ψ

(
1 + ps +

(
p+ 1

2

)
p2s

)
= ζ−1

ps+1 for α = 2s+ 1.
(6)

Set s′ = s or s + 1 according as α is even or odd. Any given character
χ defined modulo q equals ψv for some integer v, 0 ≤ v < φ(q). Such a
character χ is itself normalized if and only if v ≡ 1 (modps′).

Now choose a primitive root g for q, and let k be the least positive integer
satisfying ψ(g) = ζk

φ(q). The following lemma and proposition will be crucial

in the determination of the sums (2). Here the multiplicative inverse of any
x in Z∗

q will be denoted by x. The Legendre symbol is denoted by
(

p

)
and

i∗ = i(p−1)2/4.

Lemma 1. With a primitive root g for q chosen as above,

g(p−1)ps−1y ≡
{

1 − ykps (mod q) if α = 2s,

1 − ykps − ky(p− ky)p2s/2 (mod q) if α = 2s+ 1,

for any integer y.

Proof. I consider the case α = 2s first. By the choice of ψ and g,

ψ(g−(p−1)ps−1k) = ζ−1
ps . But ψ is an isomorphism between Z∗

q and the group

of φ(q)-roots of unity, so from (6), g−(p−1)ps−1k ≡ 1 + ps (mod q). From the
p-adic negative binomial series

(1 + x)−r =
∞∑

n=0

(−1)n

(
n+ r − 1
r − 1

)
xn(7)

one finds for any integer y that

g(p−1)ps−1y = g−(p−1)ps−1k(−ky) ≡ (1 + ps)−ky ≡ 1 − kyps (mod q).
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Next consider the case α = 2s + 1 > 1. Arguing as above, one finds
from (6) that

g−(p−1)ps−1k ≡ 1 + ps +
p+ 1

2
p2s (mod q).

Using (7) one now finds g(p−1)ps−1y = g−(p−1)ps−1k(−ky) congruent modulo q
to

(
1 + ps +

p+ 1

2
p2s

)
−ky

≡ 1 − kyps − ky
p− ky

2
p2s.

The proof of the lemma is now complete.

Now consider the congruence

pkvt ≡ v − 1 (mod ps′).(8)

When v ≡ 1 (mod p) let t be its unique solution with 0 ≤ t < ps′−1, and set

t(v) = g(p−1)t(1 + pkvt).(9)

With notation as above,

Proposition 3. For α ≥ 2,

pα−1
−1∑

j=0

ζg(p−1)j(1+pkvj)
q

=






pα/2ζ
t(v)
q if α is even and v ≡ 1 (mod p),(

−2
p

)
i∗
√
p p(α−1)/2ζ

t(v)
q if α is odd and v ≡ 1 (modp),

0 if v 6≡ 1 (mod p),

with t(v) as given in (9).

Proof. Noting that one may uniquely write each j in the summation as
j = t+ ips′−1 for 0 ≤ t < ps′−1, 0 ≤ i < ps, one has

pα−1
−1∑

j=0

ζg(p−1)j(1+pkvj)
q =

ps′−1
−1∑

t=0

ps
−1∑

i=0

ζg(p−1)(t+ips′−1)(1+pkvt+ps′kvi)
q

=

ps′−1
−1∑

t=0

ζg(p−1)t(1+pkvt)
q

ps
−1∑

i=0

ζg(p−1)t(kps′ i)(v−1−pkvt)
q

since

g(p−1)ps′−1i(1 + pkvt+ ps′kvi) ≡ (1 − ikps′)(1 + pkvt+ ps′kvi)

≡ 1 + pvkt+ ikps′(v − 1 − pkvt) (mod q)
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from Lemma 1. But
ps

−1∑

i=0

ζ
g(p−1)tki(v−1−pkvt)
ps =

{
ps if pkvt ≡ v − 1 (modps),

0 otherwise.
(10)

Since pkvt ≡ v − 1 (modps) is solvable iff v ≡ 1 (modp), the double sum
above is zero when v 6≡ 1 (modp). When α is even and v ≡ 1 (mod p), the

double sum above reduces to the single term psζ
g(p−1)t(1+pkvt)
q , where t is the

solution specified in (9). When α is odd and v ≡ 1 (modp), the congruence
pkvt ≡ v − 1 (mod ps) has p solutions, namely t+ yps−1 (0 ≤ y < p), where
t is the solution specified in (9). In this case the double sum becomes

ps
p−1∑

y=0

ζg(p−1)(t+yps−1)(1+pkvt+pskvy)
q ,(11)

which equals

psζg(p−1)t(1+pkvt)
q

p−1∑

y=0

ζ−k2y2/2
p ,

since by Lemma 1,

g(p−1)ps−1y(1 + pkvt+ pskvy)

≡
(

1 − kyps − ky
p− ky

2
p2s

)
(1 + pkvt+ pskvy)

≡ 1 + pkvt+ p2s

(
v − 1 − pkvt

ps
ky

)
+ p2s

(
1 − 2v

2
k2y2

)

≡ 1 + pkvt− p2sk2y2/2 (mod q).

