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On the exact location of the non-trivial zeros
of Riemann’s zeta function
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Juan Arias de Reyna (Sevilla) and Jan van de Lune (Hallum)

1. Introduction. The functional equation of Riemann’s zeta function
ζ(s) implies that ζ(1/2+it) = Z(t)e−iϑ(t), where Z(t) and ϑ(t) are real valued
and real analytic functions and the phase −ϑ(t) is a rather simple function
depending only on Euler’s gamma function Γ (s). An analogous decomposi-
tion is valid for any meromorphic function. We give a formal definition of
the phase of a real analytic function in Section 2.

We will define some functions related to the zeros of ζ(s) and the phase of
related functions. Of course, these functions have appeared in the literature
but only in an implicit way and have not been studied for their own sake.
For example, Levinson and Montgomery [13] define

J(1/2 + it) := ζ(1/2 + it) + ζ ′(1/2 + it)

[
h′(1/2 + it)

h(1/2 + it)
+
h′(1/2− it)
h(1/2− it)

]−1
where h(s) = π−s/2Γ (s/2), and assert that “the determination of the number
of zeros of ζ(s) in σ > 1/2 can be conveniently ascertained from the variation
of arg J(1/2 + it)”. They do not use the simplified form

J(1/2 + it) = −e−2iϑ(t) ζ
′(1/2− it)
2ϑ′(t)

.

With our notation we would have
ph J(1/2+ it) = π−2ϑ(t)−ph ζ ′(1/2+ it) = π/2+πκ(t)−ϑ(t) = 2π−E(t).

Here κ(t) is the main function we introduce. It is closely connected with the
zeros of ζ(s), and is implicitly used in Levinson [12, equation (1.6)] to prove
that more than 1/3 of the zeros of ζ(s) are on the critical line.

In our paper we seldom assume the RH, and use the standard notation
of the subject. Therefore, we denote the zeros of ζ(s) in the upper half-plane
by βn + iγn, where βn and γn are real numbers and 0 < γ1 ≤ γ2 ≤ · · · .
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If a zero is multiple with multiplicity m, then it appears precisely m times
consecutively in the above sequence [17, Chapter 9, p. 214]. We shall need
to introduce another related sequence of real numbers (0 <) ξ1 < ξ2 < · · ·
defined so that {ξn : n ∈ N} := {t > 0 : ζ(1/2 + it) = 0}. Here only the
ordinates of the zeros on the critical line appear. These ξn do not repeat by
any circumstance.

The two sequences (ξn) and (γn) coincide if and only if the RH is true
and all the zeros of ζ(s) on the critical line are simple.

Even in case the RH were not true, we will show that κ(t) is related to
the zeros of ζ(s) on the critical line. We will prove that κ(ξn) = n for all
natural numbers, independently of any hypothesis.

The relations between the zeros of ζ(s) and ζ ′(s) have been the object of
much study. Starting with Speiser [16] who showed that the RH is equivalent
to ζ ′(s) having no zeros in 0 < σ < 1/2, Levinson and Montgomery [13] give
a quantified version of Speiser’s theorem. Berndt [2] gives an estimation of
the number of zeros of ζ ′(s) to a given height. Great interest in the zeros
of ζ ′(s) is related to their horizontal distribution, in which many questions
remain open (see Levinson and Montgomery [13], Conrey and Ghosh [5],
Soundararajan [15], Zhang [19], Garaev and Yıldırım [9], Farmer and Ki [7],
Radziwiłł [14]). Here we get a new way to study these relationships by means
of our function κ(t). The number of zeros of ζ(s) on an interval of the crit-
ical line not counting multiplicities is related to the increment of κ(t) in
this interval. Assuming the RH this function will be strictly increasing, so
κ′(t) ≥ 0. The connection is by means of equation (6.3) which represents this
function in terms of the zeros of ζ ′(s).

Therefore, κ(t) is related to the zeros of ζ(s) (Prop. 4.8), and κ′(t) is fully
determined by the zeros of ζ ′(s) (Prop. 6.5). The relationship of κ′(t) with
the zeros of ζ(s) is also direct and double (Prop. 8.1 and equation (8.2)). See
Figure 5 for a graphical description of these relations.

In Section 2 we give the definition and (some simple) properties of the
decomposition into phase and signed modulus of a real analytic function. In
particular, in Proposition 2.10 we write the phase as a convergent integral.
After this we devote Section 3 to some properties of the phase −ϑ(t) of
ζ(1/2 + it). Since we will use its convexity for all t > 0, we give a simple
derivation of this fact. Section 4 is devoted to the introduction of κ(t). The
definition in Proposition 4.3:

e2πiκ(t) = 1 + 2ϑ′(t)
ζ(1/2 + it)

ζ ′(1/2 + it)
, κ(0) = −1/2,

is possible because the function on the right hand side makes a circular
movement for t ∈ R. We study the relationship of κ(t) with ph ζ ′(1/2 + it)
and ϑ(t). The function κ(t) is complicated, its behavior being connected with
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the RH. We show here the equation

κ(ξn) = n,

which determines the set of real numbers t with ζ(1/2 + it) = 0.
Proposition 4.14 may come as a surprise. It relates the points where κ(t)

is half an integer with the zeros of Z ′(t). Assuming the RH the function κ(t)
will be strictly increasing, and between γn and γn+1 there would be only one
zero of Z ′(t), situated just at the point where κ(t) = n + 1/2. In Section 5
we show what of this remains true if we do not assume the RH, and see the
first application of the function κ′(t).

The main result of Section 6 is a formula for κ′(t) in terms of the zeros
of ζ ′(s) (see Proposition 6.5). Therein appears a constant A which we relate
in equation (6.5) with the zeros of ζ ′(s). In Section 7 we obtain the value
A = 1

2 log 2. We give a proof relating this constant to the difference in the
counting of zeros of ζ(s) given by Riemann and the one for the zeros of ζ ′(s)
given by Berndt. Also, we include a proof that the RH implies κ′(t) > 0 for
t > aκ.

Section 8 establishes the connection of κ′(t) with the zeros of ζ(s). We
know from Section 4 that for n < m we have

	ξm
ξn
κ′(t) dt = m− n. We show

that κ′(ξn) = ϑ′(ξn)/ω where ω is the multiplicity of the zero 1/2+iξn of ζ(s).
In Proposition 8.2 we apply these relationships to give, assuming the RH,
a new proof of a strengthening of a theorem of Garaev and Yıldırım [9] (which
they prove unconditionally). In Section 9 we introduce a related function
E(t) and show its relationship with the classical function S(t) and with a
function RH(t) which counts the failures up to height t of both the RH and
the simplicity of the zeros of ζ(s). This function is close to the one considered
by Levinson and Montgomery.

Most of the functions appearing in the present paper were found some
years ago (in 1997) by one of us (JvdL) while searching for a formula (or
equation) for the exact location of the non-trivial zeros of the Riemann zeta
function.

2. Phase and argument of a function. The results in this section are
easy but we did not find any proper references. We include the simple proofs
and introduce our notations about phase and argument of a real analytic
function.

Definition 2.1. A function f : R→ C is called real analytic if for every
t0 ∈ R there exists a convergent power series P (z) =

∑∞
k=0 ckz

k such that
f(t) = P (t − t0) for all t in a neighborhood of t0. In other words: A func-
tion f : R → C is called real analytic if f has an analytic extension to a
neighborhood of R.
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Proposition 2.2. If f : R → C r {0} is real analytic, then there exists
a real analytic function g such that f(t) = eg(t) for every t ∈ R.

Proof. For every t0 ∈ R let ∆(t0) be a disk with center at t0 such that
f(t) = P (t− t0) for t ∈ ∆(t0)∩R, and such that P (z− t0) 6= 0 for z ∈ ∆(t0).
The union G =

⋃
t0
∆(t0) is a simply connected domain and f can be ex-

tended to G as an analytic function. Since f(z) 6= 0 for z ∈ G, there exists
an analytic function g on G such that f(z) = eg(z) for all z ∈ G.

Corollary 2.3. If f : R→ Cr {0} is real analytic, then there exists a
real analytic function ϕ : R→ R such that f(t) = |f(t)|eiϕ(t).

We then write ϕ(t) = arg f(t). This is an analytic (and hence continuous)
determination of the argument of f . Two such functions differ by an integral
multiple of 2π.

