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Counting rational points on del Pezzo surfaces
with a conic bundle structure
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Tim Browning and Michael Swarbrick Jones (Bristol)

1. Introduction. Let k be a number field. A del Pezzo surface X over k
is a non-singular projective surface defined over k, with ample anticanonical
divisor −KX . The degree of X is defined to be d = (−KX)2. In this paper
we will be concerned with upper bounds for the number of k-rational points
of bounded height on del Pezzo surfaces of small degree. The arithmetic
of del Pezzo surfaces becomes harder to understand as d decreases. For
d ∈ {2, 3, 4} they admit the following classical description:

• an intersection of two quadrics in P4 when d = 4;
• a cubic surface in P3 when d = 3;
• a double cover of P2 branched over a smooth quartic plane curve when
d = 2.

Given a del Pezzo surface X of degree d, let U ⊂ X be the Zariski open set
obtained by deleting from X the finite set of exceptional curves of the first
kind. Let

N(U, k,B) = #{x ∈ U(k) : H−KX (x) ≤ B},
whereH−KX is the anticanonical height function on the setX(k)of k-rational
points on X. Our motivation is a simple form of the Batyrev–Manin conjec-
ture [BM], which implies that we should have

(1.1) N(U, k,B) = Oε,X(B1+ε)

for any ε > 0. Throughout this paper, unless otherwise indicated, we shall
follow the convention that any implied constant is allowed to depend at most
upon the number field k, with any further dependence explicitly indicated.
In (1.1), for example, the implied constant is allowed to depend on X and
the choice of ε, in addition to k.
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Recall that a conic bundle surface over k is defined to be a non-singular
projective surface S defined over k, which is equipped with a dominant
k-morphism S → P1, all of whose fibres are conics. We shall focus our
attention on del Pezzo surfaces of degree d which are also conic bundle
surfaces. When no such restriction is made on the del Pezzo surface, the
best general bound we have is due to Salberger [Sa]. Working in the special
case k = Q, he has established the estimate

(1.2) N(U,Q, B) = Oε,X(B3/
√
d+ε)

for any ε > 0.

Let us first consider the case of degree 4 del Pezzo surfaces X ⊂ P4

defined over k. In work presented at the conference “Higher dimensional
varieties and rational points” in Budapest in 2001, Salberger noted that
one can get better bounds for N(U, k,B) when X contains a non-singular
conic over k, in which case it has a conic bundle structure over k. For such
surfaces he established (1.1) when k = Q. The following result generalises
this to arbitrary number fields.

Theorem 1.1. Let ε > 0 and let X ⊂ P4 be a del Pezzo surface of
degree 4 over k, containing a non-singular conic defined over k. Then

N(U, k,B) = Oε,X(B1+ε).

The implied constant is ineffective.

All of the implied constants in our results about del Pezzo surfaces are
ineffective. This arises from an application of the Thue–Siegel–Roth theorem
over number fields [L, §7, Thm. 1.1] (see Remark 2.5 for an indication of
how effectivity can be recovered).

In the case k = Q, de la Bretèche and Browning [dlBB] have obtained an
asymptotic formula for N(U,Q, B), as B → ∞, for a particular del Pezzo
surface of degree 4 with a conic bundle structure over Q. In general the best
bound available is given by (1.2), although one can do better if one is willing
to assume a standard rank hypothesis for elliptic curves over Q (see [Brow1,
Section 7.3]).

According to Iskovskikh’s k-birational classification [I], there are two
possible classes of degree 4 conic bundle surfaces defined over k. When the
anticanonical divisor is ample, one has a del Pezzo surface of degree 4, as
considered in Theorem 1.1. When the anticanonical divisor is not ample, on
the other hand, one obtains a Châtelet surface to which one can associate an
analogous counting function N(U, k,B). In this setting one still expects (1.1)
to hold, and Browning [Brow2] has established this when k = Q. Although
we choose not to do so here, it is possible to use the results in this paper to
extend this work to Châtelet surfaces defined over arbitrary number fields.
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We now turn to del Pezzo surfaces of degree 3 over k. These arise as cubic
surfaces X ⊂ P3. We know of no single example for which (1.1) has been
proved. Cubic surfaces admit a conic bundle structure over k when one of
the 27 lines contained in the surface is defined over k. The best bounds that
we have for N(U, k,B) arise when stronger hypotheses are placed on the
configuration of lines in the surface. The following result is due to Broberg
[Brob1] and is a generalisation of the case k = Q handled by Heath-Brown
[HB1].

Theorem 1.2. Let ε > 0 and let X ⊂ P3 be a del Pezzo surface of degree
3 over k, containing three coplanar lines defined over k. Then

N(U, k,B) = Oε,X(B4/3+ε).

The implied constant is ineffective.

Note that the implied constant is actually effective in [HB1] and [Brob1].
We will provide our own proof of Theorem 1.2, since our argument is simpler
than that appearing in [Brob1], albeit at the expense of effectivity in the
implied constant. In the case k = Q, the best general bound is given by (1.2)
with d = 3. There is also further work of Heath-Brown [HB2] when k = Q,
which shows that the estimate in Theorem 1.2 holds for all cubic surfaces
conditionally on the rank hypothesis mentioned previously.

Much less is known about the arithmetic of del Pezzo surfaces of degree 2
over k. These may be embedded in weighted projective space P(2, 1, 1, 1) via
an equation of the form

(1.3) t2 = f(x1, x2, x3),

where f ∈ k[x1, x2, x3] is a non-singular form of degree 4. Taking U ⊂ X to
be the complement of the 56 exceptional curves, it was shown by Broberg
[Brob2, Thm. 2] that N(U,Q, B) = Oε,X(B9/4+ε) for any ε > 0. This is
improved upon by (1.2), but both bounds are rather far from the expectation
in (1.1). In the spirit of the previous results it is possible to exploit conic
bundle structures.

Theorem 1.3. Let ε > 0 and let X ⊂ P(2, 1, 1, 1) be a del Pezzo surface
of degree 2, containing a non-singular conic defined over k. Then

N(U, k,B) = Oε,X(B2+ε).

The implied constant is ineffective.

One can do better when k = Q and one assumes that all of the 56 ex-
ceptional curves in X are defined over Q. In this case, as announced by Sal-
berger at the conference “Géométrie arithmétique et variétés rationnelles”
at Luminy in 2007, one has the sharper bound N(U,Q, B) = Oε,X(B11/6+ε).
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We proceed to indicate the contents of this paper. We shall use the un-
derlying conic bundle structures to prove Theorems 1.1–1.3, closely following
the notation and framework developed by Broberg [Brob1]. In Section 2 we
recall some basic facts from algebraic number theory and present our main
technical result, Theorem 2.2, from which our results on del Pezzo surfaces
are deduced in Section 3. This is concerned with counting k-rational points
of bounded height on certain “conic bundle torsors”, and its proof hinges
upon two further results: Theorems 2.3 and 2.4. The first of these involves
counting k-rational points of bounded height on non-singular conics defined
over k, which needs to be done uniformly with respect to the coefficients of
the underlying equation. This is likely to be of independent interest and is
proved in Section 4. The second is concerned with a certain average involving
binary forms over k and is proved in Section 5.

2. Counting points on conic bundle torsors

2.1. Algebraic number theory. We begin by recalling some basic
notation and facts concerning our number field k. Let d = [k : Q] and let o
be the ring of integers of k. We denote by Ω the set of places of k. We let
sk denote the number of infinite places of k. For any ν ∈ Ω, we let µ be its
restriction to Q and put dν = [kν : Qµ]. The absolute value | · |ν on k is the
one which induces the normal absolute value on R if ν |∞ and the p-adic
absolute value if ν | p. The normalised absolute value is

‖ · ‖ν = | · |dνν .

We denote by Nk(a) = [o : a] the ideal norm for any fractional ideal a of o.
We also have Nk(〈α〉) = |Nk/Q(α)|, where 〈α〉 is the principal ideal generated
by any α ∈ k∗. In this case we write Nk(α) for short. Recall that for any
x ∈ k∗ we have

(2.1)
∏
ν|∞

‖x‖ν = Nk(x) and
∏
ν∈Ω
‖x‖ν = 1,

the second equation being the product formula.