It follows from the standard evaluation
∑p−1

y=0 ζ
dy2

p =
(

d
p

)
i∗
√
p for quadratic

Gauss sums that the sum (11) equals

psζg(p−1)t(1+pkvt)
q

(−2

p

)
i∗
√
p.

Thus, the result of the proposition holds in all the cases.

I note that the sum in Proposition 3 ordinarily depends on the choice
of generator g and the value of v modulo pα−1. However, the special case
v ≡ 1 (modps′) is exceptional. In this case t = 0 in (9) so by Proposition 3,

Corollary 1. For α > 1 and v ≡ 1 (modps′),

pα−1
−1∑

j=0

ζg(p−1)j(1+pkvj)
q =

{√
q ζq if α is even,(
−2
p

)
i∗
√
q ζq if α is odd ,

independent of the choice of generator g.
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Here are a couple of examples to illustrate Proposition 3 and the corollary
above.

Example 1. Consider q = 27 in Proposition 3 with primitive root g = 2
and normalized character ψ in (6) satisfying ψ(2) = ζ5

18 with k = 5. One
finds for v ≡ 1 (mod3) that

8∑

j=0

ζ
4j(1+15vj)
27 = 3i

√
3 ζ

t(v)
27

with t(v) given by
v 1 4 7

t(v) 1 19 19

It suffices to determine t(v) for v (mod9) here by the remark above. For
this example the values of t(v) happen to be independent of the choice of
generator g since t(4) = t(7) in view of Corollary 1.

With q = 81 in Proposition 3 and normalized character ψ in (6) satisfying
ψ(2) = ζ11

54 with k = 11, one finds for v ≡ 1 (mod3) that
26∑

j=0

ζ
4j(1+33vj)
81 = 81ζ

t(v)
81

with t(v) given by

v 1 4 7 10 13 16 19 22 25

t(v) 1 28 37 1 55 10 1 1 64

Example 2. Consider q = 343 in Proposition 3 with primitive root
g = 3 and normalized character ψ in (6) satisfying ψ(3) = ζ71

294 with k = 71.
One finds for v ≡ 1 (mod7) here that

48∑

j=0

ζ
36j(1+154vj)
343 = −7i

√
7 ζ

t(v)
343

with t(v) given by

v 1 8 15 22 29 36 43

t(v) 1 197 99 50 50 99 197

In the examples above the values t(v) all satisfy t(v) ≡ 1 (modp2), a relation
that is readily confirmed to hold in general when p is odd.

I am ready to state the main result concerning the sums (2).

Theorem 1. Suppose χ = ψv in (2) where a ≡ 0 (modp− 1) and b 6≡ 0
(modp) with α > 1. If av 6≡ b (mod p) then S(a, b, χ, q) = 0 else

S(a, b, χ, q)

=





pα/2

∑
x∈H ζ

bxg(p−1)t(1+pabvkt)
q if α is even,

(
−2
p

)
p(α−1)/2i∗

√
p

∑
x∈H

(
bx
p

)
ζ

bxg(p−1)t(1+pabvkt)
q if α is odd.
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Here H is the group of (p− 1)-roots of unity modulo q, and t satisfies

pkavt ≡ av − b (modps′) with 0 ≤ t < ps′−1

when av ≡ b (modp).

Proof. First note that since o(χa) | q,
∑

x∈Z∗

q

ψv(x)axζbx
q =

φ(q)−1∑

w=0

ψv(gw)agw
ζbgw

q ,

which equals

p−2∑

i=0

pα−1
−1∑

j=0

ψv(gipα−1+j(p−1))agipα−1+j(p−1)
ζbgipα−1+j(p−1)

q ,

where each w is uniquely expressed modulo φ(q) as w = ipα−1 + j(p − 1)
with 0 ≤ i < p− 1, 0 ≤ j < pα−1. This last sum in turn becomes

p−2∑

i=0

pα−1
−1∑

j=0

ψv(gipα−1
)agipα−1

gj(p−1)ψv(g(p−1)j)agipα−1
gj(p−1)

ζbgipα−1
g(p−1)j

q

=

p−2∑

i=0

pα−1
−1∑

j=0

ζg(p−1)j(1+pkabvj)bgipα−1

q =
∑

x∈H

pα−1
−1∑

j=0

ζbxg(p−1)j(1+pkabvj)
q ,

since ψ(gpα−1
)a = 1 as gpα−1

has order p − 1 and generates H. Thus from
Proposition 3 with abv replacing v, the sum S(a, b, χ, q) equals 0 if av 6≡ b
(modp), and otherwise

S(a, b, χ, q) =






∑
x∈H pα/2ζ

bxt(abv)
q if α is even,

∑
x∈H

(
−2
p

)
p(α−1)/2i∗

√
p

(
bx
p

)
ζ

bxt(abv)
q if α is odd,

when av ≡ b (modp) in terms of the function t() in (9). The statement of
the theorem now follows.

The special case where av ≡ b (modps′) again warrants separate consid-
eration.

Corollary 2. For any numerical character χ = ψv with av ≡ b
(modps′) in (2), where a ≡ 0 (modp− 1), b 6≡ 0 (modp) and α > 1,

S(a, b, χ, q) =

{
pα/2

∑
x∈H ζbx

q if α is even,
(
−2
p

)
p(α−1)/2i∗

√
p
∑

x∈H

(
bx
p

)
ζbx
q if α is odd ,

independent of the choice of normalized character ψ in (6).

