On the sum of the first n values of the Euler function

by

R. Balasubramanian (Chennai), Florian Luca (Santiago de Querétaro and Johannesburg) and Dimbinaina Ralaivaosaona (Muizenberg)

1. Introduction. Let $\phi(n)$ be the Euler function. Put

$$
E(x)=\sum_{n \leq x} \phi(n)-\frac{3}{\pi^{2}} x^{2}
$$

Walfisz [3] proved that

$$
E(x)=O\left(x(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right)
$$

We shall denote by $\delta(x)$ all functions which are bounded above by

$$
\exp \left(-A(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)
$$

as $x \rightarrow \infty$, where $A>0$ is some constant. The mean value of $E(n)$ was considered in [2], where it was shown that

$$
\begin{equation*}
\sum_{n \leq x} E(n)=\frac{3 x^{2}}{2 \pi^{2}}+O\left(x^{2} \delta(x)\right) \tag{1.1}
\end{equation*}
$$

Here, we give an estimate for the mean value of $E(n)^{2}$.
Theorem 1.1. The estimate

$$
\sum_{n \leq x} E(n)^{2}=\left(\frac{1}{6 \pi^{2}}+\frac{2}{\pi^{4}}\right) x^{3}+O\left(x^{3} \delta(x)\right)
$$

holds for $x>10$ with a suitable value of A.
2. The proof of Theorem 1.1. We begin by stating a similar result essentially due to Chowla [1].

[^0]Lemma 2.1. We have the estimate

$$
\begin{equation*}
\int_{0}^{x} E(u)^{2} d u=\frac{x^{3}}{6 \pi^{2}}+O\left(x^{3} \delta(x)\right) \quad \text { as } x \rightarrow \infty \tag{2.1}
\end{equation*}
$$

Note here that the result in [1] is not quite as precise as in the estimate (2.1), because Chowla started his proof with a weaker estimate of the Mertens function:

$$
M(x):=\sum_{n \leq x} \mu(n)=O\left(\frac{x}{(\log x)^{30}}\right)
$$

as $x \rightarrow \infty$. Since it is well known that the Mertens function satisfies

$$
M(x)=O(x \delta(x)) \quad \text { as } x \rightarrow \infty,
$$

the arguments in [1] can be adapted to deduce (2.1).
We will now see that Theorem 1.1 can easily be deduced from Lemma 2.1. Let us assume, without loss of generality, that x is an integer. Then we have

$$
\int_{0}^{x} E(u)^{2} d u=\sum_{k=0}^{x-1} \int_{0}^{1} E(k+u)^{2} d u
$$

Furthermore, for any integer k and $u \in(0,1)$ we have

$$
\begin{aligned}
E(k+u)^{2} & =\left(E(k)-\frac{3}{\pi^{2}}\left(2 u k+u^{2}\right)\right)^{2} \\
& =E(k)^{2}+\frac{9}{\pi^{4}}\left(2 u k+u^{2}\right)^{2}-\frac{12}{\pi^{2}} u k E(k)-\frac{6}{\pi^{2}} u^{2} E(k) .
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \int_{0}^{x} E(u)^{2} d u \tag{2.2}\\
& =\sum_{k=0}^{x-1} E(k)^{2}+\sum_{k=0}^{x-1} \int_{0}^{1}\left(\frac{9}{\pi^{4}}\left(2 u k+u^{2}\right)^{2}-\frac{12}{\pi^{2}} u k E(k)-\frac{6}{\pi^{2}} u^{2} E(k)\right) d u \\
& =\sum_{k=0}^{x-1} E(k)^{2}+\frac{4}{\pi^{4}} x^{3}-\frac{6}{\pi^{2}} \sum_{k=0}^{x-1} k E(k)+\mathcal{O}\left(x^{2}\right) .
\end{align*}
$$

Finally,

$$
\begin{aligned}
\sum_{k=0}^{x-1} k E(k) & =x \sum_{k=0}^{x-1} E(k)-\sum_{k=0}^{x-1}(x-k) E(k) \\
& =x \sum_{k=0}^{x-1} E(k)-\sum_{l=0}^{x-1} \sum_{k=0}^{l} E(k) \\
& =\frac{1}{\pi^{2}} x^{3}+O\left(x^{3} \delta(x)\right)
\end{aligned}
$$

Here, we used (1.1) to estimate both terms of the second line and deduce the last line. Combining this with 2.2 , we get

$$
\sum_{k=0}^{x-1} E(k)^{2}=\int_{0}^{x} E(u)^{2} d u+\frac{2}{\pi^{4}} x^{3}+O\left(x^{3} \delta(x)\right)
$$

Thus, Theorem 1.1 follows from the estimate (2.1) of Lemma 2.1.
Acknowledgements. The second author worked on this paper during the Summer of 2007 when he visited the Institute for Mathematical Sciences in Chennai, India. He thanks the people of that institute for their hospitality and the TWAS for support.

The second author was partly supported by Project PAPIIT IN104512.

References

[1] S. Chowla, Contributions to the analytic theory of numbers, Math. Z. 35 (1932), 279-299.
[2] D. Suryanarayana and R. Sitaramachandra Rao, On the average order of the function $E(x)=\sum_{n \leq x} \phi(n)-3 x^{2} / \pi^{2}$, Ark. Mat. 10 (1972), 99-106.
[3] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Math. Forschungsber. 15, Deutscher Verlag Wiss., Berlin, 1963.
R. Balasubramanian

The Institute of Mathematical Sciences
Chennai 600 113, India
E-mail: balu@imsc.res.in
Dimbinaina Ralaivaosaona
African Institute for Mathematical Sciences
6 Melrose Ave.
Muizenberg, South Africa
E-mail: naina@aims.ac.za

Florian Luca
Mathematical Institute
UNAM Juriquilla
76230 Santiago de Querétaro, México and
School of Mathematics University of the Witwatersrand P.O. Box Wits 2050

Johannesburg, South Africa E-mail: fluca@matmor.unam.mx

[^0]: 2010 Mathematics Subject Classification: Primary 11N37.
 Key words and phrases: Euler function.