There is a well-defined height function Hk : Pn(k) 7→ R≥1, given by

[x0, . . . , xn] 7→
∏
ν∈Ω

sup
0≤i≤n

‖xi‖ν =
1

Nk(〈x0, . . . , xn〉)
∏
ν|∞

sup
0≤i≤n

‖xi‖ν ,

where 〈x0, . . . , xn〉 denotes the o-span of x0, . . . , xn ∈ k∗. We define a further
distance function ‖ · ‖? : k → R≥0 via

‖x‖? = sup
ν|∞
‖x‖ν .
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For any x ∈ k it is clear that

(2.2) Nk(x) ≤ ‖x‖sk? .

If x = (x1, . . . , xn) ∈ kn, then this distance function extends via

‖x‖? = sup
1≤i≤n

‖xi‖? = sup
1≤i≤n
ν|∞

‖xi‖ν .

Over Q, any x ∈ Pn(Q) has a representative x = (x0, . . . , xn) ∈ Zn+1

such that gcd(x0, . . . , xn) = 1, which easily allows one to take precisely one
element from each equivalence class. Over k, an analogue arises by first fixing
once and for all a set of integral ideals a1, . . . , ah representing classes in the
ideal class group. Then any x ∈ Pn(k) has a representative in coordinates
x ∈ on+1 such that the o-span 〈x0, . . . , xn〉 is one of the ideals ai. A useful
consequence of Dirichlet’s unit theorem is the following standard result (see
[Brob1, Prop. 3] for a proof).

Lemma 2.1. Every point x ∈ Pn(k) has a representative x ∈ on+1 such
that 〈x0, . . . , xn〉 = ai for some i ∈ {1, . . . , h}, and

(2.3) ‖x‖? �n Hk(x)1/sk .

According to our convention the implied constant in (2.3) is allowed to
depend on k in addition to n. In particular it is allowed to depend on the
set of representative ideals a1, . . . , ah that were fixed above. We may now
define the sets

Z ′n+1 =
⋃

1≤i≤h
{(x0, . . . , xn) ∈ on+1 : 〈x0, . . . , xn〉 = ai},

Zn+1 = {(x0, . . . , xn) ∈ Z ′n+1 : (2.3) holds}.

Lemma 2.1 implies that associated to any element of Pn(k) is an element
of Zn+1. Note, however, that elements of the latter set do not uniquely deter-
mine elements of the former. Nonetheless this is sufficient for our purposes.
It follows from Lemma 2.1 that

(2.4) Hk(x)1/sk ≤ ‖x‖? � Hk(x)1/sk

for every x ∈ Pn(k) and corresponding element x ∈ Zn+1.

2.2. Conic bundle torsors. Let fij ∈ k[u, v] be binary forms for in-
dices 1 ≤ i, j ≤ 3. Let S1 ⊂ A1 × P2 be given by the equation

3∑
i,j=1

fij(u, 1)xixj = 0,
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and let S2 ⊂ A1 × P2 be given by

3∑
i,j=1

fij(1, v)xixj = 0.

We shall assume that every principal 2 × 2 minor of the matrix F = (fij)
is a binary form of even degree and, furthermore, that ∆(u, v) = det(F) is
separable.

Let di be the degree of the cofactor of the diagonal element fii in F (e.g.
d1 is the degree of the bottom right 2 × 2 minor). We let U1 ⊂ S1 be the
open subset given by u 6= 0 and we let U2 ⊂ S2 be the open subset given
by v 6= 0. We obtain a conic bundle surface S by glueing U1 and U2 via the
isomorphism

(u; [x1, x2, x3]) 7→ (1/u; [x1u
−d1/2, x2u

−d2/2, x3u
−d3/2]).

The morphisms Si → P1 given by (u; [x1, x2, x3]) 7→ [u, 1] for i = 1 and
(v; [x1, x2, x3]) 7→ [1, v] for i = 2, glue together to give a conic fibration

φ : S → P1.

Since ∆(u, v) is separable, it follows from [Sh, §II.6.4, Prop. 1] that S is
non-singular. The singular fibres of φ correspond to the roots of ∆(u, v).
We define the degree of S to be (−KS)2 = 8− r, where r is the number of
singular fibres of φ.

Consider the locally closed subvariety T ⊂ A5 given by

(2.5)

{∑3
i,j=1 fij(u, v)xixj = 0,

(u, v) 6= (0, 0), (x1, x2, x3) 6= (0, 0, 0).

We claim that T is a torsor over S under G2
m. There exists a morphism

π : T → S as follows. Let (u, v;x) ∈ T . If v 6= 0 then

(u/v; [x1v
−d1/2, x2v

−d2/2, x3v
−d3/2]) ∈ S1,

while if u 6= 0 then

(v/u; [x1u
−d1/2, x2u

−d2/2, x3u
−d3/2]) ∈ S2.

It is clear that G2
m acts on T via

(λ, µ) 7→ (µ, µ;λµd1/2, λµd2/2, λµd3/2),

and this acts on A5 in the natural way. This action is free and transitive on
the fibres of π, and so T is indeed a G2

m-torsor over S. We shall henceforth
refer to varieties of the shape (2.5) as conic bundle torsors whenever every
principal 2 × 2 minor of F is a binary form of even degree and ∆(u, v) =
det(F) is separable.
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2.3. Counting rational points. Let T be a conic bundle torsor, and
let T0 ⊂ T be the open subset on which ∆(u, v) 6= 0. Let r ∈ (R≥1)sk be a
vector with components rν for ν |∞. Define

L(r) = {x ∈ o : ‖x‖ν ≤ rν for ν |∞}.
Let

‖r‖ =
∏
ν|∞

rν ,

and put r = (r1, r2, r3) for r1, r2, r3 ∈ (R≥1)sk . For given x ∈ o3 it will be
convenient to write x ∈ L(r) ∩ Z ′3 if x ∈ Z ′3 and xi ∈ L(ri) for 1 ≤ i ≤ 3.
For given A ≥ 1 and r = (r1, r2, r3), with r1, r2, r3 ∈ (R≥1)sk , we define the
counting function

NT0(A, r) = #

{
(u, v) ∈ Z2, x ∈ L(r) ∩ Z ′3 :

(u, v;x) ∈ T0(k),

A ≤ Hk([u, v]) < 2A

}
.

In Section 3 we shall show that the proof of Theorems 1.1–1.3 can essentially
be reduced to special cases of the following general estimate.

Theorem 2.2. Let ε > 0 and let T be a conic bundle torsor of the shape
(2.5), with deg∆(u, v) = n. Then

NT0(A, r)�ε,T A2+ε

(
1 +

(
‖r1‖ ‖r2‖ ‖r3‖

An

)1/3)
.

The implied constant is ineffective.

We proceed to prove this theorem subject to some technical results which
will be established in due course. The first, which should be of independent
interest, concerns counting k-rational points on conics.

For a matrix M ∈ GL3(o), let ∆(M) and ∆0(M) be the ideals generated
by the determinant of M and the 2 × 2 minors of M, respectively. Let τ
be the usual divisor function on integral ideals. Then we shall establish the
following result in Section 4.

Theorem 2.3. Let Q be a non-singular ternary quadratic form with
underlying matrix M ∈ GL3(o). Let r1, r2, r3 ∈ (R≥1)sk be given. There are

�
(

1 +

(
‖r1‖ ‖r2‖ ‖r3‖Nk(∆0(M))3/2

Nk(∆(M))

)1/3)
τ(∆(M))

elements x ∈ L(r) ∩ Z ′3 such that Q(x) = 0.

This result generalises to arbitrary number fields a result of Browning
and Heath-Brown [BHB, Cor. 2]. It is important to note that the implied
constant in this estimate depends at most on the field k, but is uniform in
the coefficients of the quadratic form Q.
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Theorem 2.3 is a crucial ingredient in our proof of Theorem 2.2. In-
deed, if one takes A = 1 in the latter result, then one obtains a version of
Theorem 2.3 in which the implied constant is allowed to depend on the co-
efficients of Q. Alternatively, if A is large compared to ‖r1‖ ‖r2‖ ‖r3‖, then
Theorem 2.2 shows that most conics in the family contribute very few points.

The second technical result we require concerns an average involving
binary forms. It will be established in Section 5 and is based on Lang’s
generalisation of the Thue–Siegel–Roth theorem to number fields.