Proof. The above follows readily from Theorem 1 and Corollary 1 upon
replacing v by abv and noting that t = 0 in Theorem 1.
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It is worth noting the connection here with the general mixed exponen-

tial sums of the form
∑
χ(g(x))ζ

f(x)
q recently studied by T. Cochrane and

Z. Zheng [3–5] for prime powers q = pα (α > 1). In [3] Cochrane considers
the case f(x) and g(x) are rational functions with integer entries, and shows
how to explicitly evaluate such a sum when its associated critical point con-
gruence has no multiple zeros modulo p. For appropriately chosen Taylor
series expansions for f(x) and g(x) he extends the classic method of Salié to

determine the contribution to the sum
∑
χ(g(x))ζ

f(x)
q from each zero of the

critical point congruence. Cochrane and Zheng’s techniques will extend to
more general settings, where f(x) and g(x) have nice enough p-adic analytic
properties. Such an adaptation is possible here, which I shall sketch below,
but first I make some preliminary remarks about the p-adic logarithm and
exponential functions.

Let Qp denote the field of p-adic numbers, Op the ring of p-adic integers
and Up = {x ∈ Op | x ≡ 1 (mod p)} the group of principal units. Any
character χ modulo q extends to Op in the natural way; namely χ(u) =
χ(û) where û denotes the residue class of u modulo q, and similarly for
ζu
q = exp(2πiû/q). The p-adic logarithm and exponential functions given by

log(1 + pu) =
∞∑

j=1

(−1)j+1 (pu)j

j
and epu =

∞∑

j=0

(pu)j

j!
(12)

are analytic on Op and satisfy the identity elog(1+pu) = 1 + pu for u ∈ Op.
Corresponding to the primitive root g for q chosen before, let R be the p-adic
unit R = 1

p log gp−1. One defines the exponential function

z = g(p−1)t = eRpt (t ∈ Op)(13)

which maps Op isomorphically onto Up. With respect to the filtration U
(i)
p =

{u ∈ Up | u ≡ 1 (modpi)} (i > 0) of the principal units, the image z(pγ−1Op)

equals U
(γ)
p for any positive integer γ. The inverse map for (13) is

t = R−1p−1 log z (z ∈ Up).(14)

With χ = ψv here in terms of the normalized character ψ chosen in (6),
one finds (chiefly Lemma 2.1 in [3]) that

χ(1 + pu) = ζRkv log(1+pu)
q (u ∈ Op).(15)

Since ψ satisfies (6) one readily sees from (15) that k ≡ −R (modps′) with
q = 27 being the only exception.

For the application here f(x) = bx and g(x) = exp(x log xa) are both
defined for Up since a ≡ 0 (modp− 1). Relying on (15) and the power series
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expansions (12), one can show that

χ(x+ ps′y)a(x+ps′y) = χ(x)axζRkv(log xa+a)yps′

q

for any y ∈ Op, analogous to relation (3.5) in [3]. The associated critical
point congruence may be expressed as

W (x) := Rb+ kv log xa + kav ≡ 0 (mod ps′), x 6≡ 0 (mod p),

in place of C(x)/g(x) = Rf ′(x) + kvg′(x)/g(x) ≡ 0 there. Since ψ is nor-
malized, R may be replaced by −k in view of the comments above (except
for q = 27), so the critical point congruence becomes

W (x) :≡ k(av − b) + kv log xa ≡ 0 (modps′), x 6≡ 0 (modp).(16)

But xa ≡ 1 (mod p) so W (x) ≡ 0 (mod p) is solvable if and only if av ≡ b
(modp), and then for any x 6≡ 0 (modp). Additionally W ′(x) ≡ kva/x 6≡ 0
(modp) so each zero of W (x) ≡ 0 (mod p) is simple.

To find the lift x∗ for x ≡ 1 (mod p) in (16) one may algebraically
solve for x∗ making use of (13) and (14). Indeed, from (16), one has log x∗ ≡
−(av−b)/av (modps′) or t ≡ Rp−1 log x∗ ≡ (av − b)/pkav (modps′−1) since
k ≡ −R (mod ps′). Thus x∗ ≡ g(p−1)t, where t ≡ (av − b)/pkav (modps′−1),
is the lift for x ≡ 1 (modp) with the contribution

S1 =





pα/2ζ

bg(p−1)t(1+pkabvt)
q if α is even,

p(α−1)/2i∗
√
p

(
−2b
p

)
ζ

bg(p−1)t(1+pbabvt)
q if α is odd

from Theorem 1.1 in [3] since

χ(g(p−1)tag(p−1)t
)ζbg(p−1)t

q = ζ
k(p−1)avtg(p−1)t

pα−1(p−1)
ζbg(p−1)t

q = ζbg(p−1)t(1+pkavbt)
q

and −2kW ′(1) ≡ −2b (modp).