Proposition 2.4. If f : R → C is real analytic, then there are two real
analytic functions U : R→ R and ϕ : R→ R such that

f(t) = U(t)eiϕ(t).

Given two such representations, f = U1e
iϕ1 and f = U2e

iϕ2, we have either
U1 = U2 and ϕ1−ϕ2 = 2kπ or U1 = −U2 and ϕ1−ϕ2 = (2k+1)π for some
integer k.

Proof. If f does not vanish, then |f | is real analytic and by Corollary 2.3
there exists a real analytic function ϕ : R → R such that f |f |−1 = eiϕ, and
we can take U = |f | in this case.

Now assume that f has real zeros. Let an be the real zeros of f(t) listed
with multiplicities. We may assume that a1 = · · · = am = 0 and all the
others are non-zero. By Weierstrass’ factorization theorem there exists an
entire function

g(z) = zm
∏
n>m

En−1(z/an), z ∈ C

whose zeros are the numbers an, and the En(z) = (1− z)ez+z2/2+···+zn/n are
the canonical factors. Observe also that this function is real for real z = t. By
the previous argument there exist real analytic functions h and ϕ such that
f/g = heiϕ. Thus f = (gh)eiϕ, and U = gh. This proves that the claimed
decomposition exists.

Finally, if f = U1e
iϕ1 = U2e

iϕ2 , then U1/U2 is a real analytic function
without zeros. Also |U1/U2| = |ei(ϕ2−ϕ1)| = 1 and it follows that U1/U2 is
either equal to 1 or to −1. In the first case ei(ϕ2−ϕ1) = 1 and ϕ2 = 2kπ+ϕ1

for some integer k. The other case may be treated similarly.

Definition 2.5. Given a real analytic function f : R → C we define a
phase of f to be any real analytic function ph f : R → R such that f(t) =
U(t)eiph f(t) with U : R→ R a real analytic function.
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If g1 and g2 are two such functions there exists an integer k such that
g1(t) = g2(t) + kπ for every t ∈ R.

Observe that the above definition is not standard. We are making use of
the word phase with a peculiar mathematical meaning.

The main difference between the phase of a real analytic function and
its argument is that for some t ∈ R the value ph f(t) may not be equal to
one of the arguments of the complex number f(t). We will only have ph f(t)
equal to this argument modulo π.

Example 2.6. It is easy to check that

(2.1) cos π2 (1/2 + it) =
1√
2

√
coshπt e−i arctan(tanh

πt
2
).

Example 2.7. One of the most interesting examples is that of the zeta
function on the critical line. In this case we have (see Edwards [6, p. 119])

(2.2) ζ(1/2 + it) = Z(t)e−iϑ(t)

where Z : R→ R and ϑ : R→ R are real analytic. Z(t) is the Riemann-Siegel
function (sometimes called Hardy’s Z-function [10]).

Example 2.8. The phase −ϑ(t) in Example 2.7 is related to the phase
of Γ (1/4 + it/2) by

(2.3) Γ (1/4 + it/2) = |Γ (1/4 + it/2)|ei(ϑ(t)+
t
2 log π).

(For more details see [17, (4.17.2)].)

Example 2.9. We have not found any reference for our next example:

(2.4) Γ (1/2+it) =
√

π

coshπt
exp

{
i

(
2ϑ(t)+t log(2π)+arctan tanh

πt

2

)}
.

This may be shown using only properties of Γ (s) but we present a proof
based on the functional equation of ζ(s).

Let Φ(s) = 1
2ζ(s)ζ(1− s). Then, by the functional equation,

(2.5) Φ(s) = cos

(
πs

2

)
(2π)−sΓ (s)ζ(s)2.

Substituting (2.1) and (2.2) into this equation, with s = 1/2 + it we get
(2.6)
1

2
Z(t)2 =

√
cosh(πt)

2
e−i arctan(tanh

πt
2
) · 1√

2π
e−it log(2π) · Γ (s) · e−2iϑ(t)Z(t)2

from which (2.4) follows for Z(t) 6= 0. But since the argument in (2.4) is real
analytic, the formula is true for all t.
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Proposition 2.10. If f is a non-constant real analytic function, then
for every t ∈ R we have

(2.7) ph f(t) = ph f(0) +

t�

0

Im
f ′(x)

f(x)
dx.

Proof. The function ph f(t) is real analytic, so that

ph f(t) = ph f(0) +

t�

0

(ph f)′(x) dx.

There exists a real analytic function U such that f(t) = U(t)ei ph f(t). There-
fore, if f(x) 6= 0 then

f ′(x)

f(x)
=
U ′(x)

U(x)
+ i(ph f)′(x)

so that

(ph f)′(x) = Im
f ′(x)

f(x)
.

It follows that Im f ′(x)
f(x) is in fact a real analytic function, the possible singu-

larities at the points where f(x) = 0 being removable.

Example 2.11. By Examples 2.7 and 2.8 we have

ϑ(t) = −
t�

0

Re
ζ ′(1/2 + ix)

ζ(1/2 + ix)
dx(2.8)

= − t
2
log π +

1

2

t�

0

Re
Γ ′(1/4 + ix/2)

Γ (1/4 + ix/2)
dx.

3. The function ϑ(t). In this section we recall some properties of the
function ϑ(t) introduced in Example 2.7.

We need to prove that ϑ(t) = 0 has only one solution for t > 0. To
this end we give explicit formulae for ϑ(t) for small t, which are seldom
considered.

Indeed, after introducing ϑ(t), most authors immediately start discussing
its asymptotic expansion (compare Edwards [6, p. 119] and Gabcke [8, p. 4]).

Proposition 3.1. For ϑ(t) we have the following series expansion (con-
vergent for all t ∈ R), γ being Euler’s constant:

(3.1) ϑ(t) = −1

2

(
γ+log π+3 log 2+

π

2

)
t+

∞∑
n=0

(
2t

4n+ 1
−arctan 2t

4n+ 1

)
.
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Proof. From the Weierstrass product for Γ (s) we obtain

− Im logΓ
(
1/4 + it/2)

= arg

{
(1/4+ it/2)eγ(1/4+it/2)

∞∏
n=1

(
1 +

1/4 + it/2

n

)
e−(1/4+it/2)/n

}
+2`π

= arctan(2t) +
γ

2
t+

∞∑
n=1

(
arctan

2t

4n+ 1
− t

2n

)
− 2kπ

for some `, k ∈ Z.
Since ϑ(t) = argΓ (1/4 + it/2)− (t/2) log π we have

ϑ(t) = −γ + log π

2
t− arctan(2t)−

∞∑
n=1

(
arctan

2t

4n+ 1
− t

2n

)
+ 2kπ

so that, taking t = 0, we find that k = 0. We rewrite the last series as follows:
∞∑
n=1

(
arctan

2t

4n+ 1
− t

2n

)

= − t
2

∞∑
n=1

(
1

n
− 1

n+ 1/4

)
+
∞∑
n=1

(
arctan

2t

4n+ 1
− 2t

4n+ 1

)
.

The first series on the right hand side can be summed explicitly:

∞∑
n=1

(
1

n
− 1

n+ 1/4

)
=

∞∑
n=1

(1�
0

un−1 du−
1�

0

un−1+1/4 du
)
=

1�

0

1− u1/4

1− u
du

= 4

1�

0

1− v
1− v4

v3 dv =

1�

0

4v3 dv

(1 + v)(1 + v2)
= 4− 3 log 2− π

2
.

Combining these equations we obtain (3.1).

Proposition 3.2. For every t ∈ R we have

(3.2) ϑ′(t) = −1
2(γ + log π)− 2

1 + 4t2
−
∞∑
k=1

(
2(4k + 1)

(4k + 1)2 + 4t2
− 1

2k

)
.

Corollary 3.3. The function ϑ(t) is convex on (0,∞), and there exists
a unique positive real number aϑ where ϑ′(aϑ) = 0.

By differentiation of (3.2) we get

(3.3) ϑ′′(t) = 16t

∞∑
k=0

4k + 1

((4k + 1)2 + 4t2)2
,

from which the corollary follows.
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This corollary has also been proved in [11, Lemmas 11, 12]. We have

aϑ = 6.28983 59888 36902 77966 50901 00821 85339 66583 12945 . . . .

4. The function κ(t). The next proposition is included in Titchmarsh
[17, p. 291], but we give the proof below, because we are also interested in
the formulas used.