Theorem 2.4. Let ε > 0 and let F (u, v) ∈ o[u, v] be a separable form of
degree n. Then

(2.6)
∑

(u,v)∈o2
A1/sk≤‖(u,v)‖?<2A1/sk

F (u,v)6=0

1

(Nk(F (u, v)))1/3
�ε,F A

2−n/3+ε.

The implied constant is ineffective.

We now have everything in place to establish Theorem 2.2, condition-
ally on the technical results. Let T be a conic bundle torsor of the shape
(2.5). We shall proceed by counting the number of points on the fibres
Cu,v of T above (u, v) ∈ A2, uniformly in u, v. Given (u, v) ∈ A2 such
that ∆(u, v) 6= 0, let M(u, v) be the matrix which produces the ternary
quadratic form defining Cu,v. We have ∆(u, v) = ∆(M(u, v)) and we put
∆0(u, v) = ∆0(M(u, v)). By the trivial estimate for the divisor function we
have

τ(∆(u, v))�ε (Nk(∆(u, v)))ε.

Likewise, since ∆(u, v) is separable, the proof of [Brob1, Lemma 7] shows
that Nk(∆0(u, v))�T 1 for (u, v) ∈ Z2.

For given (u, v) ∈ Z2 such that ∆(u, v) 6= 0, we put

N(u, v, r) = #{x ∈ L(r) ∩ Z ′3 ∩ Cu,v}.
It follows from Theorem 2.3 that

N(u, v, r)�ε,T

(
1 +

R1/3

Nk(∆(u, v))1/3

)
(Nk(∆(u, v)))ε

for any ε > 0, where R = ‖r1‖ ‖r2‖ ‖r3‖. We easily obtain

NT0(A, r) ≤
∑

(u,v)∈Z2

A≤Hk([u,v])<2A

N(u, v, r)

�ε,T Aε
∑

(u,v)∈Z2

A≤Hk([u,v])<2A

(
1 +

R1/3

Nk(∆(u, v))1/3

)
.
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Finally, recalling (2.4), an application of Theorem 2.4 yields

NT0(A, r)�ε,T A2+2ε

(
1 +

R1/3

An/3

)
.

We complete the proof of Theorem 2.2 upon redefining the choice of ε.

Remark 2.5. Although we need it for Theorem 2.2, it should be noted
that Theorems 1.1–1.3 do not strictly require Theorem 2.4 and it is possible
to recover effectivity with extra work. Instead one can make use of the fact
that there are Oε,F (G1/nA) points (u, v) ∈ Z2, with Hk([u, v]) ≤ A and
Nk(F (u, v)) ≤ G (see [Brob1, Lemma 9]). For Theorem 2.2, however, this
would only produce the desired contribution when G has order of magni-
tude An. For Theorems 1.1 and 1.2, moreover, using this alternative bound
would require us to handle a subset of the fibres in a different manner (see
[Brob1, Prop. 7 and Lemma 8]).

3. Counting points on del Pezzo surfaces

3.1. Heights and morphisms. We begin with some general facts
about the behaviour of heights under morphisms, as described by Serre
[Se, §2]. Let X be a del Pezzo surface of degree d ∈ {2, 3, 4} over a number
field k and let U ⊂ X be the Zariski open subset obtained by deleting the
exceptional curves. For a morphism g : X → P` we write Hg(x) = Hk(g(x))
for any x ∈ X(k), where Hk is the height on P`(k).

Suppose we are given morphisms

fi : X → P1, i = 1, . . . ,m.

Let f be the morphism

f : X → P1 × · · · × P1 = (P1)m

given by (f1, . . . , fm). Now let ψ : (P1)m → P2m−1 be the multilinear Segre
embedding, so then ψ ◦ f is a morphism. We shall assume that ψ ◦ f takes
the shape

ψ ◦ f(x) = [φ0(x), . . . , φ2m−1(x)]

on U , where φ0, . . . , φ2m−1 are homogeneous polynomials of degree e which
do not simultaneously vanish on X.

Let p = ([u1, v1], . . . , [um, vm]) ∈ (P1(k))m and ψ(p) = [y0, . . . , y2m−1].
Then

sup
0≤i≤2m−1

‖yi‖ν =
m∏
i=1

sup{‖ui‖ν , ‖vi‖ν}

for every ν ∈ Ω. Thus we have
m∑
i=1

logHfi = logHψ◦f .
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Furthermore, the functoriality of heights yields

logHψ◦f = e · logHk +Of,X(1).

It follows that there is an absolute constant c1 = c1(f,X) such that∏
1≤i≤m

Hk(fi(x)) ≤ cm1 Hk(x)e

for any x ∈ U(k). Thus we have

Hk(fi(x)) ≤ c1Hk(x)e/m

for at least one i ∈ {1, . . . ,m}.
In our work it will suffice to estimate the counting function

N(U, k,B) = #{x ∈ U(k) : Hk(x) ≤ B}.
When d = 2 and X is embedded in P(2, 1, 1, 1) via an equation of the form
(1.3), the height is taken to be Hk([x1, x2, x3]) on P2(k). When d ∈ {3, 4},
it is taken to be the height on Pd(k) that arises through the anticanonical
embedding of X in Pd. We may now conclude as follows.

Lemma 3.1. There exists a constant c1 = c1(f,X) > 0 such that

N(U, k,B) ≤
m∑
i=1

ni(B),

where

ni(B) = #{x ∈ U(k) : Hk(x) ≤ B and Hk(fi(x)) ≤ c1Be/m}.
For the remainder of Section 3 we shall allow all of the implied constants

to depend implicitly on the number field k, the del Pezzo surface X and the
small parameter ε > 0 appearing in Theorems 1.1–1.3. Furthermore, in the
light of Theorem 2.2, we shall allow the implied constants to be ineffective.

3.2. Proof of Theorem 1.1. After a change of variables we may as-
sume that X is given by

x0x1 − x2x3 = 0,

Q(x0, x1, x2, x3) + ax24 = 0,

for a quadratic form Q ∈ o[x0, x1, x2, x3] and a non-zero element a ∈ o. Let
U ⊂ X be the subset obtained by deleting the 16 lines from X.

We will consider two conic fibrations f1, f2 : U → P1, given by

f1(x) =

{
[x0, x2] if (x0, x2) 6= (0, 0),

[x3, x1] if (x3, x1) 6= (0, 0),

f2(x) =

{
[x0, x3] if (x0, x3) 6= (0, 0),

[x2, x1] if (x2, x1) 6= (0, 0).
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Note that the definitions agree where the open sets intersect, so that this is
a well-defined morphism. Moreover, the open sets cover X since there are
no points on X with x0 = x1 = x2 = x3 = 0. Define f : X → P1 × P1 to be
the morphism given by x 7→ (f1(x), f2(x)). With the notation of Section 3.1,
we confirm that

ψ ◦ f(x) = [x0, x3, x2, x1]

for all x ∈ U . Thus we can take e = 1 and m = 2 in Lemma 3.1. Our task
is then to show that ni(B) � B1+ε for i = 1, 2. Without loss of generality
we shall show this for i = 1, with

n1(B) = #{x ∈ U(k) : Hk(x) ≤ B and Hk(f1(x)) ≤ c1B1/2}

and an appropriate constant c1 = c1(X) > 0.

For each p ∈ P1(k) with Hk(p) ≤ c1B1/2 we can choose a representative
(u, v) ∈ Z2, by Lemma 2.1. Let n1(B;u, v) be the number of points in
f−11 ([u, v]) ∩ U(k) with height at most B. Then

n1(B) ≤
∑

(u,v)∈Z2

Hk([u,v])≤c1B1/2

n1(B;u, v).

Given A ∈ (R≥1)sk , we split the right hand side into dyadic intervals, writing

(3.1) n1(A, B) =
∑

(u,v)∈Z2

Aν≤sup{‖u‖ν ,‖v‖ν}<2Aν

n1(B;u, v).

Let A = ‖A‖. It then follows from (2.4) that any point (u, v) in the sum
satisfies A� Hk([u, v])� A. We are clearly only interested in A� B1/2.

Now (ux, yv, xv, yu, z) ∈ f−11 ([u, v]) if and only if

Q(ux, yv, xv, yu) + az2 = 0.