To find lifts for the remaining solutions of W (x) ≡ 0 (modp), note
that the group H of (p − 1)-roots of unity modulo q is isomorphic to Z∗

p

so one may as well take H as the solution set of the critical point congru-
ence (16) modulo p. But now for each µ ∈ H, µx∗ is a lift of µ satisfying (16)

since µa ≡ 1 (modps′). Moreover, χ(µx∗)avµx∗

ζbµx∗

q = χ(x∗)avx∗µζbx∗µ
q with

−2kW ′(µ) ≡ −2b/µ (mod p) so the contribution due to µ is Sµ = σµ(S1),
where σµ is the automorphism of Q(ζq)/Q satisfying σµ(ζq) = ζµ

q . Thus∑
x∈Z∗

q
χ(x)axζbx

q =
∑

µ∈H Sµ yielding the expressions appearing in Theo-

rem 1. A slight modification of the argument above yields the same result
in the exceptional case q = 27.

3. Evaluation of
∑
χ(x)axζbx

q for q = 2α. Here I consider the sums
in (2) when q = 2α with b odd and α > 1. It is straightforward to compute
these sums for q = 4 or 8. Here ξ denotes the quadratic character ξ(x) =
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(−1)(x−1)/2, and
(

2
x

)
and

(
−2
x

)
the usual Kronecker symbols associated with

Q(
√

2) and Q(
√
−2), respectively.

Proposition 4. For b odd

S(a, b, χ, 4) =

{
0 if χa = 1,

2ib if χa 6= 1,
(i)

S(a, b, χ, 8) =






0 if χa = 1 or ξ,(
2
b

)
2
√

2 if χ(x) =
(

2
x

)
and a is odd ,(

2
x

)
2ib

√
2 if χ(x) =

(
−2
x

)
and a is odd.

(ii)

The above result is readily obtained by direct calculation from (2).

I now assume α > 3 throughout the remainder of this section. Fix a
numerical character ψ modulo q which generates the group of all even nu-
merical characters defined modulo q and is normalized so that

ψ(1 + 2s) = ζ−1
2s for α = 2s, s ≥ 2,

ψ(1 + 2s + 22s−1) = ζ−1
2s+1 for α = 2s+ 1, s ≥ 2.

(17)

Set s′ = s or s+1 again as α is even or odd. Note that ψ has order 2α−2 and
that any given numerical character χ defined modulo q equals ψv or ξψv for
some integer v, 0 ≤ v < 2α−2. Additionally one sees that such a character
χ is itself normalized if and only if v ≡ 1 (mod2s′).

Next choose a generator g ≡ 1 (mod4) for the subgroup T = {v ∈ Z∗

2α |
v ≡ 1 (mod4)} of Z∗

2α , say with the least positive integer k satisfying
ψ(g) = ζk

2α−2 .

The following lemma and propositions are the natural analogs of those
given at the beginning of Section 2 for the situation at hand.

Lemma 2. With generator g chosen as above

g2s−2y ≡
{

1 − yk2s (mod q) if α = 2s,

1 − yk2s + (yk)222s−1 (mod q) if α = 2s+ 1,

for any integer y.

Proof. In case α = 2s one has ψ(g−k2s−2
) = ζ−1

2s by the choice of ψ and g.
Now ψ is an isomorphism between T and the group of 2α−2-roots of unity,
so from (17),

g−k2s−2 ≡ 1 + 2s (mod q).

In particular using (7) one finds that

g2s−2y ≡ g−k2s−2(−ky) ≡ (1 + 2s)−ky ≡ 1 − ky2s (mod q).

In the alternative case α = 2s+ 1, one finds similarly that

g−k2s−2 ≡ 1 + 2s + 22s−1 (mod q).
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Using (7) again, one has g2s−2y = g−k2s−2(−ky) ≡ (1 + 2s + 22s−1)−ky or

−ky(2s +22s−1)+
ky(ky + 1)

2
(2s +22s−1)2 ≡ 1−ky2s +(ky)222s−1 (mod q).

Now consider the congruence

4kvt ≡ v − 1 (mod2s′).(18)

When v ≡ 1 (mod4) let t be its unique solution with 0 ≤ t < 2s′−2, and set

t(v) =

{
gt(1 + 4kvt) if α is even,

gt(1 + 4kvt+ (1 − 2(−1)t)2α−3) if α is odd.
(19)

With notation as above, we have

Proposition 5. For α > 3 and v ≡ 1 (mod4),

2α−4
−1∑

j=0

ζ
gj(1+4kvj)
2α = 2(α−4)/2ζ

t(v)
2α

with t(v) as given in (19).