Proposition 4.1. If ζ ′(1/2+ ia) = 0 for a real a, then ζ(1/2+ ia) = 0.

Proof. We start from ζ(1/2 + it) = e−iϑ(t)Z(t). Differentiation with re-
spect to t yields

iζ ′(1/2 + it) = −iϑ′(t)e−iϑ(t)Z(t) + e−iϑ(t)Z ′(t).

Multiplying this by −ieiϑ(t) we get

(4.1) eiϑ(t)ζ ′(1/2 + it) = −ϑ′(t)Z(t)− iZ ′(t)

and taking real parts we obtain

(4.2) − ϑ′(t)Z(t) = Re{eiϑ(t)ζ ′(1/2 + it)}

which may also be written as

(4.3) − 2ϑ′(t)Z(t) = eiϑ(t)ζ ′(1/2 + it) + e−iϑ(t)ζ ′(1/2− it).

Let us assume that ζ ′(1/2 + it) = 0 for some real t. Since ζ ′(1/2 − it) = 0
we may assume that t > 0 and we get ϑ′(t)Z(t) = 0. Since ϑ′(t) = 0 only
for t = aϑ ≈ 6.29 where ζ ′(1/2 + iaϑ) 6= 0, we get Z(t) = 0. Therefore,
ζ ′(1/2 + it) = 0 implies ζ(1/2 + it) = 0.

Recall that we denote, as usual, by βn + iγn the non-trivial zeros of
ζ(s), ordered in such a way that (0 <) γ1 ≤ γ2 ≤ · · · , repeating each term
according to its multiplicity. We will need another related sequence. Let
(0 <) ξ1 < ξ2 < · · · be the real numbers t such that ζ(1/2+ it) = 0, counted
without multiplicities. Hence, the ξn only denote zeros on the critical line. If
we assume the RH and the simplicity of the zeros, we would, of course, have
ξn = γn.

Proposition 4.2. For every real t 6= ±ξn we have

(4.4) 1 + 2ϑ′(t)
ζ(1/2 + it)

ζ ′(1/2 + it)
= −e−2iϑ(t) ζ

′(1/2− it)
ζ ′(1/2 + it)

.

Proof. Multiplying (4.3) by e−iϑ(t) we get

−2ϑ′(t)ζ(1/2 + it) = ζ ′(1/2 + it) + e−2iϑ(t)ζ ′(1/2− it).

Since t 6= ±ξn, using Proposition 4.1 we have ζ ′(1/2 + it) 6= 0, so that we
can divide by ζ ′(1/2 + it) and obtain our result.
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Proposition 4.3. There exists a unique real analytic function κ : R→ R
such that

(4.5) e2πiκ(t) = 1 + 2ϑ′(t)
ζ(1/2 + it)

ζ ′(1/2 + it)
, κ(0) = −1/2.

Proof. By Proposition 4.2 the function f : R→ C defined by

f(t) = 1 + 2ϑ′(t)
ζ(1/2 + it)

ζ ′(1/2 + it)

satisfies |f(t)| = 1 for t 6= ξn. By definition, and Proposition 4.1, f is real
analytic and satisfies |f(ξ)| = 1, so that there exists a real analytic κ : R→ R
such that f(t) = e2πiκ(t). This function is uniquely determined by its value
at any point. Since ϑ(0) = 0 we have f(0) = −1 (see (4.4)) and we can take
κ(0) = −1/2.

Applying Proposition 2.4 to ζ ′(1/2 + it) we arrive at two real analytic
functions ρ : R→ R and ph ζ ′(1/2+ it). Observing that ζ ′(1/2) < 0 we may
choose

ζ ′(1/2 + it) = ρ(t)eiph ζ
′(1/2+it), ρ(0) = |ζ ′(1/2)|, ph ζ ′(1/2) = π.

If we assume that ζ(s) has no multiple zero on the critical line, then
ζ ′(1/2 + it) 6= 0 and we will have ρ(t) = |ζ ′(1/2 + it)| and ph ζ ′(1/2 + it) =
arg ζ ′(1/2 + it) (where arg ζ ′(1/2 + it) is meant to be a continuous function
of t in R).

−10

−30

−50

10 20 30 40 50

phζ ′( 12 + it)

Fig. 1. ph ζ′(1/2 + it)

The relative minimum of ph ζ ′(1/2+ it) at t = −2.756488 . . . is equal to
0.358872 . . . . Therefore, ph ζ ′(1/2 + it) > 0 for t < 0.

Proposition 4.4. For all t ∈ R,

(4.6) κ(t) =
1

2
− 1

π
(ϑ(t) + ph ζ ′(1/2 + it)).
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Proof. By the definition of κ(t) and (4.4) we have

exp(2πiκ(t)) = −e−2iϑ(t) ζ
′(1/2− it)
ζ ′(1/2 + it)

= exp(πi− 2iϑ(t)− 2iph ζ ′(1/2 + it)).

Hence, there exists an integer n such that

2πiκ(t) = πi− 2iϑ(t)− 2iph ζ ′(1/2 + it) + 2πin.

For t = 0 we get n = 0 and (4.6) follows.

Corollary 4.5. For every real t we have

(4.7) κ(t) = −1

2
− 1

π

t�

0

(
ϑ′(x) + Re

ζ ′′(1/2 + ix)

ζ ′(1/2 + ix)

)
dx.

Proof. In formula (4.6), we replace ph ζ ′(1/2+ it) by the integral expres-
sion given by (2.7).

Observing that −ϑ(t) is the phase of ζ(1/2+it) we also obtain (see (2.8))

(4.8) κ(t) = −1

2
+

1

π

t�

0

Re

(
ζ ′(1/2 + ix)

ζ(1/2 + ix)
− ζ ′′(1/2 + ix)

ζ ′(1/2 + ix)

)
dx.

1

2

3

4

5

6

10 20 30 40

aϑ

κ(t)

Fig. 2. κ(t)

From (4.8) we see that κ(t) + 1/2 is an odd function.

Proposition 4.6. Choosing the phase of the real analytic function t 7→
Z ′(t)− iZ(t)ϑ′(t) to be = π/2 at t = 0 we will have

(4.9) κ(t) = − 1

π
ph(Z ′(t)− iZ(t)ϑ′(t)).
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Proof. Choosing appropriately the phase of Z ′ − iZϑ′ we get from (4.1)
that

ϑ(t) + ph ζ ′(1/2 + it) = π/2 + ph(Z ′(t)− iZ(t)ϑ′(t)).
Thus, from (4.6),

κ(t) = − 1

π
ph(Z ′(t)− iZ(t)ϑ′(t)).

(We have Z ′(0) − iZ(0)ϑ′(0) = −i 3.92264 . . . , so that we must take the
phase of (Z ′ − iZϑ′) equal to π/2 at t = 0.)

Proposition 4.7. We have κ(aϑ) = 0.

Proof. For z not equal to zero let, as usual, Arg z be the determination
of the argument of z with −π < Arg z ≤ π.

By Proposition 4.6 for every interval I on which Z(t)ϑ′(t) 6= 0 there will
exist an integer nI such that

κ(t) = − 1

π
Arg(Z ′(t)− iZ(t)ϑ′(t)) + nI .

In particular this applies to the interval I = (0, aϑ). To determine nI in this
case observe that κ(0) = −1/2, Z ′(0) = 0, Z(0) < 0 and ϑ′(0) < 0, and it
follows that nI = −1.

Then choose ε > 0 small enough. At the point t = aϑ − ε we have
Z ′(t) < 0, Z(t) < 0, and ϑ′(aϑ) = 0. Since κ(t) is continuous and ϑ′(t) < 0
we get Arg(Z ′(t) − iZ(t)ϑ′(t)) near −π when t = aϑ − ε. Taking limits for
ε→ 0+ we get κ(aϑ) = 0, as asserted.

Proposition 4.8. For each natural number n we have κ(ξn) = n.

Proof. Assuming that κ(ξk) = k for k ≤ n we will show that κ(ξn+1)
= n + 1. The case n = 0 is slightly different, but similar. We assume now
that n ≥ 1.

In the interval In = (ξn, ξn+1) we have Z(t)ϑ′(t) 6= 0. Therefore,

sgn(Z(t)ϑ′(t)) = sgn(Z(t)) = ν.