This is a conic bundle torsor T , as in (2.5), with deg∆(u, v) = 4. On
multiplying (x, y, z) by an appropriate scalar, Lemma 2.1 ensures that we
will have 〈ux, yv, xv, yu, z〉 = ai for some i ∈ {1, . . . , h}, and

(3.2) ‖(ux, yv, xv, yu, z)‖? ≤ c2Hk([ux, yv, xv, yu, z])
1/sk

for some constant c2 > 0. We must count the number of such points which
lie on T . Moreover, it suffices to work on the open set T0 since we wish to
avoid points lying on lines in X.

Our goal is to apply Theorem 2.2. A triple (x, y, z) satisfying the above
restrictions does not necessarily have x, y ∈ o. On multiplying (x, y, z) by
a suitable scalar and adjusting c2 appropriately in (3.2), however, we can
proceed under the assumption that (x, y, z) ∈ Z ′3. Thus n1(B;u, v) is at
most the number of elements (x, y, z) ∈ Z ′3 with (ux, yv, xv, yu, z) ∈ U(k)
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and

(3.3) sup{‖ux‖ν , ‖yv‖ν , ‖xv‖ν , ‖yu‖ν , ‖z‖ν} ≤ c2B1/sk .

We redefine n1(B;u, v) to be this cardinality.

By (3.1) and (3.3), for every point counted by n1(B;u, v), there is an
absolute constant c3 > 0 such that

‖x‖ν , ‖y‖ν ≤
c2B

1/sk

sup{‖u‖ν , ‖v‖ν}
≤ c3B

1/sk

Aν

for every ν |∞. Moreover, we have ‖z‖ν ≤ c2B1/sk for each ν |∞. Hence we
can apply Theorem 2.2 with r1,ν = r2,ν = c3B

1/sk/Aν and r3,ν = c2B
1/sk

and n = 4. This yields the estimate

n1(A, B)� A2+ε +BAε.

Summing over dyadic values of Aν , with A = ‖A‖ � B1/2, therefore leads
to the desired bound n1(B)� B1+ε.

3.3. Proof of Theorem 1.2. The argument in this section and the
next is similar to the proof of Theorem 1.1, and so we shall allow ourselves
to be more concise. Suppose X is a del Pezzo surface of degree 3 over k,
with three coplanar lines defined over k. After a possible change of variables
we may assume that X ⊂ P3 is given by

L1L2L3 = x0Q,

where each Li ∈ o[x1, x2, x3] is a linear form and Q ∈ o[x0, . . . , x3] is a
quadratic form. Following Broberg [Brob1], we define three conic bundle
morphisms f1, f2, f3 : X → P1 via

f1(x) =

{
[x0, L1] if (x0, L1) 6= (0, 0),

[L2L3, Q] if (L2L3, Q) 6= (0, 0),

f2(x) =

{
[x0, L2] if (x0, L2) 6= (0, 0),

[L1L3, Q] if (L1L3, Q) 6= (0, 0),

f3(x) =

{
[x0, L3] if (x0, L3) 6= (0, 0),

[L1L2, Q] if (L1L2, Q) 6= (0, 0).

These morphisms are all well-defined, since X is non-singular. In the nota-
tion of Section 3.1 we have

ψ ◦ f(x) = [x20, x0L3, x0L2, x0L1, L2L3, L1L3, L1L2, Q]

for all x ∈ U , so we take e = 2 and m = 3 in Lemma 3.1. We need to show
that ni(B) � B4/3+ε for 1 ≤ i ≤ 3. Without loss of generality we shall do
so for i = 1, with

n1(B) = #{x ∈ U(k) : Hk(x) ≤ B and Hk(f1(x)) ≤ c1B2/3}.
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After a change of variables we may assume that L1 = x1 and L2 = x2.
We look at the fibres of f1 : X → P1. The fibre above a point [u, v] is the
set of points [uy1, vy1, y2, y3] where y1 6= 0 and

(3.4) vy2L3(vy1, y2, y3) = uQ(uy1, vy1, y2, y3).

This is a conic bundle torsor T , as in (2.5), with deg∆(u, v) = 5. Let
n1(B;u, v) be the number of points in f−11 ([u, v]) ∩ U(k) with height at
most B. Then

n1(B) ≤
∑

(u,v)∈Z2

Hk([u,v])≤c1B2/3

n1(B;u, v).

As in (3.1), we split the right hand side into dyadic intervals n1(A, B) for
suitable A ∈ (R≥1)sk such that A = ‖A‖ � B2/3.

Using an identical argument to that leading up to (3.3), we can redefine
n1(B;u, v) to be the number of points (y1, y2, y3) ∈ Z ′3 such that (3.4) holds
and

sup{‖uy1‖ν , ‖vy1‖ν , ‖y2‖ν , ‖y3‖ν} ≤ c2B1/sk

for some constant c2 > 0. Similarly to before, we see there is a constant
c3 > 0 such that Theorem 2.2 can be applied with r1,ν = c3B

1/sk/Aν and
r2,ν = r3,ν = c2B

1/sk and n = 5. This shows that

n1(A, B)� A2+ε +BAε,

and we obtain the desired conclusion by summing over dyadic values of Aν ,
with A� B2/3.

3.4. Proof of Theorem 1.3. We suppose that X ⊂ P(2, 1, 1, 1) is a
del Pezzo surface of degree 2, as in (1.3), which contains a non-singular
conic C defined over k. Following an argument suggested to us by Professor
Per Salberger, we will show that it may be given by an equation of the form

t2 = q1q2 + q23,

where q1, q2, q3 ∈ k[x1, x2, x3] are quadratic forms such that q1q2 + q23 is a
non-singular quartic form.

Any non-singular conic C contained in X is an irreducible curve satis-
fying (C,−KX) = 2. Hence C is mapped isomorphically onto a conic in P2,
under the double cover map [t, x1, x2, x3] 7→ [x1, x2, x3]. Let us suppose that
this conic in P2 is given by the equation q1 = 0, for a non-singular ternary
quadratic form q1 defined over k. We must have one more relation between t
and the six quadratic monomials in x1, x2, x3. This gives a further equation
t − q3 = 0 on C, for a quadratic form q3 defined over k. Substituting this
into the equation for X we see that f − q23 vanishes on the conic q1 = 0
in P2. Hence f = q1q2 + q23 for a further quadratic form q2 defined over k,
such that q1q2 + q23 is non-singular, which thereby establishes the claim.
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We may henceforth assume that q1, q2, q3 are all defined over o on absorb-
ing a suitable constant into t. The 56 exceptional curves are the preimages
of the 28 bitangents to the quartic plane curve q1q2 + q23 = 0. We let U ⊂ X
be the open subset which avoids all of these. As indicated previously, we
take our height function Hk : P(2, 1, 1, 1)(k) 7→ R≥1 to be

[t,x] 7→
∏
ν∈Ω

sup{‖x1‖ν , ‖x2‖ν , ‖x3‖ν}.

We define the morphisms f1, f2 : X → P1 via

f1([t,x]) =

{
[t− q3, q1] if (t− q3, q1) 6= (0, 0),

[q2, t+ q3] if (q2, t+ q3) 6= (0, 0),

f2([t,x]) =

{
[t− q3, q2] if (t− q3, q2) 6= (0, 0),

[q1, t+ q3] if (q1, t+ q3) 6= (0, 0).

These morphisms are well-defined since q1q2 + q23 is non-singular. In this
setting we have

ψ ◦ f([t,x]) = [t− q3, q2, q1, t+ q3]

for all [t,x] ∈ U , so we take e = 2 and m = 2 in Lemma 3.1. We wish to
show that ni(B) � B2+ε for i = 1, 2. Without loss of generality we shall
show this for n1(B), with

n1(B) = #{x ∈ U(k) : Hk(x) ≤ B and Hk(f1(x)) ≤ c1B}.

We look at the fibres f1 : X → P1 in U . Defining n1(B;u, v) to be the
number of rational points in f−11 ([u, v])∩U with height at most B, we have

n1(B) ≤
∑

(u,v)∈Z2

Hk([u,v])≤c1B

n1(B;u, v).

We shall consider the contribution n1(A, B) from dyadic intervals, as in (3.1),
for A ∈ (R≥1)sk such that A = ‖A‖ � B.

Suppose [t,x] ∈ f−11 ([u, v]) ∩ U for uv 6= 0. Then the point (u, v;x)
satisfies uv 6= 0 and x 6= (0, 0, 0), and is constrained to lie on the variety
in A5 given by the equation

q1(x)u2 + 2q3(x)uv − q2(x)v2 = 0.