Proof. When α = 4, the sum consists of the single term ζ16 with t = 0

in (19) so the formula holds. When α = 5, the sum equals ζ32 + ζ
g(1+4kv)
32

with t = 0 or 1 according as v ≡ 1 or 5 (mod8). A straightforward com-
putation shows this sum equals

√
2 ζ−3

32 or
√

2 ζ5
32 respectively, independent

of the choice of g, so the result of the proposition follows for α = 5. Now
assume α > 5 and write j = t+ i2s′−2 for 0 ≤ i < 2s−2 and 0 ≤ t < 2s′−2.
Then

2α−4
−1∑

j=0

ζgj(1+4kvj)
q =

2s′−2
−1∑

t=0

2s−2
−1∑

i=0

ζgt+i2s′−2
(1+4kvt+2s′kvi)

q

=

2s′−2
−1∑

t=0

ζgt(1+4kvt)
q

2s−2
−1∑

i=0

ζ
gtki(v−1−4kvt)
2s

since

gi2s′−2
(1 + 4kvt+ 2s′kvi) ≡ (1 − ik2s′)(1 + 4kvt+ 2s′kvi)

≡ 1 + 4kvt+ ik2s′(v − 1 − 4kvt) (mod q)

from Lemma 2. But

2s−2
−1∑

i=0

ζ
gtki((v−1)/4−kvt)
2s−2 ≡

{
2s−2 if (v − 1)/4 ≡ kvt (mod2s−2),

0 otherwise.
(20)

For α even, the double sum above reduces to the single term 2s−2ζ
gt(1+4kvt)
q ,

where t is the solution specified in (19). For α odd, the double sum be-
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comes

2s−2(ζgt(1+4kvt)
q + ζgt+2s−2

(1+4kvt+2skv)
q )

= 2s−2(ζgt(1+4kvt)
q + ζgt(1+4kvt+k(v−1)2s

−k2v22s
−k2vt2s+2+22s−1)

q ),

where t is the solution specified in (19). Since g2s−2 ≡ 1−k2s+22s−1 (mod q)
from Lemma 2 as k is odd, the last expression is seen to equal

2s−2ζgt(1+4kvt−22s−2)
q (ζgt

8 + ζ−gt

8 ) =

(
2

gt

)
2s−2

√
2 (ζ1+4kvt

q ζ−1
8 )gt

.

The result of the proposition now follows as stated for α odd with the ex-
pression for t(v) since g ≡ 5 (mod8). Thus the proof of the proposition is
complete.

I note that the sum in Proposition 5 ordinarily depends on the choice
of generator g for T and value of v modulo 2α−2. However, the special case
v ≡ 1 (mod2s′) is exceptional. In this case t = 0 in (19) so by Proposition 5,

Corollary 3. For α > 3 and v ≡ 1 (mod2s′),

2α−4
−1∑

j=0

ζgj(1+4kvj)
q =

{
2(α−4)/2ζq if α is even,

2(α−5)/2
√

2 ζqζ
−1
8 if α is odd ,

independent of the choice of generator g for T .

Corollary 4. For α > 3 odd with v ≡ 1 + 2s (mod2s+1),

2α−4
−1∑

j=0

ζgj(1+4kvj)
q = 2(α−5)/2

√
2 ζqζ8,

independent of the choice of generator g for T .

Proof. With v ≡ 1 + 2s (mod2s+1) one finds t = 2s−2 in (19). Direct
computation shows t(5) = 5 when α = 5. For α > 5, t is even so from
Lemma 2 and Proposition 5, t(v) is congruent modulo q to

g2s−2
(1 + 2skv − 22s−2) ≡ (1 − k2s + 22s−1)(1 + 2skv − 22s−2) ≡ 1 + 22s−2.

This yields the value stated above.

The following example illustrates Proposition 5 and the corollaries above.

Example 3. Here I evaluate t(v) in Proposition 5 for q = 2α with 5 ≤
α ≤ 8, where g = 5 has been chosen to generate the subgroup T . It suffices
to consider only v ≡ 1 (mod4) and less than 2α−2.

For q = 32 a normalized character ψ in (17) must satisfy ψ(5) = ζ8 with
k = 1. From Proposition 5, one obtains

v 1 5

t(v) −3 5
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For q = 64, choosing a normalized character ψ in (17) satisfying ψ(5) =
ζ−3
16 with k = −3, one finds from Proposition 5 that

v 1 5 9 13

t(v) 1 25 1 −7

Choosing a different normalized character ψ̂ in (17) satisfying ψ̂(5) = ζ5
16

with k = 5, one finds instead that

v 1 5 9 13

t(v) 1 −7 1 25

Similarly for q = 128 in Proposition 5 and normalized character ψ satis-
fying ψ(5) = ζ1

32 with k = 1 one obtains

v 1 5 9 13 17 21 25 29

t(v) −15 −39 17 25 −15 25 17 −39

With normalized character ψ satisfying ψ(5) = ζ25
64 in (17) for k = 25

where q = 256, one finds

v 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

t(v) 1 −55 −31 −55 1 9 97 137 1 73 −31 73 1 137 97 9

Choosing a different normalized character ψ̂ in (17) satisfying ψ̂(5) = ζ9
64

one finds instead

v 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

t(v) 1 137 97 9 1 −55 −31 −55 1 9 97 137 1 73 −31 73

In the examples above the values t(v) all satisfy t(v) ≡ 1 (mod8), a re-
lation that is readily confirmed to hold here in general.

In addition to the patterns exhibited among the values t(v) in the ex-
amples above that are predicted by Corollaries 3 and 4, there are others
worth noting which depend on the choice of generator g for T and value k
used to determine the normalized generating character ψ in (17). To present
them I describe a canonical choice of normalized characters ψα modulo 2α

satisfying (17) for α > 3 corresponding to the generator g = 5 for T .