By Proposition 4.6 there is an integer m such that

κ(t) = m− 1

π
Arg(Z ′(t)− iZ(t)ϑ′(t)), t ∈ In.

For y 6= 0 we have

Arg(x− iy) =


− arccos

x√
x2 + y2

, y > 0,

arccos
x√

x2 + y2
, y < 0.

Therefore,

(4.10) κ(t) = m+
ν

π
arccos

Z ′(t)√
Z ′(t)2 + Z(t)2ϑ′(t)2

, t ∈ In.
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Then if µ = sgn(Z ′(t)) we will have

κ(t) = m+
ν

π
arccos

µ√
1 + Z(t)2

Z′(t)2ϑ
′(t)2

.

For t > ξn and t→ ξn we have, for some A > 0, C > 0 and an integer ω ≥ 1,

Z(t) = νA(t− ξn)ω +O((t− ξn)ω+1),

Z ′(t) = νωA(t− ξn)ω−1 +O((t− ξn)ω),
Z(t)

Z ′(t)
=

1

ω
(t− ξn) + O((t− ξn)2),

Z(t)2

Z ′(t)2
ϑ′(t)2 =

C2

ω2
(t− ξn)2 +O((t− ξn)3).

Therefore, in a small interval to the right of ξn the sign of Z(t) is the same
as the sign of Z ′(t), so that µ = ν. Hence, for ξn < t < ξn + δ we have

(4.11) κ(t) = m+
ν

π
arccos

{
ν

(
1− 1

2

C2

ω2
(t− ξn)2 +O((t− ξn)3)

)}
.

Observe that for small x > 0 we have

arccos(1−x) =
√
2
√
x+O(x3/2), arccos(−1+x) = π−

√
2
√
x+O(x3/2).

It follows that for ν = 1,

κ(t) = m+
1

π

C

ω
(t− ξn) + O((t− ξn)2),

and for ν = −1,

κ(t) = m− 1 +
1

π

C

ω
(t− ξn) + O((t− ξn)2).

Taking limits for t→ ξ+n we get

n = κ(ξn) =

{
m when ν = 1,
m− 1 when ν = −1.

Having determined m we move t to the other extreme of the interval In
in (4.10). Therefore, now ξn+1 − δ < t < ξn+1 with δ small enough. We still
have sgn(Z(t)) = ν, so that Z(t) = νB(ξn+1 − t)$ with B > 0. As before
we will get

Z(t)

Z ′(t)
=

1

$
(t− ξn+1)

but in this case this means that sgn(Z ′(t)) = − sgn(Z(t)) so that µ = −ν,
where now µ is the sign of Z ′(t) for ξn+1 − δ < t < ξn+1. Hence, in this case
the analogue of (4.11) is

(4.12) κ(t) = m+
ν

π
arccos

{
−ν
(
1− 1

2

C ′2

$2
(t−ξn+1)

2+O((t−ξn+1)
3)

)}
.
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It follows that for ν = 1,

κ(t) = m+ 1− 1

π

C ′

$
(ξn+1 − t) + O((t− ξn+1)

2).

Taking limits for t→ ξn+1 we get

κ(ξn+1) = m+ 1 = n+ 1 = κ(ξn) + 1,

and for ν = −1,

κ(t) = m− 1

π

C ′

$
(ξn+1 − t) + O((t− ξn+1)

2)

so that in this case

κ(ξn+1) = m = n+ 1 = κ(ξn) + 1.

Corollary 4.9. The function κ(t) takes integer values only in the fol-
lowing cases: κ(aϑ) = 0, κ(−aϑ) = −1, κ(ξn) = n, κ(−ξn) = −n− 1 for all
natural numbers n.

Proof. Since κ(t) + 1/2 is an odd function we get κ(−t) = −κ(t)− 1, so
that κ(−aϑ) = −1 and κ(−ξn) = −n− 1.

Assuming that κ(t) ∈ Z, by (4.5) we must have ϑ′(t)ζ(1/2 + it) = 0
(recall that if ζ ′(1/2 + it) = 0 then ζ(1/2 + it) = 0 so that the quotient
ζ(1/2+ it)/ζ ′(1/2+ it) is equal to 0 in this case). By Corollary 3.3, for t > 0,
we have ϑ′(t) = 0 only for t = aϑ. By definition the positive real numbers t
such that ζ(1/2 + it) = 0 are the numbers ξn. This proves that κ(t) is an
integer only at the points indicated.

Corollary 4.10. For n = 1, 2, . . . the number ξn is the unique solution
of the equation κ(t) = n.

If we assume the RH and that the zeros are simple, we find that γn is
the only solution of the equation κ(t) = n.

Define ξ0 = aϑ, ξ−1 = −aϑ, ξ−n = −ξn−1, so that for all integers n ∈ Z
we have κ(ξn) = n. With these notations we state

Proposition 4.11. For any integer n ∈ Z and t with ξn < t < ξn+1 we
have κ(ξn) = n < κ(t) < n+ 1 = κ(ξn+1).

Proof. Since t 6= ξm the value κ(t) is not an integer. If κ(t) < n, since κ(x)
is continuous, there will exist t < t′ < ξn+1 with κ(t′) = n, in contradiction
with Corollary 4.9. A similar reasoning rules out the possibility that κ(t) >
n+ 1.

Proposition 4.12. For t > aϑ, let N00(t) := card{n ∈ N : ξn ≤ t} be
the number of real numbers 0 < ξ ≤ t such that ζ(1/2 + iξ) = 0 counted
without multiplicity. Then

(4.13) N00(t) = bκ(t)c, t > aϑ.
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Proof. Since t > aϑ = ξ0 there is an integer n ≥ 0 such that ξn ≤ t
< ξn+1. By definition N00(t) = n, and by Proposition 4.11, n ≤ κ(t) < n+1
so that bκ(t)c = n.

Remark 4.13. It is known [3] that N∗0 (T ), the number of simple zeros
on the critical line to height T , satisfies lim infT→∞N

∗
0 (T )/N(T ) ≥ 0.4058,

where N(T ), as usual, denotes the number of zeros β + iγ of ζ(s) with
0 < γ < T counted with their multiplicities. Since κ(t) ≥ N∗0 (t) we deduce
that lim inft→∞ κ(t)/N(t) ≥ 0.4058. In [4], assuming the RH (but not the
simplicity of the zeros) this has been improved to

(4.14) lim inf
t→∞

κ(t)/N(t) ≥ 0.84665.

Proposition 4.14. For any real t we have κ(t) = (2k + 1)/2 with k ∈ Z
if and only if Z ′(t) = 0 and Z(t) 6= 0.

Proof. The function ϑ′(t) only vanishes at t = ±aϑ and at these points
the function Z ′(t) does not vanish (Z ′(aϑ) = −Z ′(−aϑ) = −0.18838 . . .).
Hence, Z ′(t)− iZ(t)ϑ′(t) = 0 only at a point where Z(t) = Z ′(t) = 0. Since
Z(t) = 0 there exists n with t = ξn. By Corollary 4.9 we know that at this
point κ(t) ∈ Z.

Let t be a point where Z(t) 6= 0 but Z ′(t) = 0; then Z ′(t) − iZ(t)ϑ′(t)
∈ iR∗ and by (4.9) we have κ(t) = −(1/π) ph(Z ′(t)− iZ(t)ϑ′(t)) = k + 1/2
for some k ∈ Z.

If, on the other hand, we assume κ(t) = (2k + 1)/2, then again by (4.9),
ph(Z ′(t)− iZ(t)ϑ′(t)) = −(2k + 1)π/2, so that Z ′(t)− iZ(t)ϑ′(t) ∈ iR, and
we will certainly have Z ′(t) = 0 and as we have seen Z(t) 6= 0.

5. Hypothesis P and its consequences. One may verify that κ′(0)
is negative (= −0.444016 . . . ). In fact κ′(t) is negative for all t with

|t| < aκ = 0.77985 35753 38836 03051 82092 08122 53710 71856 73276 . . . .

We will prove in Proposition 7.6 that, assuming the RH, κ′(t) > 0 for t > aκ.
But we are unable to prove the RH assuming κ′(t) > 0 for t > aκ. However,
this appears to be a realistic hypothesis (weaker than the RH):

Hypothesis P. κ′(t) ≥ 0 for t > aκ.

Some of our propositions will depend on this hypothesis. We will attach
to them the symbol P.