This is a conic bundle torsor of the form (2.5), with deg∆(u, v) = 6. Thus
Theorem 2.2 can be applied directly with ri,ν = B1/sk for i = 1, 2, 3 and
n = 6, giving

n1(A,B)� A2+ε +BAε.

Summing for dyadic A� B shows that n1(B)� B2+ε, as claimed.



Counting rational points on del Pezzo surfaces 285

4. Ternary forms. In this section we establish Theorem 2.3. The struc-
ture of the proof is similar to [Brob1, Thm. 6] (which in turn follows the proof
of [HB1, Thm. 2]). The main idea is to cover the solutions to Q(x) = 0 by
a relatively small number of lattices, each of which has a large determinant.
This is done in Section 4.2, after first recalling some basic facts about lattices
over number fields in Section 4.1. Then, for given r = (r1, r2, r3), we obtain
in Section 4.3 a uniform estimate for the number of points x ∈ P2(k) with
representative x = (x1, x2, x3) ∈ Z ′3, such that xi ∈ L(ri) and Q(x) = 0.
This is then used to deduce Theorem 2.3 by rescaling the lattices appro-
priately. Throughout Section 4 we return to our convention that all of the
implied constants are allowed to depend at most upon the number field k.
Furthermore, all of the implied constants in this section are effective.

4.1. Lattices. We say that an o-module Λ in kn is an o-lattice in kn if
it is finitely generated and contains a basis of kn over k. We can define its
determinant detΛ to be the index [on : Λ] as an additive subgroup. If Λ is
an o-lattice in kn and ν ∈ Ω is a finite place, then Λν = Λ ⊗o oν is a free
oν-module in knν such that Λν contains a basis for knν over kν , where oν is
the ring of integers of kν . We say that such an oν-module is an oν-lattice
in knν . The following results are standard (see [Brob1, Thm. 4] and [Brob1,
Prop. 5], respectively).

Lemma 4.1. For each finite place ν ∈ Ω, let Lν be an oν-lattice in knν
such that Lν = onν for almost all ν. If Λ =

⋂
ν-∞ Lν ∩ kn, then Λ is the

unique o-lattice in kn such that Λν = Lν for all ν ∈ Ω.

Lemma 4.2. If L ⊂ Γ are o-lattices in kn, then there is an element
a ∈ k∗ such that Γ ⊂ aL and [Γ : L]� Nk(a).

We define measures for the places ν ∈ Ω as follows. If ν |∞ and kν = R,
then dµν is the ordinary Lebesgue measure. If ν |∞ and kν = C, then dµν
is the Lebesgue measure multiplied by 2. If ν - ∞, then dµν is the usual
ν-adic measure normalised so that µν(oν) = ‖Dν‖ν , where Dν is the local
different of k at ν.

For each ν |∞, let Sν be a non-empty, open, convex, symmetric, bounded
subset of knν . For an o-lattice Λ in kn, we shall identify Λ with its image in
S =

∏
ν|∞ Sν , under the diagonal embedding. We define the ith successive

minimum of Λ with respect to S to be

λi = inf{λ ∈ R>0 : Λ ∩ λS contains i linearly independent vectors}.

The following result is an analogue of Minkowski’s second theorem in the
adèles due to Bombieri and Vaaler [BV] (see the corollary to [Brob1, Thm. 5]
for the present formulation).
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Lemma 4.3. If λ1 ≤ · · · ≤ λn are the successive minima of Λ with respect
to S, then

(λ1 · · ·λn)d
∏
ν|∞

vol(Sν)�n [on : Λ],

the volume vol(Sν) being taken with respect to dµν .

4.2. Points on Fermat curves. In this section we shall prove a gener-
alisation of [Brow1, Lemma 4.9] and [BD, Thm. 3] to number fields. In fact
the proof of these results contains an error and we shall take the opportunity
to correct this here. Let Ik be the set of integral ideals of o. For each integer
t ≥ 1, define the multiplicative function on integral ideals δt : Ik → Z>0, via

(4.1) δt(p
r) = r + t− 1

for each prime ideal p. Note that δ2 = τ is the usual divisor function on
integral ideals.

Lemma 4.4. Consider the equation

(4.2) F (x) = a1x
t
1 + a2x

t
2 + a3x

t
3 = 0

for ai ∈ o and t ∈ Z≥2. Let ∆(F ) be the principal ideal 〈a1a2a3〉, and let
∆0(F ) be the ideal 〈a1a2, a2a3, a3a1〉. Suppose x ∈ o3 is a solution of (4.2).
Then x lies in one of at most J o-lattices Γ1, . . . , ΓJ ⊂ o3, such that

(i) J ≤ t3dδt(∆(F ));
(ii) for each j ≤ J we have dimΓj = 3 and

detΓj ≥
t−2dNk(∆(F ))2/t

Nk(∆0(F ))3/t
.

Remark 4.5. When k = Q, [Brow1, Lemma 4.9] and [BD, Thm. 3]
record a version of this result with the factor tω(a1a2a3) instead of ourδt(∆(F ))
= δt(a1a2a3), where ω(n) is the number of distinct prime divisors of an in-
teger n (note that δt(p

r) = r + t − 1 ≥ t = tω(p
r) for any prime p and any

r ∈ Z>0). However, there is an error in the proof of these results which in-
validates this bound. In addition to providing a generalisation to arbitrary
number fields, Lemma 4.4 corrects this error. Moreover, one easily shows
that nothing has been lost on average, since∑

a⊂o
Nk(a)≤B

δt(a)� B(logB)t−1

for any t ≥ 2.

Proof of Lemma 4.4. Suppose p |∆(F ) is a prime ideal, let op be the
localisation of o at p and put q = pop. Suppose that q = Nk(p) = pl for some
rational prime p, so that op/q ∼= Fq. Let ν be the place associated to p and
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suppose that π is a uniformiser of op = oν . Finally, put γ = 2 ordν(t), and
note that Nk(p)γ = q2 ordν(t) | t2d if pordν(t) | t.

We suppose that

F (x) = ε1π
α1xt1 + ε2π

α2xt2 + ε3π
α3xt3

for units εi in op and αi ∈ Z≥0 such that α1 ≤ α2 ≤ α3. Let aν and bν be the
non-negative integers defined by ‖∆(F )‖ν = ‖π‖aνν and ‖∆0(F )‖ν = ‖π‖bνν .
Then aν = α1 + α2 + α3 and bν = α1 + α2. Hence

(4.3) Nk(p)(2α3−α1−α2)/t = Nk(p)(2aν−3bν)/t.

Suppose that x ∈ o3p, with Q(x) = 0. We will show that there exist oν-lattices

M1, . . . ,MK ⊂ o3p of dimension 3, such that x belongs to Mi for some index
i ∈ {1, . . . ,K}, with

K ≤
{
α3 − 1 + t if γ = 0,

(α3 − 1 + t)Nk(p)γ+1 if γ > 0,

and

detMi ≥ Nk(p)(2α3−α1−α2)/t−γ

for 1 ≤ i ≤ K. Using the Chinese remainder theorem, we may then deduce
the result by taking the product over all prime ideals such that p |∆(F ) and
recalling (4.3).

Suppose that xi = πξiui for i = 1, 2, with u1, u2 units in op. Then

ε1u
t
1π

α1+tξ1 + ε2u
t
2π

α2+tξ2 ≡ 0 (mod qα3).

We split into cases as in the proof of [Brow1, Lemma 4.9]. The oversight
in that proof was that the contributions from the different cases were not
added up correctly at the end, and this turns out to be fairly delicate. The x
in which we are interested satisfy

(I) α3 ≤ mini=1,2{αi + tξi}, or
(II) α3 > maxi=1,2{αi + tξi}.
Note that it is impossible for α3 to be between the two.
Let L1 be the lattice x

(4.4) L1 = {x ∈ o3p : xi ∈ qmax{0,d(α3−αi−γ)/te} for i = 1, 2}.
The determinant of L1 is at least

Nk(p)max{0,d(α3−α2−γ)/te}+max{0,d(α3−α1−γ)/te} ≥ Nk(p)(2α3−α1−α2)/t−γ ,

since t ≥ 2. Any x from case (I) must lie in L1, since γ ≥ 0. Hence the
points in case (I) can be covered by one lattice of the required determinant.