Let Q2 and O2 denote the field of 2-adic numbers and ring of 2-adic
integers, respectively, and consider a character χmodulo q extended to O2 as
before and similarly for ζu

q . The 2-adic logarithmic and exponential functions
given by

log(1 + 4u) =

∞∑

j=1

(−1)j−1(4u)j/j and e4u =

∞∑

j=0

(4u)j/j!(21)
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are analytic on O2 and satisfy the identity elog(1+4u) = 1 + 4u. Let R be the
2-adic unit R = 1

4 log 5. The exponential function

z = 5t = e4Rt (t ∈ O2)

has inverse t = 1
4R log z for z ≡ 1 (mod4). For any character χ = ψv, in

terms of the normalized character ψ chosen in (17), one has (chiefly, (6.4)
in [3])

χ(1 + 4u) = ζRkv log(1+4u)
q (u ∈ O2).(22)

Now define a sequence of integers {kα} (α > 3) given by the congruences

kα ≡
{
−R(1 − 2s−1) if α = 2s ≥ 4,

−R if α = 2s+ 1 ≥ 5
(23)

modulo 2α−2. The characters ψα given by

ψα(5) = ζkα

2α−2 , ψα(−1) = 1 (α > 3)(24)

are seen to be even and normalized modulo 2α, and were the ones chosen
for ψ in Example 3 for 5 ≤ α ≤ 8.

Proposition 6. Each character ψα above is normalized modulo 2α.

Proof. From (22) and (24) one has for any u ∈ O2,

ψα(1 + 4u) = ζRkα log(1+4u)
q .

For α > 3 odd one finds using (21) that

ψα(1 + 2s + 22s−1) = ζ−(2s+22s−1)+(2s+22s−1)2/2−···

q = ζ−1
2s′

since kα ≡ −R (mod q). So ψα is normalized in this case. For α > 2 even
one similarly has

ψα(1 + 2s) = ζ(2s−1
−1)(2s

−22s−1+23s/3−···)
q = ζ2s(2s−1

−1)(1−2s−1)
q = ζ−1

2s

since kα ≡ −R(1 − 2s−1) (mod q). Thus ψα is normalized also for α even.

For the choices made in (23) and (24) I find

Corollary 5. Let q = 2α with α = 2s > 4 and k ≡ kα (mod2s+1) in

(23). For v ≡ 1 + 2s−1 (mod2s+1),

2α−4
−1∑

j=0

ζ5j(1+4kvj)
q =

{
2(α−4)/2ζqζ

−1
8 if s > 3,

−2(α−4)/2ζqζ
−1
8 if s = 3.

For v ≡ 1−2s−1 (mod2s+1) the above sum has the same values but with the

alternatives interchanged.

Proof. The choice v ≡ 1 (mod2s+1) yields t = 2s−3 with v−1−4kvt ≡ 0

(mod2s) in (18). Then t(v) = gt(1 + 4kvt) = 52s−3
(1 + 2s−1kv) is congruent
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to (1+2s−1R+22s−3)(1−2s−1R(1−2s−1)(1+2s−1)) modulo q from the 2-adic

expansion of 52s−3
= e2

s−1R in (21). But this expression for t(v) becomes

(1 + 2s−1R+ 22s−3)(1 −R2s−1) ≡ 1 − 22s−3 + 23s−4 (mod q),

which is readily seen to be congruent to 1− 22s−3 or 1 + 3 · 22s−3 according
as s > 3 or s = 3. The result stated in the corollary now follows. Note that
with v ≡ 1−2s−1 (mod2s+1) instead, a similar computation yields the same
values with alternatives interchanged.

Corollary 6. Let q = 2α with α = 2s > 4 and k ≡ kα(1 + 2s)
(mod2s+1) in (23). For v ≡ 1 + 2s−1 (mod2s+1),

2α−4
−1∑

j=0

ζ5j(1+4kvj)
q =

{
−2(α−4)/2ζqζ

−1
8 if s > 3,

2(α−4)/2ζqζ
−1
8 if s = 3.

For v ≡ 1−2s−1 (mod2s+1) the above sum has the same values but with the

alternatives interchanged.

Proof. I first note that 1 + 4kvj is invariant modulo q if k and v are re-
placed by k(1 + 2s) and v(1 − 2s) respectively in Corollary 5. But
(1+ 2s−1)(1− 2s) ≡ 1− 2s−1 and (1− 2s−1)(1− 2s) ≡ 1+ 2s−1 modulo 2s+1

so the result follows from Corollary 5.

Incidentally, the alternative choice of characters in Example 3 for q = 64
and q = 256 was made to illustrate Corollaries 5 and 6 above.

I finally remark that if one replaces −R(1 − 2s−1) by −R(1 + 2s−1) in
(23) for α = 2s ≥ 4 to define the characters ψα, then Proposition 6 remains
valid, and also Corollaries 5 and 6 but with the alternatives interchanged

for the value of the sum
∑2α−4

−1
j=0 ζ

5j(1+4kvj)
q .

I am now ready to state the main result concerning the sums (2) when
p = 2 and b is odd.