Proposition 5.1. (P) For each integer n ∈ Z, with n ≥ 0, there is a
unique real number ηn+2 such that ξn < ηn+2 < ξn+1, and Z ′(ηn+2) = 0.
The number ηn+2 is the unique solution to the equation κ(t) = n+ 1/2.
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Z(t)

ξ1 ξ2

η1 η2 η3
ξ−2ξ−3

η−1η−2η−3

2

12ξ0 = aϑξ−1 = −aϑ

Z ′(ηn) = 0 Z(ξn)ϑ′(ξn) = 0

Fig. 3. Z(t) near the origin

Proof. Since aκ < aϑ and κ(t) is real analytic, Hypothesis P implies that
κ(t), being analytic, is strictly increasing for t > ξ0 := aϑ. Therefore, for
n ≥ 0 the function κ(t) is strictly increasing in the interval (ξn, ξn+1), so
that there is only one solution to the equation κ(t) = n+ 1/2.

By Proposition 4.14 the solution t = ηn+2 to the above equation is the
only possible solution to the equation Z ′(t) = 0 in this interval.

For n = −1 we may check numerically that t = 0 and t = ± 2.4757266 . . .
are solutions to Z ′(t) = 0 in the interval (ξ−1, ξ0) = (−aϑ, aϑ).

Using the above it is easy to see that the points where κ(t) = n + 1/2
are the following:

(a) Three points in the interval (ξ−1, ξ0)=(a−ϑ, aϑ). These are η1=−η−1
= 2.47572 . . . and η0 = 0 at which κ(η−1) = κ(η0)=κ(η1) = −1/2.

(b) A point η2 ∈ (ξ0, ξ1), namely η2 = 10.21207 . . . , at which κ(η2) =
1/2, and its symmetrical η−2 = −η2, at which κ(−η2) = −3/2.

(c) For each integer n ≥ 1 a unique point ηn+2 ∈ (ξn, ξn+1) at which
κ(ηn+2) = n+1/2, and its symmetrical η−n−2 ∈ (ξ−n−2, ξ−n−1) with
η−n−2 = −ηn+2 and κ(η−n−2) = −(2n+ 3)/2.

One may verify that the minimal value aγ of κ(t) is

aγ := κ(aκ) = −0.67025 97987 68599 50288 39164 11968 66744 74803 . . . .

Since κ is strictly increasing on (aκ,∞) with values in (aγ ,∞) we may define
γ(u) for u > aγ as the inverse function of κ(t). Then γ(u) is a real analytic
function on (aγ ,∞) and we will have

γ(n) = ξn, γ(n+ 1/2) = ηn+2, n ≥ 0, assuming P.

Of course, assuming the RH with simple zeros we will have γ(n) = γn.
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Proposition 5.2. For t ∈ R not a multiple zero of Z(t) we have

(5.1) κ′ =
1

π

ZZ ′ϑ′′ + (Z ′)2ϑ′ − ZZ ′′ϑ′

(Z ′)2 + (Zϑ′)2
,

where for short we have written κ′ for κ′(t), Z for Z(t), etc. Therefore,

(5.2) P ⇔ ZZ ′ϑ′′ + (Z ′)2ϑ′ − ZZ ′′ϑ′ ≥ 0 for t > aκ.

Proof. For ξn < t < ξn+1 we have (4.10) for some constant m. Differen-
tiating and simplifying we get (5.1). Since κ′ is real analytic the equality is
true because we are not dividing by 0.

1

0.5

1.5

20 40 60 80 100

κ′(t)

Fig. 4. κ′(t)

6. Connection of κ′(t) with the zeros of ζ ′(s). We will need some
known facts (see [16], [13, Theorem 9], [2] and [17, Theorem 11.5(C)]) about
the zeros of ζ ′(s).

Proposition 6.1.

(a) For n ≥ 1 there is a unique real solution an of ζ ′(s) = 0 such that
−2n− 2 < an < −2n, and there are no other zeros of ζ ′(s) in σ ≤ 0.

(b) Let ρ′ = β′ + iγ′ denote the non-real zeros of ζ ′(s), and let N1(T )
denote the number of non-real zeros of ζ ′(s) with 0 < γ < T . Then

N1(T ) =
T

2π
log

T

4π
− T

2π
+O(log T ).

(c) We have 0 < β′ ≤ E where E ≤ 3 is a constant. The Riemann
Hypothesis is equivalent to ζ ′(s) having no zeros in 0 < σ < 1/2.

The value of the constant E = 2.81301 40202 . . . has been computed
in [1], where also some additional properties of this constant have been
proved.

We will use ρ′ = β′ + iγ′ to denote a typical complex zero of ζ ′(s).
Sometimes we prefer to denote by ρ′n = β′n + iγ′n the sequence of zeros
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with γ′n > 0 numbered in such a way that 0 < γ′1 ≤ γ′2 ≤ · · · , with the
understanding that the ordinate of a zero of multiplicity m appears m times
consecutively in this sequence.

Proposition 6.2. We have the following Mittag-Leffler expansion:

(6.1)
ζ ′′(s)

ζ ′(s)
= a− 2

s− 1
+

∞∑
n=1

(
1

s− an
+

1

an

)
+
∑
ρ′

(
1

s− ρ′
+

1

ρ′

)
,

where the an are the real zeros of ζ ′(s), the ρ′n are the complex ones, and
a = 0.18334 . . . is a constant (= −2 + ζ ′′(0)/ζ ′(0)).

Proof. The entire function f(s) = (s − 1)2ζ ′(s) has the same order as
(s− 1)ζ(s) so that f(s) is an entire function of order 1.

From the above results about the zeros of ζ ′(s) it follows easily that the
exponent of convergence of the zeros of f(s) is 1. Also, the series

∑∞
n=1 1/|an|

is divergent. Thus we have

(6.2) ζ ′(s) = eas+b(s− 1)−2
∞∏
n=1

(
1− s

an

)
es/an

∏
ρ′

(
1− s

ρ′

)
es/ρ

′

for some constants a and b.
Now we take logarithms and differentiate to get (6.1). At the point s = 0

we obtain the equality
ζ ′′(0)

ζ ′(0)
= a+ 2,

from which we get the numerical value for a given in the statement.

Remark 6.3. It can be proved that
ζ ′′(0)

ζ ′(0)
=

π2

12 log 2π
− γ2 + 2γ1

log 2π
+ log 2π,

where γ (the Euler constant) and γ1 are the Stieltjes constants appearing as
coefficients in the Mittag-Leffler expansion of ζ(s) at the point s = 1.

Remark 6.4. The constant b in equation (6.2) is determined by eb =
ζ ′(0) = −1

2 log(2π). So b is complex.

Proposition 6.5. We set

(6.3) πκ′(t) = A+ f(t) +
∑

ρ′=β′+iγ′

β′ − 1/2

(1/2− β′)2 + (t− γ′)2

where A is a constant and f(t) is a bounded continuous function such that
f(t) = O(t−1) as t→∞.

Remark 6.6. The exact definition of f(t) is given in (6.6).

Remark 6.7. In Corollary 7.5 we will prove that A = 1
2 log 2.
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Proof of Proposition 6.5. From (4.7) we get

(6.4) πκ′(t) = −ϑ′(t)− Re
ζ ′′(1/2 + it)

ζ ′(1/2 + it)
.

Now in (6.1) we put s = 1/2 + it and take real parts:

Re
ζ ′′(1/2 + it)

ζ ′(1/2 + it)
= a+

4

1 + 4t2
+

∞∑
n=1

(
1/2− an

(1/2− an)2 + t2
+

1

an

)
+

∑
ρ′=β′+iγ′

(
1/2− β′

(1/2− β′)2 + (t− γ′)2
+

β′

β′2 + γ′2

)
.

Hence, from (6.4) and (3.2) we get

πκ′(t) = A− 2

1 + 4t2
+

∞∑
n=1

(
2(4n+ 1)

(4n+ 1)2 + 4t2
− 1/2− an

(1/2− an)2 + t2

)
+

∑
ρ′=β′+iγ′

β′ − 1/2

(1/2− β′)2 + (t− γ′)2

where

(6.5) A =
1

2
(γ + log π)− a−

∞∑
n=1

2β′n
β′n

2 + γ′2n
−
∞∑
n=1

(
1

2n
+

1

an

)
.