For the points from case (II) we have α1 + tξ1 = α2 + tξ2 = η, say. Note
that there are b(α3 − α2 − 1)/tc + 1 possibilities for η. If α3 − η ≤ γ, then
it is easy to see that x ∈ L1, and so we are done.
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Alternatively, we suppose that α3 − η > γ and

(u1/u2)
t ≡ −ε2/ε1 (mod qα3−η).

Now, yt ≡ ε (mod q) has at most gcd(t, q − 1) ≤ t roots, since op/q ∼= Fq.
Hensel’s lemma tells us that the congruence yt ≡ ε (mod qα3−η) has the same
number of solutions as the congruence yt ≡ ε (mod qγ), since α3 − η > γ.
The total number of solutions is therefore bounded above by tNk(p)γ . It
follows that there exist r1, . . . , rH ∈ op/q

α3−η, where H ≤ tNk(p)γ , such
that

u1 ≡ riu2 (mod qα3−η)

for some i ∈ {1, . . . ,H}. Every solution x ∈ o3p which satisfies this congru-
ence lies in the lattice defined by the conditions

(4.5) xi = πξix′i, x′1 ≡ rix′2 (mod qα3−η),

for x′i ∈ op. This has determinant

Nk(p)α3+ξ1+ξ2−η ≥ Nk(p)(2α3−α1−α2)/t

in o3p, which is satisfactory.

Now we count up the total number of lattices. First suppose that γ = 0
and α3 − α2 ≡ 1 (mod t). Then for each ξi arising in case (II) we have

(4.6) ξi ≤
⌊
α3 − αi − 1

t

⌋
=
α3 − αi − 1

t
,

since then α1 ≡ α2 (mod t). In the boundary case, we have η = α3− 1. But
then, if it arises, this gives us a lattice of the form (4.5) with the exponent
of q being 1. Thus from (4.4) and (4.6), we see that L1 is a subset of these
lattices, so we need not include it in our count. The total number of lattices
is therefore found to be at most

t

(⌊
α3 − α2 − 1

t

⌋
+ 1

)
≤ t
(
α3 − 1

t
+ 1

)
= α3 − 1 + t,

which is satisfactory.

Next suppose that γ = 0 and α3 − α2 6≡ 1 (mod t). Either α3 − α2 = 0,
and hence the second case cannot happen at all (so we need one lattice in
total), or α3 − α2 ≥ 2. But then, when we add L1 to the count, the total
number of lattices is at most

t

(⌊
α3 − α2 − 1

t

⌋
+ 1

)
+ 1 ≤ t

(
α3 − α2 − 2

t
+ 1

)
+ 1 ≤ α3 − 1 + t,

which is also satisfactory.
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Finally suppose that γ > 0. In this case the total number of lattices is
at most

tNk(p)γ
(⌊

α3 − α2 − 1

t

⌋
+ 1

)
+ 1 ≤ tNk(p)γ

(
α3 − 1

t
+ 1

)
+ 1

= Nk(p)γ(α3 − 1 + t) + 1

≤ Nk(p)γ+1(α3 − 1 + t).

This too is satisfactory and so completes the proof of the lemma.

We now turn to the setting of Theorem 2.3, working over each op sepa-
rately as in the proof of the last lemma. Exactly as in [Brob1, Lemma 4(b)],
after diagonalisation of the quadratic form Q it suffices to analyse equations
of the shape (4.2) with t = 2. We obtain the following result.

Corollary 4.6. Let Q, ∆(M), ∆0(M) be as in Theorem 2.3. Suppose
that x ∈ o3 is a solution of Q(x) = 0. Then x lies in one of at most J
o-lattices Γ1, . . . , ΓJ ⊂ o3 such that

(i) J � τ(∆(M));
(ii) for each j ≤ J we have dimΓj = 3 and

detΓj �
Nk(∆(M))

Nk(∆0(M))3/2
.

4.3. A uniform bound for rational points on conics. We now state
and prove our generalisation of [BHB, Thm. 6] to number fields.

Theorem 4.7. Let Q be a non-singular ternary quadratic form and sup-
pose that we are given r1, r2, r3 ∈ (R≥1)sk . Let R = ‖r1‖ ‖r2‖ ‖r3‖ and let

N(Q, r) = #{x = [x] ∈ P2(k) : Q(x) = 0 and x ∈ L(r) ∩ Z ′3}.
Then N(Q, r)� R1/3.

Adopting the notation from Section 1, and applying Lemma 2.1, we
obtain the following immediate consequence.

Corollary 4.8. Let C ⊂ P2 be an irreducible conic defined over a
number field k. Then N(C, k,B) = O(B).

The proof of Theorem 2.3 follows on combining Corollary 4.6 with The-
orem 4.7 exactly as in the proof of [Brob1, Thm. 6]. The argument is essen-
tially a repetition of the final stages of the proof of Theorem 4.7, working
instead with one of the lattices Γj .

Proof of Theorem 4.7. Our argument is a straightforward generalisation
of [BHB, Thm. 6] to number fields. We may suppose that

Q(x) =
∑

1≤i≤j≤3
aijxixj ,

with (a11, . . . , a33) ∈ Z6. Let M ∈ GL3(o) be the underlying matrix.
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We begin by choosing integral prime ideals p1, . . . , pr, with

(4.7) cR1/3 ≤ Nk(p1) < · · · < Nk(pr)� R1/3

for a constant c and some fixed r to be specified later. This is possible
because of the bounds of Chebyshev type on the number of prime ideals of o
of bounded norm. Note that this step would be an obstruction to proving a
result in which the implied constant is only allowed to depend on the degree
of the number field k. Now, either there exists some i ∈ {1, . . . , r} such that
pi - ∆(M), or else

(4.8) Nk(∆(M)) ≥
r∏
i=1

Nk(pi)� Rr/3.

We shall suppose that (4.8) holds.
Define the height H(Q) of Q to be the height Hk([a11, . . . , a33]) and put

‖Q‖? = ‖(a11, . . . , a33)‖?. We see that

‖Q‖3sk? � ‖detM‖sk? ≥ Nk(∆(M))

by (2.2), and H(Q)3 � ‖Q‖3sk? by (2.4). Hence

(4.9) H(Q)� Rr/9 ≥ Br/9,

where B =
∏
ν|∞ sup{r1,ν , r2,ν , r3,ν}.

Next note that any solution with x ∈ P2(k) and x ∈ L(r) ∩ Z ′3 satisfies
Hk(x) ≤ B. SupposeQ = 0 has at least five solutions of height at mostB and
suppose they have representatives x(1), . . . ,x(5) ∈ Z3 such that ‖x(i)‖? �
B1/sk for 1 ≤ i ≤ 5. Consider the 5× 6 matrix C whose ith row consists of

the six possible monomials of degree 2 in the variables x
(i)
1 , x

(i)
2 , x

(i)
3 . Then

if the vector f ∈ o6 has entries which are the corresponding coefficients of
Q, we will have Cf = 0. Also, since rank(C) ≤ 5, the equation Cg = 0 has
a non-zero integer solution g constructed out of the 5× 5 subdeterminants
of C. Note that each element cij of C has ‖cij‖? � B2/sk , so that g satisfies
‖g‖? � B10/sk . Let G be the ternary quadratic form corresponding to the
vector g. By (2.4), we have H(G)� B10. Note that G and Q have at least
five common zeros, namely x(1), . . . ,x(5). This contradicts Bézout’s theorem
unless G is a constant multiple of Q, since Q is non-singular. In this case,
therefore, we have H(Q) = H(G)� B10. Comparing this with (4.9), we ob-
tain a contradiction for large R if we take r > 90. Thus we may conclude that
Q = 0 has at most four solutions of height at most B, which is satisfactory.

We proceed to consider the case pi - ∆(M) for some index i ∈ {1, . . . , r}.
Thus we may suppose that there is a prime ideal p satisfying

cR1/3 ≤ Nk(p)� R1/3,

with p - ∆(M). We shall suppose that R is large enough to ensure that p - ai
for any i ∈ {1, . . . , h}. Let op be the localisation of o at p, and put q = pop.
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We have op/q ∼= Fq, where q = Nk(p) = pl for some rational prime p. If we

look at the image Q (over Fq) of Q (mod p) under this isomorphism, then Q
is non-singular. The projective variety Q = 0 has exactly q points over Fq.
Our goal is to show that there are at most 2 points counted by N(Q, r) for
each of the corresponding cosets of op/q. This will complete the proof of
Theorem 4.7, since we have assumed that q � R1/3.