Theorem 2. For b odd and q = 2α with α > 3, let χ = ψv or ξψv. If

av 6≡ b (mod4) then S(a, b, χ, q) = 0 else

S(a, b, χ, q) =






(
2
b

)α
2
√
q cos

(2πbt(abv)
q

)
if χ = ψv,

(
2
b

)α
2i
√
q sin

(2πbt(abv)
q

)
if χ = ξψv.

Here t() is the function given in (19).

Proof. To begin set

W (a, b, χ, q) =
∑

x∈T

χ(x)axζbx
q(25)
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for any numerical character χ modulo q, where T is the subgroup {x ∈ Z∗

q |
x ≡ 1 (mod4)} of Z∗

q as before. One has
∑

x∈Z∗

q

χ(x)axζbx
q = W (a, b, χ, q) + χa(−1)W (−a,−b, χ, q)

reducing the computations to sums of the form (25) with χ even, say χ = ψv

for some integer v. Now ψv(1+2α−2)a(1+2α−2) = ψav(1+2α−2) = ζ−av
4 since

ψ satisfies (17) with s ≥ 2. In addition, any element of T has a unique
representation modulo q as a product xy with x ∈ X = {1, 5, . . . , 2α−2 − 3}
and y ∈ {1, 1 + 2α−2, 1 + 2α−1, 1 + 3 · 2α−2}. Thus

W (a, b, χ, q) =
∑

x∈X

(ψ(x)avxζbx
q + ψ(x(1 + 2α−2))avx(1+2α−2)ζbx(1+2α−2)

q

+ ψ(x(1 + 2α−1))avx(1+2α−1)ζbx(1+2α−1)
q

+ ψ(x(1 + 3 · 2α−2))avx(1+3·2α−2)ζbx(1+3·2α−2)
q )

=
∑

x∈X

ψ(x)avxζbx
q (1 + ψ(1 + 2α−2)avζb

4

+ ψ(1 + 2α−1)avζ2b
4 + ψ(1 + 3 · 2α−2)avζ3b

4 )

since x ≡ 1 (mod4). This in turn equals
∑

x∈X

ψ(x)avxζbx
q (1 + ζb−av

4 + ζ
2(b−av)
4 + ζ

3(b−av)
4 )

so

W (ψv) =

{
4
∑

x∈X ψ(x)avxζbx
q if av ≡ b (mod4),

0 if av 6≡ b (mod4).
(26)

Moreover, the value of any term ψ(x)avxζbx
q in

∑
x∈X ψ(x)avxζbx

q for av ≡ b

(mod4) depends only on the choice of x modulo 2α−2. Taking the values
{gj | 0 ≤ j < 2α−4 − 1} to represent the elements of X modulo 2α−2, one
now obtains

∑

x∈X

ψavx(x)ζbx
q =

2α−4
−1∑

j=0

ζavkjgj

2α−2 ζbgj

q =
2α−4

−1∑

j=0

ζbgj(1+4kabvj)
q ,(27)

just a conjugate of the sum evaluated in Proposition 5. A straightforward
computation using Proposition 5 with v replaced by abv yields

S(a, b, χ, q) =

(
2

b

)α

2α/2(ζbt(abv)
q + χ(−1)ζ−bt(abv)

q )

in view of (26) above. The expressions for S(a, b, χ, q) as stated in the the-
orem immediately follow.

The special case when av ≡ b (mod2s′) warrants separate mention.
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Corollary 7. For any character χ = ψv or χ = ξψv in (2) with av ≡ b
(mod2s′) when p = 2, b is odd and α > 3,

S(a, b, χ, q)

=

{
2α/2(ζb

q + χ(−1)ζ−b
q ) if α is even,

2(α−1)/2
√

2
(

2
b

)
(ζ

b(1−2α−3)
q + χ(−1)ζ

−b(1−2α−3)
q ) if α is odd ,

independent of the choice of even normalized character ψ in (17).

The following results treat the special case when 2s′−1 ‖ (av− b) and are
readily deduced from Corollaries 4 and 5, respectively, in view of Theorem 2.
The details are left to the reader.

Corollary 8. For any character χ = ψv or ξψv in (2) with 2s ‖ (av−
b), where b is odd and q = 22s+1 > 8,

S(a, b, χ, q) =

(
2

b

)
2s
√

2 (ζb(1+2α−3)
q + χ(−1)ζ−b(1+2α−3)

q ).

Corollary 9. Let χ = ψv or ξψv in (2) in terms of the canonical char-

acters ψα given in (24). If 2s−1 ‖ (av − b) where b is odd and q = 22s > 16,
then

S(a, b, χ, q) =

{
ε2s(ζ

b(1−2α−3)
q + χ(−1)ζ

−b(1−2α−3)
q ) if s > 3,

−ε2s(ζ
b(1−2α−3)
q + χ(−1)ζ

−b(1−2α−3)
q ) if s = 3.

Here ε = ±1 is determined by the congruence av − b ≡ εb2s−1 (mod2s+1).

4. Evaluation of some incomplete sums for primitive characters.

In this section I consider the sums
∑φ(q)/f

x=1, p∤x χ(x)axζbx
q in (5), with p ∤ b,

f = gcd(av, p−1) and χ a primitive character modulo q of the form χ = ψv,
where av ≡ b (mod p) and ψ is normalized as in (6) with ψ(g) = ζk

φ(q) as in

Section 2.