We define

(6.6) f(t) = − 2

1 + 4t2
+

∞∑
n=1

(
2(4n+ 1)

(4n+ 1)2 + 4t2
− 1/2− an

(1/2− an)2 + t2

)
.

Now observe that the terms of the sum can be written as

(2n+ 1/2)

(2n+ 1/2)2 + t2
− 1/2− an

(1/2− an)2 + t2
=

1/2−an�

2n+1/2

x2 − t2

(x2 + t2)2
dx.

The intervals (2n + 1/2, 1/2 − an) do not intersect, so that for |t| < T the
absolute values of the terms of the sum are bounded by

∞∑
n=1

∣∣∣∣ 2(4n+ 1)

(4n+ 1)2 + 4t2
− 1/2− an

(1/2− an)2 + t2

∣∣∣∣ ≤ ∞�

5/2

|x2 − t2|
(x2 + t2)2

dx

≤
∞�

5/2

T 2 + x2

x4
dx <∞.

This proves that f(t) is a continuous function.
Also for t > 1 we have

(6.7) |f(t)| ≤ 2

1 + 4t2
+

∞�

0

|x2 − t2|
(x2 + t2)2

dx =
2

1 + 4t2
+

1

t
.
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Remark 6.8. It can be shown that the zero an−1 contained in the inter-
val (−2n,−2n+2) satisfies 2n+an−1 ∼ 1/log(n/π) (see Yıldırım [18]). This
can be used to deduce that f(t) = O(1/t log t). In this way we may improve
the error term in (6.9) from O(log t) to O(log log t).

We introduce some notation: If t > 0 and n ≥ 1 let ϕ(t, ρ′n) = ϕn(t)
be the angle at ρ′n of the triangle with vertices at ρ′n = β′n + iγ′n, 1/2 − it
and 1/2 + it. We consider this angle expressed in radians to be positive if
β′n > 1/2 and negative if β′n < 1/2, and we set ϕn(t) = 0 when β′n = 1/2. In
other words, with s = 1/2 + it and ρ′ = β′ + iγ′ we have

ϕ(t, β′ + iγ′) = arctan
t− γ′

β′ − 1/2
+ arctan

t+ γ′

β′ − 1/2
(6.8)

= Arg
s− ρ′

s− ρ′
(β′ 6= 1/2).

Proposition 6.9. For t > 0 we have

(6.9) πκ(t) = At+
∞∑
n=1

ϕn(t) + O(log t)

where the sum is extended over all zeros ρ′n = β′n + iγ′n of ζ ′(s) with γ′n > 0.

Proof. By (4.7) and (6.3) we have

πκ(t) = −π
2
+At+

t�

0

f(x) dx+

t�

0

∑
ρ′=β′+iγ′

β′ − 1/2

(1/2− β′)2 + (x− γ′)2
dx.

Observe that if β′ = 1/2 then the corresponding term does not contribute
to the sum.

Thus

πκ(t) = −π
2
+At+

t�

0

f(x) dx+
∑

ρ′=β′+iγ′

{
arctan

t− γ′

β′−1/2
+arctan

γ′

β′−1/2

}
,

where the terms with β′n = 1/2 should be omitted. It is easy to see that
the terms corresponding to ρ′n = β′n + iγ′n and ρ′n = β′n − iγ′n add up to
exactly ϕn(t). (This is the reason for our convention about the sign of ϕn(t).)
Thus we arrive at

πκ(t) = −π
2
+At+

t�

0

f(x) dx+
∞∑
n=1

ϕn(t).

Now, since f(t) = O(t−1) we can write this as

πκ(t) = At+
∞∑
n=1

ϕn(t) + O(log t).
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7. Counting the zeros of ζ(s). The exact value of the constant A
in (6.9) can be obtained in two ways. One is by computing the constants
in the Mittag-Leffler expansion of related functions, and the second, more
interesting for us, by comparing two different counts of the number of zeros
of ζ(s). We will present this second proof. We need some definitions: Let

N−(T ) = #{ρ = β + iγ : ζ(ρ) = 0, β < 1/2, 0 < γ ≤ T},
N0(T ) = #{ρ = 1/2 + iγ : ζ(ρ) = 0, 0 < γ ≤ T},
N ′(T ) = #{ρ′ = β′ + iγ′ : ζ ′(ρ′) = 0, 0 < γ′ ≤ T},
N ′−(T ) = #{ρ′ = β′ + iγ′ : ζ ′(ρ′) = 0, β′ < 1/2, 0 < γ′ ≤ T},
N ′0(T ) = #{ρ′ = 1/2 + iγ′ : ζ ′(ρ′) = 0, 0 < γ′ ≤ T},
N ′+(T ) = #{ρ′ = β′ + iγ′ : ζ ′(ρ′) = 0, β′ > 1/2, 0 < γ′ ≤ T}.

In all these cases, as usual, we count the zeros with their multiplicities. But
we also need to consider another count N00(T ), which is the number of real
numbers 0 < ξ ≤ T such that ζ(1/2 + iξ) = 0, but in this case we do not
count multiplicities.

Taking account of Proposition 4.1 we get

(7.1) N0(T )−N00(T ) = N ′0(T ),

which equals the number of zeros of ζ ′(s) on the critical line with 0 < γ′ ≤ T .
We know some relations between these counts:

(i) Backlund, refining previous work of von Mangoldt (see Edwards
[6, Section 6.7]), gave a complete proof of Riemann’s assertion

(7.2) N(T ) = N0(T ) + 2N−(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).

(ii) Berndt [2] proved the corresponding result for ζ ′(s):

(7.3) N ′(T ) = N ′−(T ) +N ′0(T ) +N ′+(T ) =
T

2π
log

T

4π
− T

2π
+O(log T ).

(iii) Levinson and Montgomery [13] showed that

(7.4) N−(T ) = N ′−(T ) + O(log T ).

(iv) From our Proposition 4.12 we get

(7.5) κ(t) = N00(t) + O(1).

Finally, in Proposition 7.3 we will prove a new relation (7.6). First we
prove two lemmas about the zeros of ζ ′(s).

Lemma 7.1. For t > 0 we have∑
0<γ′n<t−1

1

t− γ′n
= O(log2 t).
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Proof. Put

N ′(t) =
t

2π
log

t

4π
− t

2π
+R(t)

where R(t) = O(log t) by Berndt’s theorem. The first zero of ζ ′(s) is ρ′ ≈
2.46316 + i 23.29832 so that N ′(4π) = 0 and consequently R(4π) = 2. We
have ∑

0<γ′n<t−1

1

t− γ′n
=

t−1�

4π

dN ′(x)

t− x
=

1

2π

t−1�

4π

log(x/4π)

t− x
dx+

t−1�

4π

dR(x)

t− x

≤ log(t/4π)
log(t− 4π)

2π
+R(t− 1) +

t−1�

4π

|R(x)|
(t− x)2

dx.

Since R(x) = O(log x) all the above terms are O(log2 t).

Lemma 7.2. For t→∞ we have∑
γ′n>t+1

1

γ′2n − t2
= O

(
log2 t

t

)
.

Proof. Using the notations of the previous lemma we have∑
γ′n>t+1

1

γ′2n − t2
=

∞�

t+1

dN ′(x)

x2 − t2
=

1

2π

∞�

t+1

log(x/4π)

x2 − t2
dx+

∞�

t+1

dR(x)

x2 − t2
.

For t > 4π the first integral is less than or equal to C log2 t/t:

1

2π

∞�

t+1

log(x/4π)

x2 − t2
dx ≤ 2 log t

2π

t2�

t+1

dx

x2 − t2
+

∞�

t2

√
x

x2 − t2
dx

=
log t

2πt

(
log

t− 1

t+ 1
+ log(2t+ 1)

)
+ t−1/2

∞�

t

√
y

y2 − 1
dy ≤ (log t)2

πt
+

4

t
.

Now we bound the second integral. First we observe that
∞�

t+1

dR(x)

x2 − t2
= −R(t+ 1)

2t+ 1
+

∞�

t+1

R(x)

(x2 − t2)2
2x dx.

For x > t+ 1 we have x/(x2 − t2) < 1, and |R(x)| ≤ C log x. Thus
∞�

t+1

dR(x)

x2 − t2
≤ c1

log t

t
+ c2

∞�

t+1

log x

x2 − t2
dx.