Fix a vector x ∈ (op/q)3 \ {0}, with Q(x) ≡ 0 (mod q) and

(4.10) ∇Q(x) 6≡ 0 (mod q).

We claim that there exists a vector x(1) ∈ o3p, with x(1) ≡ x (mod q), which

satisfies Q(x(1)) ≡ 0 (mod q2) and (4.10). To see this put x(1) = x + πy(1)

for some uniformiser π ∈ q. Then Q(x(1)) ≡ 0 (mod q2) if and only if

y(1).∇Q(x) ≡ −π−1Q(x) (mod q),

and this is clearly solvable for y(1). This establishes the claim.

We shall count points w ∈ P2(k) which have at least one representation
as w ∈ Z ′3 satisfying Q(w) = 0 and wi ∈ L(ri), and such that there exists
λ ∈ op with w ≡ λx(1) (mod q). Then there is a vector z ∈ o3p such that

w = λx(1) + πz. It follows that

0 = Q(w) ≡ λ2Q(x(1)) + πλz.∇Q(x(1)) (mod q2)

≡ πλz.∇Q(x(1)) (mod q2).

Moreover, we note that λ 6∈ q, since otherwise w = λx(1) (mod q) implies
that the ideal which spans the elements of w is divisible by p, contradicting
the fact that w ∈ Z ′3 and p - ai. Hence we conclude that z.∇Q(x(1)) ∈ q. It
follows that

w.∇Q(x(1)) = λx(1).∇Q(x(1)) + πz.∇Q(x(1))

= 2λQ(x(1)) + πz.∇Q(x(1)) ≡ 0 (mod q2).

In conclusion, we have shown that any w as above belongs to the set

Lp =

{
w ∈ o3p :

w ≡ λx (mod q) for some λ ∈ op

w.∇Q(x(1)) ≡ 0 (mod q2)

}
.

A simple generalisation of the proof of [BHB, Lemma 7] shows that Lp is
independent of the choice of x(1) and that it is an op-lattice of dimension 3
and determinant Nk(p)3. We shall not give details of this argument here.

Define Lν to be oν for all ν such that ν -∞ and ν - p. Lemma 4.1 implies
that there is a unique o-lattice Λ such that Λν = Lν for all ν ∈ Ω, with

det(Λ) = [o3 : Λ] =
∏
ν-∞

[o3ν : Lν ] = [o3p : Lp] = Nk(p)3.
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For ν |∞, consider the sets

Sν = {(x1, x2, x3) ∈ k3ν : |xi|ν ≤ r1/dνi,ν for i = 1, 2, 3},

and put S =
∏
ν|∞ Sν . We have o3 ∩ S = L(r1)× L(r2)× L(r3). Moreover,

S is symmetric and vol(S)� R.
Next we consider the successive minima λ1 ≤ λ2 ≤ λ3 of Λ with respect

to S. By Lemma 4.3, we know that

(λ1λ2λ3)
d vol(S)� [o3 : Λ].

It follows that

(λ1λ2)
d � Nk(p)2

R2/3
.

It is evident from the definitions that we can find linearly independent vec-
tors u1,u2,u3 such that ui ∈ Λ ∩ λiS. If uij is the jth component of ui,

then ‖uij‖ν ≤ λdνi rj,ν for ν |∞. Hence, if w = y1u1 + y2u2 + y3u3 ∈ S for
some (y1, y2, y3) ∈ k3, and U is the matrix with columns u1,u2,u3, then for
each ν |∞ we have

‖y3‖ν =
1

‖detU‖ν

∥∥∥∥∥∥∥det

u11 u21 w1

u12 u22 w2

u13 u23 w3


∥∥∥∥∥∥∥
ν

� r1,νr2,νr3,ν(λ1λ2)
dν

‖detU‖ν
,

by Cramer’s rule. We note that {u1,u2,u3} is not necessarily a basis for Λ
over o. However, if we let L be the free o-lattice with generators u1,u2,u3,
then L ⊂ Λ ⊂ aL for some a ∈ k× such that Nk(a)� [Λ : L], by Lemma 4.2.
Hence any element w ∈ Λ ∩ S may be written as

y1(au1) + y2(au2) + y3(au3)

for some (y1, y2, y3) ∈ o3.
Let Q′ be the quadratic form given by the matrix UTMU. Then we have

shown that every point w ∈ P2(k) which has at least one representation
w ∈ Z ′3 satisfying Q(w) = 0 and wi ∈ L(ri), and such that there exists
λ ∈ op with w ≡ λx(1) (mod q), gives us a solution (y1, y2, y3) ∈ o3 to
Q′ = 0, with

‖y3‖ν �
r1,νr2,νr3,ν(λ1λ2)

dν

‖a‖ν‖detU‖ν
.

Taking the product over all ν |∞ we see that

Nk(y3)�
R(λ1λ2)

d

Nk(a)Nk(detU)
� R(λ1λ2)

d

[Λ : L][o3 : L]
=
R(λ1λ2)

d

[o3 : Λ]
� R1/3

Nk(p)
.

Hence, on taking c in (4.7) sufficiently large, we deduce that y3 = 0, whence
w is confined to the 2-dimensional space spanned by u1 and u2. This means
that the point w ∈ P2(k) must not only lie on the irreducible conic Q = 0,
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but also on a line. There are at most two such points, which thereby com-
pletes the proof of Theorem 4.7.

5. Sums involving binary forms. In this section we shall prove The-
orem 2.4. Fix ε > 0. Suppose that F (u, v) = β(u + α1v) · · · (u + αnv), for
αi ∈ k (if F (u, v) has uv as a factor, we can do a simple change of variables
to reach this form). Then F is separable by hypothesis and so α1, . . . , αn
are distinct. We may assume that β = 1, since the implied constant in (2.6)
can vary with F . Set K = k(α1, . . . , αn). For each infinite place ν of k, we
fix an extension of ν to K, and extend ‖ ·‖ν likewise. We shall let Kν denote
the completion at this place. Note that for any (u, v) ∈ Z2 we have

Nk(F (u, v)) =
∏
ν|∞

‖F (u, v)‖ν =
∏
ν|∞

∏
1≤i≤n

‖u+ αiv‖ν .

Let A ∈ (R≥1)sk and recall the notation ‖A‖ =
∏
ν|∞Aν . We will show that

(5.1)
∑

(u,v)∈o2
Aν≤sup{‖u‖ν ,‖v‖ν}<2Aν

F (u,v)6=0

(∏
ν|∞

∏
1≤i≤n

‖u+ αiv‖ν
)−1/3

� ‖A‖2−n/3+ε.

Here, as throughout this section, we shall allow all implied constants to be
ineffective, and to depend on k, F and on the choice of ε. This will clearly
suffice for the proof of Theorem 2.4 on summing over dyadic values of Aν
such that A� ‖A‖ � A.

Let cν = cν(k, F ) ≥ 1 be fixed absolute constants. On multiplying (u, v)
through by a suitable scalar, it clearly suffices to assume that Aν ≥ cν for
each ν |∞ when trying to prove (5.1). Let A = A (A) denote the set of
(u, v) ∈ o2 such that

(5.2) Aν ≤ sup{‖u‖ν , ‖v‖ν} < 2Aν for all ν |∞,

and F (u, v) 6= 0. It follows from [Brob1, Prop. 1] that

#A ≤ (#L(2A))2 � ‖A‖2.
Let (u, v) ∈ A . Since α1, . . . , αn are fixed once and for all, this implies there
is a constant C > 0 such that ‖u+αiv‖ν < CAν for all indices i ∈ {1, . . . , n}
and all ν |∞.

Let
θ = ε/n.

For any ν |∞ and any (i, q) ∈ {1, . . . , n} × Z≥0, we define the sets

Aν(i, q) = {(u, v) ∈ A : CA1−(q+1)θ
ν ≤ ‖u+ αiv‖ν < CA1−qθ

ν }.
The larger q is, the more the factor ‖u + αiv‖ν will contribute to the sum
(5.1). The idea of the proof is that the bulk of A is covered by intersections
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of sets of the form Aν(i, q), with q not too large, and we can quantify the
contribution from these points very easily. In order to handle the contribu-
tion from a set Aν(i, q) with q large, we use the fact that points in such a
set produce good Diophantine approximations to αi. Appealing to a num-
ber field version of the Thue–Siegel–Roth theorem due to Lang, we can then
show that the problem sets cannot contribute too much.