The following lemma plays a key role in evaluating these incomplete
sums.

Lemma 3. For any character χ modulo q of the form χ = ψv, where

av ≡ b (mod p) with ψ satisfying (6) and x, y 6≡ 0 (mod p),

χ(x)axζbx
q = χ(y)ayζby

q if x ≡ y (modpα−1(p− 1)/f).

Proof. First note that since ψ is normalized ψ(1+ vpα−1) = ζ−v
p for any

integer v from (6). Now write y = x + pα−1(p − 1)t/f for some integer t.
Then

χ(y)ay = χ(x)ayχ(1 + pα−1(p− 1)xt/f)ay = χ(x)axζ−(p−1)avt/f
p
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since χa = ψav has order dividing φ(q)/f . Thus

χ(y)ayζby
q = χ(x)axζ−(p−1)avt/f

p ζbx+pα−1(p−1)bt/f
q

= χ(x)axζbx
q ζ−(p−1)(av−b)t/f

p = χ(x)axζbx
q .

I am ready to state the main result.

Theorem 3. Let χ = ψv be a primitive character modulo q = pα where

f = gcd(av, p− 1) and p ∤ b with av ≡ b (mod p). Then

φ(q)/f∑

x=1, p∤x

χ(x)axζbx
q =






p−1
f p(α−2)/2

∑
x∈H ζ

bxgp−1(1+pkabvt)
q ,

(
−2
p

)p−1
f p(α−3)/2i∗

√
p

∑
x∈H

(
bx
p

)
ζ

bxg(p−1)t(1+pkabvt)
q

according as α ≥ 2 is even or odd , where t satisfies pkavt ≡ av−b (modps′)
for 0 ≤ t < ps′−1. Here H is the group of f -roots of unity modulo q.

Proof. From Lemma 3,

φ(q)/f∑

x=1, p∤x

χ(x)axζbx
q =

1

p

q(p−1)/f∑

x=1, p∤x

χ(x)axζbx
q

=
1

p

(p−1)/f−1∑

j=0

φ(q)−1∑

i=0

χ(gi)av(gi+jq)ζbgi

q ,

where each x is uniquely written as x = gi+jq (mod q(p−1)) for 0 ≤ i < φ(q)
and 0 ≤ j < (p− 1)/f. But the rightmost sum above equals

1

p

(p−1)/f−1∑

j=0

φ(q)−1∑

i=0

ζ
apkvi(gi+jq)+b(p−1)gi

q(p−1)

=
1

p

φ(q)−1∑

i=0

ζ
b(abpkvi+p−1)gi

q(p−1)

(p−1)/f−1∑

j=0

ζapkvij
p−1 .

Since f = gcd(av, p− 1),

(p−1)/f−1∑

j=0

ζapkvij
p−1 =

{
(p− 1)/f if i ≡ 0 (mod (p− 1)/f),

0 otherwise,

so the last summation becomes

1

p

p− 1

f

fpα−1
−1∑

i=0

ζ
b(abkvp(p−1)i/f+p−1)g(p−1)i/f

q(p−1)
.(28)

Noting that each integer i with 0 ≤ i < fpα−1 can be uniquely expressed
modulo fpα−1 as

i = wpα−1 + jf for 0 ≤ w < f, 0 ≤ j < pα−1,



258 S. Gurak

the sum (28) may be written as

p− 1

pf

f−1∑

w=0

pα−1
−1∑

j=0

ζ
b(abkvp(w(p−1)pα−1/f+j(p−1))+p−1)gφ(q)w/fg(p−1)j

q(p−1)

=
p− 1

pf

f−1∑

w=0

pα−1
−1∑

j=0

ζg(p−1)j(1+pkabvj)bgφ(q)w/f

q

or

p− 1

pf

∑

x∈H

pα−1
−1∑

j=0

ζbxg(p−1)j(1+pkabvj)
q .

Here I use the facts that f | av and gφ(q)/f generates the group H of f -
roots of unity modulo q. The result stated in the theorem now follows from
Proposition 3.

For the special case when av ≡ b (modps′) one finds from Corollary 1
that

Corollary 10. With the same hypotheses as in Theorem 3, if av ≡ b
(modps′) then

φ(q)/f∑

x=1, p∤x

χ(x)axζbx
q =

{ p−1
f p(α−2)/2

∑
x∈H ζbx

q ,
(
−2
p

)p−1
f p(α−3)/2i∗

√
p

∑
x∈H

(
bx
p

)
ζbx
q

according as α ≥ 2 is even or odd , independent of the choice of generating

character ψ satisfying (6).

Comparing the results of Theorems 1 and 3 one also notes

Corollary 11. With the same hypotheses as in Theorem 3, if av ≡ b
(modp) and a ≡ 0 (mod p− 1) then

pα−1∑

x=1, p∤x

χ(x)axζbx
q =

1

p
S(a, b, χ, q).

In closing, I remark that to determine the incomplete sum (5) when
av 6≡ b (modp) remains an open question.
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