Finally, this integral is bounded exactly as the first integral.

Proposition 7.3. For t→∞,

(7.6) πκ(t) = At+ πN ′+(t)− πN ′−(t) + O(log2 t).
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Proof. By (6.9) we have to show that∑
γ′n>0

ϕn(t) = πN ′+(t)− πN ′−(t) + O(log2 t).

To this end we will prove that∑
γ′n>0
β′n>1/2

ϕn(t) = πN ′+(t) + O(log2 t),
∑
γ′n>0
β′n<1/2

ϕn(t) = −πN ′−(t) + O(log2 t).

To simplify the notation we will write
∑+ to denote a sum restricted to

β′n > 1/2 and
∑− for a sum restricted to β′n < 1/2.

We split the sums into three terms:∑+

γ′n>0

ϕn(t) =
∑+

0<γ′n<t−1
ϕn(t) +

∑+

|γ′n−t|≤1

ϕn(t) +
∑+

γ′n>t+1

ϕn(t).

The middle sum is O(log t) because each term is (in absolute value) less than
π and the number of terms is O(log t). In the first sum the summands are
approximately π (or −π). Thus we arrive at∑+

γ′n>0

ϕn(t) = πN ′+(t) +
∑+

0<γ′n<t−1
{ϕn(t)− π}+

∑+

γ′n>t+1

ϕn(t) + O(log t),

∑−

γ′n>0

ϕn(t) = −πN ′−(t) +
∑−

0<γ′n<t−1
{ϕn(t) + π}+

∑−

γ′n>t+1

ϕn(t) + O(log t).

It follows that∑
γ′n>0

ϕn(t) = πN ′+(t)− πN ′−(t)

+
∑

0<γ′n<t−1
{ϕn(t)± π}+

∑
γ′n>t+1

ϕn(t) + O(log t)

where we use the + sign when β′n < 1/2 and the − sign when β′n > 1/2.
Now for 0 < γ′n < t− 1 and β′n > 1/2 we have

0 < π − ϕn(t) < arctan
β′n − 1/2

t− γ′n
+ arctan

β′n − 1/2

t+ γ′n
< 2 arctan

β′n − 1/2

t− γ′n
<

6

t− γ′n
and in the case β′n < 1/2 analogously

0 < π + ϕn(t) < arctan
1/2− β′n
t− γ′n

+ arctan
1/2− β′n
t+ γ′n

< 2 arctan
1/2− β′n
t− γ′n

<
1

t− γ′n
.
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Also, for γ′n > t+ 1 and β′n > 1/2,

0 < ϕn(t) = arctan
2(β′n − 1/2)t

(β′n − 1/2)2 + γ′2n − t2
<

6t

γ′2n − t2

and for β′n < 1/2 the absolute value |ϕn(t)| is bounded by the same quantity.
Hence, applying the above two lemmas we find that∑

γ′n>0

ϕn(t) = πN ′+(t)− πN ′−(t) + O(log2 t).

Corollary 7.4. For t→∞,

(7.7) N00(t) =
A

π
t+N ′+(t)−N ′−(t) + O(log2 t).

Proof. Combine (7.6) with (7.5).

Corollary 7.5. The constant A is equal to 1
2 log 2.

Proof. Write f(t) $ g(t) to denote that f(t) − g(t) = O(log2 t). (In the
same way as congruences we can operate with $ as if it were an equality
sign between equivalence classes). With this notation we have

N(t) $
t

2π
log

t

2π
− t

2π
by (7.2)

$ N0(t) + 2N−(t) trivially
$ N0(t) + 2N ′−(t) by (7.4)

$ N0(t)−N00(t) +
A

π
t+N ′+(t) +N ′−(t) by (7.7)

$ N0(t)−N00(t) +
A

π
t−N ′0(t) +

t

2π
log

t

4π
− t

2π
by (7.3)

$
A

π
t+

t

2π
log

t

4π
− t

2π
by (7.1)

Hence,
t

2π
log

t

2π
− t

2π
$
A

π
t+

t

2π
log

t

4π
− t

2π
,

from which we deduce
A

π
t $

t

2π
log 2.

Hence, A = 1
2 log 2.

Proposition 7.6. The Riemann hypothesis implies Hypothesis P.

Proof. The Riemann hypothesis is equivalent to β′ > 1/2 for every zero
ρ′ = β′ + iγ′, and it follows by (6.3) that if the Riemann hypothesis is true,
then πκ′(t) > A+ f(t). Since A = 1

2 log 2, applying (6.7) we easily see that
κ′(t) > 0 for t > 3.4 if we assume the RH. It is clear that there is an aκ ≥ 0
such that κ′(t) > 0 for t > aκ, and aκ < 3.4.
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8. Connections between the zeros of ζ(s) and ζ ′(s)

Proposition 8.1. Let 1/2+ iξ be a zero of ζ(s) of multiplicity ω on the
critical line. Then

(8.1) κ′(ξ) =
1

πω
ϑ′(ξ).

Proof. Since ζ(1/2 + it) = e−iϑ(t)Z(t) the function Z(t) has a zero of
multiplicity ω at t = ξ. Hence, limt→ξ

Z(t)
Z′(t) = 0, and for ω ≥ 2,

lim
t→ξ

Z(t)

Z ′(t)

Z ′′(t)

Z ′(t)
=
ω − 1

ω
.

When ω = 1 this second limit is equal to 0 = (ω − 1)/ω.
Hence, for 0 < |t− ξ| < δ we have Z(t), Z ′(t), Z ′′(t) 6= 0 and by (5.1) we

deduce

lim
t→ξ

κ′(t) = lim
t→ξ

1

π

Z
Z′ϑ
′′+ϑ′− Z

Z′
Z′′

Z′ ϑ
′

1 +
(
Z
Z′ϑ
′
)2 =

1

π

(
ϑ′(ξ)− ω−1

ω
ϑ′(ξ)

)
=

1

πω
ϑ′(ξ).

Assuming the RH and the simplicity of zeros we have
γn�

aϑ

κ′(t) dt = n.

Hence, the mean value of κ′(t) in [0, t] isN(t)/t, which is approximately equal
to ϑ′(t)/π. The above proposition says that, assuming only the simplicity of
the zeros, at the points ξn the value κ′(ξn) is just equal to this density.

Figure 5 illustrates two ways in which the zeros of ζ ′(s) determine the ξn
(assuming only simplicity of the zeta zeros). First, ξn is determined from
κ′(t) by the equation

(8.2)
ξn�

ξ0

κ′(t) dt = n or
ξn�

ξn−1

κ′(t) dt = 1.

Second, the points ξn are intersections of the two curves κ′(t) and ϑ′(t)/π.
But, as we see in Figure 5, not all these intersections correspond to points ξn.

We can see how two close ξn correspond to a peak in the graph of κ′(t)
which, according to (6.3), will be produced by one or more zeros β′ + iγ′ of
ζ ′(s) with a relatively small β′−1/2. Observe that equation (6.3) shows that
κ′(t) is fully determined by the zeros of ζ ′(s).

Following these ideas we may improve (but assuming the RH) a theorem
due to M. Z. Garaev and C. Y. Yıldırım [9]. For any given zero ρ′ = β′ + iγ′

of ζ ′(s) let γc be, of all ordinates of zeros of ζ(s), the one for which |γc − γ′|
is the smallest (if there are more than one such zero of ζ(s), take γc to be
the imaginary part of any one of them). Garaev and Yıldırım prove uncon-
ditionally that |γc − γ′| � |β′ − 1/2|1/2.
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1

0.5

1.5

20 40 60 80 100ξ1 ξ5 ξ10 ξ15 ξ20 ξ25

κ′(t)
1
πϑ

′(t)

Fig. 5. κ(t)

Proposition 8.2. (RH) Assuming the RH we have, for any zero β′+iγ′
of ζ ′(s),

|γc − γ′| ≤ 1.8 |β′ − 1/2|1/2.

Proof. Assuming the RH, β′ > 1/2 so that by (6.3) we have

κ′(t) ≥ 1

2π
log 2 +

f(t)

π
+

1

π

β′ − 1/2

(β′ − 1/2)2 + (t− γ′)2
.

We find an a > 0 such that

κ(γ′ + a)− κ(γ′ − a) ≥ a log 2

π
+

2

π
arctan

a

β′ − 1/2
+

1

π

γ′+a�

γ′−a
f(t) dt > 1.