We begin with the following technical lemmas.

Lemma 5.1. Let B ∈ (R>0)
sk . Let tν ∈ Kν for each ν |∞ and let

S = {u ∈ o : ‖u− tν‖ν < Bν for all ν |∞}.
Then #S � 1 + ‖B‖. The implied constant does not depend on any tν .

Proof. We may clearly assume that S 6= ∅. Let x′ ∈ S . Then any x ∈ S
takes the form x = x′ + γ, with γ belonging to the set

S ′ = {γ ∈ o : |γ|ν < 2B
1/dν
ν for all ν |∞}.

But this is L(r), with rν = 2B
1/dν
ν . Hence it follows from [Brob1, Prop. 1]

that #S ′ � 1 + ‖B‖.
Lemma 5.2. Let (i(ν), q(ν)) ∈ {1, . . . , n} × Z≥0 for each ν |∞. Then

(5.3) #
( ⋂
ν|∞

Aν(i(ν), q(ν))
)
� ‖A‖

{
1 +

∏
ν|∞

A1−θq(ν)
ν

}
.

Proof. If (u, v) ∈ A , then (5.2) implies that we must have ‖v‖ν � Aν
for all ν |∞. Thus, by Lemma 5.1, we have at most O(‖A‖) choices for v.
If we fix some v, then we must count the number of solutions u ∈ o to

the inequalities ‖u − tν‖ν < CA
1−q(ν)θ
ν for tν = αi(v)v ∈ K. Now we apply

Lemma 5.1 again.

The next lemma makes precise the statement that if we fix a place ν |∞,
then for any (u, v) ∈ A there is at most one αi such that ‖u − αiv‖ν is
“small”.

Lemma 5.3. Let ν |∞. There exists a constant c(k, F ) > 0 such that for
any integers i1 6= i2 and q1, q2 ≥ 1 we have

Aν(i1, q1) ∩Aν(i2, q2) = ∅,
if Aν > c(k, F ).

Proof. This is a simple consequence of the triangle inequality. Suppose
for a contradiction that (u, v) ∈ Aν(i1, q1) ∩ Aν(i2, q2), with i1 6= i2 and
q1, q2 ≥ 1. We see that

‖αi1 − αi2‖ν‖u‖ν ≤ ‖αi1u+ αi1αi2v‖ν + ‖αi2u+ αi1αi2v‖ν
< C(‖αi1‖ν + ‖αi2‖ν)A1−θ

ν .
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This implies that ‖u‖ν � A1−θ
ν , if Aν is sufficiently large. Similarly, we

have ‖v‖ν � A1−θ
ν . But then there is a constant c(k, F ) > 0 such that this

violates the restriction (5.2) if Aν > c(k, F ).

As remarked in the paragraph following (5.1), we may proceed under
the assumption that each Aν exceeds c(k, F ), so that Lemma 5.3 applies.
In particular, if we fix (u, v) ∈ A and a place ν |∞, then there will be at
most one pair (iν , qν) with qν ≥ 1 and (u, v) ∈ Aν(iν , qν). If there is no such
pair, we can put (iν , qν) = (1, 0) by default. Thus there is a well-defined
map from elements of A to I = ({1, . . . , n} × Z≥0)sk .

Now we break the sum (5.1) into sums over those (u, v) which are mapped
to a particular element

$ =
∏
ν|∞

(iν , qν) ∈ I .

Note that there are finitely many such $, the number depending only on ε,
n and k. Any (u, v) which maps to $ must be contained in the intersection

B =
⋂
ν|∞

Aν(iν , qν).

We begin by considering the case in which $ is such that

1 ≤
∏
ν|∞

A1−θqν
ν .

Then, when we estimate the cardinality of B, the second term on the right
hand side of (5.3) dominates. Lemma 5.3 implies that if (u, v) ∈ Aν(iν , qν),
then (u, v) ∈ Aν(i, 0) for every i 6= iν .

Using Lemma 5.2 we conclude that the contribution from the elements
mapping to $ is at most∑

(u,v)∈B

∏
ν|∞

(
‖u+ αiνv‖−1/3ν

∏
i 6=iν

‖u+ αiv‖−1/3ν

)
� #B

∏
ν|∞

(A−(1−(qν+1)θ)/3
ν A−(n−1)(1−θ)/3)ν )

� ‖A‖2−n/3
(∏
ν|∞

Aθ{−qν+(qν+1)/3+(n−1)/3}
ν

)
.

But the exponent of Aν in the last line is

θ

{
−qν +

qν + 1

3
+
n− 1

3

}
≤ θn

3
=
ε

3
,

by the definition of θ. Thus the last line is � ‖A‖2−n/3+ε and each set B
contributes a satisfactory amount.
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Now we must consider the set C of (u, v) ∈ A which map to $ ∈ I
with

1 >
∏
ν|∞

A1−θqν
ν .

The cardinality of this set is estimated in the following result.

Lemma 5.4. We have #C � ‖A‖.

Proof. Consider sets Cν(i, q) given by

Cν(i, q) = {(u, v) ∈ A : ‖u+ αiv‖ν < CA1−qθ
ν }.

We can cover C with finitely many sets of the form
⋂
ν|∞ Cν(iν , qν). The

proof of Lemma 5.2 then shows that the size of each set is O(‖A‖).

Given an element ξ ∈ k, we define its height to be

Hk(ξ) =
∏
ν∈Ω

sup{1, ‖ξ‖ν}.

With this in mind, to estimate the size of the sum over C , we shall use the
following generalisation of the Thue–Siegel–Roth theorem due to Lang [L,
§7, Thm. 1.1].

Lemma 5.5 (Lang’s generalisation of Thue–Siegel–Roth). For each ν |∞,
let αν be an algebraic number over k and assume that ν is extended to k(αν).
Let ε′ > 0. Then the elements ξ ∈ k satisfying the approximation condition∏

ν|∞

inf{1, ‖αν − ξ‖ν} ≤
1

Hk(ξ)2+ε
′

have bounded height.

Suppose that ξ = u/v with (u, v) ∈ o2. The product formula (2.1) implies
that

Hk(ξ) =
∏
ν∈Ω

sup{1, ‖u/v‖ν} =
∏
ν∈Ω

sup{‖u‖ν , ‖v‖ν} = Hk([u, v]).

Thus Lemma 5.5 tells us that if (u, v) ∈ Z2 and Hk([u, v])� 1, then

(5.4)
∏
ν|∞

inf{1, ‖αν − u/v‖ν} >
1

Hk([u, v])2+ε′
.

Let (u, v) ∈ C and let ν | ∞. By the argument of Lemma 5.3, assuming
Aν is sufficiently large, there can be at most one i = iν such that

‖u− αiv‖ν < A1−ε′
ν .
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Moreover, we have Nk(v) ≥ 1 and

Nk(F (u, v)) =
∏
ν|∞

∏
1≤i≤n

‖u− αiv‖ν

≥
∏
ν|∞

(A1−ε′
ν )n−1‖u− αiνv‖ν

= ‖A‖(n−1)(1−ε′)Nk(v)
∏
ν|∞

‖αiν − u/v‖ν ≥ ‖A‖n−3−nε
′
,

the last inequality following from (5.4) with αν = αiν . Then, letting ε′ =
3ε/n and applying Lemma 5.4, we conclude that∑

(u,v)∈C

1

(Nk(F (u, v)))1/3
� ‖A‖ ‖A‖(3−n)/3+nε′/3 = ‖A‖2−n/3+ε,

which is satisfactory. This completes the proof of Theorem 2.4.

Remark 5.6. Let γ ∈ [1/3, 1]. The proof of Theorem 2.4 can be adapted
to show that

‖A‖2−γn �
∑

(u,v)∈o2
Aν≤sup{‖u‖ν ,‖v‖ν}<2Aν

F (u,v)6=0

1

(Nk(F (u, v)))γ
� ‖A‖2−γn+ε.

The lower bound is trivial since Nk(F (u, v)) � ‖A‖n. This shows that our
result is essentially best possible.
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