Then there is a point ξ ∈ [γ′ − a, γ′ + a] such that κ(ξ) ∈ Z. Hence, by
Corollary 4.9, ζ(1/2 + iξ) = 0, so that the ordinate γc of the nearest zero of
ζ(s) will satisfy |γc − γ′| ≤ a.

Table 1. First non-trivial zeros of ζ(s) and ζ′(s)

βn + iγn β′n + iγ′n

0.5 + i 14.13472 51417 2.46316 18694 + i 23.29832 04927

0.5 + i 21.02203 96387 1.28649 68222 + i 31.70825 00831

0.5 + i 25.01085 75801 2.30757 00637 + i 38.48998 31730

0.5 + i 30.42487 61258 1.38276 36057 + i 42.29096 45545

0.5 + i 32.93506 15877 0.96468 56227 + i 48.84715 99050

0.5 + i 37.58617 81588 2.10169 99009 + i 52.43216 12451

0.5 + i 40.91871 90121 1.89595 97624 + i 57.13475 31990

Using the data in Table 1, we can easily prove our proposition for the
first three zeros of ζ ′(s). So, we may assume in what follows that γ′ > 42.
Then for any a > 0 with a/γ′ < 1/2 we get γ′ − a > γ′/2 > 21.
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By (6.7), for t > 20 we have |f(t)| < 41/40t so that for a/γ′ < 1/2,∣∣∣∣ 1π
γ′+a�

γ′−a
f(t) dt

∣∣∣∣ ≤ 41

40π
log

γ′ + a

γ′ − a
≤ 41

40π

8

3

a

γ′
≤ a

γ′
,

because log 1+x
1−x ≤ 8x/3 for |x| ≤ 1/2.

Therefore, we want to choose a such that

κ(γ′ + a)− κ(γ′ − a) ≥ a log 2

π
+

2

π
arctan

a

β′ − 1/2
− a

γ′
> 1

or

a
log 2

2
− πa

2γ′
≥ π

2
− arctan

a

β′ − 1/2
= arctan

β′ − 1/2

a
.

It suffices to have

a

(
log 2

2
− π

2γ′

)
≥ β′ − 1/2

a
.

Since γ′ ≥ 42 it is enough to take

a = 1.8
√
β′ − 1/2 ≥

(
log 2

2
− π

2γ′

)−1/2√
β′ − 1/2.

Since always β′ < 3 and γ′ > 42 this a satisfies a/γ′ < 1/2, as used above.

9. The functions E(t) and S(t). In the theory of the zeta function we
consider the function

S(t) = π−1 arg ζ(1/2 + it),

where the argument is obtained by its continuous variation along the straight
lines joining 2, 2 + it, 1/2 + it starting with the value 0. If t is the ordinate
of a zero, S(t) is taken equal to S(t+0) (see [17, Section 9.3]). This function
satisfies (see Edwards [6, p. 173])

(9.1) S(t) = N(t)− 1− 1

π
ϑ(t).

If we assume the RH and the simplicity of the zeros, we will have N(t) =
N00(t) = bκ(t)c (see Proposition 4.12).

We introduce a real analytic version of S(t) that we will call E(t):

(9.2) E(t) := π + 2ϑ(t) + ph ζ ′(1/2 + it).

By (4.6) this is equivalent to

(9.3) E(t) = 3
π

2
+ ϑ(t)− πκ(t)

with E(0) = 2π.
If 1/2 + iξn is a simple zero of ζ(s) we will have E′(ξn) = 0 by Propo-

sition 8.1. The converse is not true. For example at t0 = 39.587 127 340 . . .
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the function E(t) has a local minimum with E(t0) = 0.151 790 437 . . . . It is
also easy to show that E(t)− 2π is a real analytic odd function.

In fact E′(t) = ϑ′(t)−πκ′(t) so that the zeros of E′(t) are just the points
where the graphs of (1/π)ϑ′(t) and κ′(t) intersect (see Figure 5). By (5.1)
for Z ′(t)2 + (Z(t)ϑ′(t))2 6= 0 we have

(9.4) E′ = ϑ′ − πκ′ = Z · Zϑ
′3 − Z ′ϑ′′ + Z ′′ϑ′

(Z ′)2 + (Zϑ′)2
.

2π

100 200

E(t)

Fig. 6. E(t)

For the next proposition we need a measure of the possible failure of
the RH.

Definition 9.1. For any t > 0 we define RH(t) by

(9.5) RH(t) := N(t)−N00(t).

That is, RH(t) is equal to the number of zeros β+iγ of ζ(s) with 0 < γ ≤ t
and β 6= 1/2, plus the number of zeros β′ + iγ′ of ζ ′(s) with β′ = 1/2 and
0 < γ′ ≤ t, all of them counted with their multiplicities. By Proposition 4.1
these zeros of ζ ′(s) will be multiple zeros of ζ(s) on the critical line. We have
RH(t) = 0 if and only if the zeros β + iγ of ζ(s) with 0 < γ ≤ t are all on
the critical line and are simple.

Proposition 9.2. We have

(9.6) − 1/2 + RH(t) < S(t) +
1

π
E(t) ≤ 1/2 + RH(t), t > aϑ.

Proof. By (9.1) and (9.3) we have

S(t) +
1

π
E(t) = N(t)− 1− 1

π
ϑ(t) +

1

π
(3π/2 + ϑ(t)− πκ(t))

= N(t) + 1/2− κ(t) = RH(t) + 1/2− κ(t) +N00(t)
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so that by (4.13) for t > aϑ we get

(9.7) S(t) +
1

π
E(t) = RH(t)− (κ(t)− bκ(t)c − 1/2), t > aϑ

from which the result follows.
Corollary 9.3. Assuming the RH and the simplicity of the zeros we

will have

(9.8) − 1/2 < S(t) +
1

π
E(t) ≤ 1/2, t > aϑ.

Indeed, the hypotheses are equivalent to RH(t) = 0. By the well known
Fourier series of B̃1(x) = x−bxc−1/2 we get from (9.7), under the assump-
tions of the corollary,

(9.9) S(t) +
1

π
E(t) = 2

∞∑
n=1

sin(2πnκ(t))

2πn
, t > aϑ.

−1

1

8993 8996 9003

1
πE(t)S(t)

−0.5

0.5

8993 8996 9003

S(t) + 1
πE(t)

Fig. 7. Plots of S(t),
1

π
E(t) and S(t) +

1

π
E(t) for t in (8990, 9006)

10. Extension to other L-functions. Most of the formulas and func-
tions defined in this paper for ζ(s) can be generalized to other functions,
including the Selberg class. The main thing we need is a functional equa-
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tion. So let us assume that we have a Dirichlet series

f(s) =

∞∑
n=1

an
ns

which can be extended as a meromorphic function to the plane C in such a
way that there exist numbers Q > 0, αn > 0 and rn ∈ C with Re(rn) ≥ 0
such that

Φ(s) := Qsf(s)
d∏

n=1

Γ (αns+ rn) satisfies Φ(s) = wΦ(1− s)

where w is a complex number of modulus |w| = 1. In this way all Dirichlet
series for a primitive character, and the Dirichlet series f(s) considered by
Titchmarsh [17, Section 10.25], which has no Euler product and does not
satisfy an RH, will be included.

Setting s = 1/2 + it we see that the functional equation leads to

f(1/2 + it)

f(1/2 + it)
= wQ−2it

d∏
n=1

Γ (αn(1/2 + it) + rn)

Γ (αn(1/2 + it) + rn)
.

Therefore, if we define

ϑ(f, t) := −argw

2
+ t logQ+

d∑
n=1

phΓ (αn(1/2 + it) + rn),

this will be a real analytic function and ph f(1/2 + it) = −ϑ(f, t) so that

f(1/2 + it) = e−iϑ(f,t)Z(f, t)

where Z(f, t) is a real valued real analytic function of the real variable t. It
is not difficult to define functions κ(f, t), E(f, t), and so on.

-20

-10

10

10 20 30 40 50 60 70 80 90 100

Plot of κ′(f, t) for Titchmarsh’s function f(s)

mentioned above

Fig. 8. Plot of κ′(f, t) for the Titchmarsh function f(s) mentioned above. This Dirichlet
series has a zero at the point ρ ≈ 0.80851718 + i 85.69934848.
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