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A lattice point problem associated with two polynomials
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Manfred Peter (Freiburg)

1. Introduction. B. Lichtin [5] proves the following result: Let gν ∈
R[x, y], ν = 1, 2, be two polynomials which are nondegenerate with respect
to their polygon at infinity and hypoelliptic on [1,∞)2. Define

R(A1, A2) := #{(x, y) ∈ N2 | gν(x, y) ≤ Aν , ν = 1, 2}
for A1, A2 > 0. There are finitely many sets

Rj = {(A1, A2) ∈ [1,∞)2 | Abj1 ≤ A2 ≤ ABj1 }
with 0 ≤ bj < Bj ≤ ∞ and [1,∞)2 =

⋃
j Rj , polynomials pj(u, v) ∈ R[u, v]

which are positive outside some compact subset of [1,∞)2 and constants
uj , vj > 0 so that the following asymptotics holds: If R∞ ⊆ Rj is an
unbounded connected semialgebraic set with dist((A1, A2), ∂Rj) → ∞ as
(A1, A2)→ (∞,∞) in R∞ then with some Θ > 0,

R(A1, A2) = A
uj
1 A

vj
2 pj(logA1, logA2) +O(Auj−Θ1 A

vj−Θ
2 )

as (A1, A2)→ (∞,∞) in R∞.

Lichtin gives an explicit description ofRj , uj , vj in terms of the region of
analyticity of some Dirichlet series which is associated with the polynomials
gν . It is the aim of this paper to derive a much sharper asymptotic expansion
of R(A1, A2) under conditions on the polynomials gν which are in some sense
complementary to those of Lichtin.

Let
gν(x, y) =

∑

i+j≤dν
a

(ν)
ij x

iyj ∈ Z[x, y], ν = 1, 2,

be polynomials with nonnegative integer coefficients and a
(ν)
dν0a

(ν)
0dν 6= 0. De-

fine
g̃ν(x, y) =

∑

i+j=dν

a
(ν)
ij x

iyj ∈ Z[x, y]
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and let the functions ỹν : [0, ξ̃ν ] → R+
0 and x̃ν : [0, η̃ν ] → R+

0 be implicitly
defined by

g̃ν(x, ỹν(x)) = 1 for 0 ≤ x ≤ ξ̃ν , ỹν(ξ̃ν) = 0,

g̃ν(x̃ν(y), y) = 1 for 0 ≤ y ≤ η̃ν , x̃ν(η̃ν) = 0.

Assume that the rational function

(1.1) g̃1(1, y)d2/g̃2(1, y)d1

is not constant. Assume further that g̃ν is not of the form

(1.2) a
(ν)
0dν (y − bx)dν or a

(ν)
dν0(x− cy)dν

with some b, c ∈ R. This paper is devoted to the proof of

Theorem 1.1. There is a decomposition 0 = C∗−1 < C∗0 < . . . < C∗m <
C∗m+1 = ∞ and constants K, ε > 0 with the property : For 0 ≤ µ ≤
m + 1 and A1, A2 ≥ K with C := A2A

−d2/d1
1 ∈ (C∗µ−1 + min{A1, A2}−ε,

C∗µ −min{A1, A2}−ε) we have

R(A1, A2) = area({(x, y) ∈ R2 | x, y ≥ 0, gν(x, y) ≤ Aν , ν = 1, 2})
+ T

(µ)
1 (A1) + T

(µ)
2 (A2) + U

(µ)
1 (A1) + U

(µ)
2 (A2)

− 1
2 min{A1/d1

1 ξ̃1, A
1/d2
2 ξ̃2} − 1

2 min{A1/d1
1 η̃1, A

1/d2
2 η̃2}

+O(A46/(73d1)
1 (logA1)315/146)

+O(A46/(73d2)
2 (logA2)315/146).

The representation

T (µ)
ν (Aν) = A(1/dν)(1−1/(pµ,ν+2))

ν

L(µ)
ν∑

l=1

H
(µ)
νl (A1/dν

ν )

+O(A(1/dν)(1−1/(pµ,ν+2)−1/(pµ,ν+2)2)
ν logAν)

holds with pµ,ν ∈ N and H(µ)
νl periodic functions which are given by absolutely

convergent Fourier series. Furthermore, with some qµ,ν ∈ N,

U (µ)
ν (Aν) = Oδ(A(1/dν)(1−1/qµ,ν+δ)

ν )

for each δ > 0. T (µ)
ν (resp. U (µ)

ν ) can only appear if there is a zero of ỹ′′ν
or x̃′′ν at which ỹ′ν or x̃′ν is rational (resp. irrational). pµ,ν (resp. qµ,ν) is at
most dν − 2.

The proof consists of three parts. In a combinatorial part the set in which
the lattice points are counted is dissected into finitely many subsets. Each
of these has a boundary which is described by one single algebraic curve.
These local problems can be treated in just the same way as in [9]. That is
the analytical part which uses exponential sum estimates. The last section is
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concerned with the question whether the requirements of this local analysis
can be met by imposing suitable conditions on the relative position of A1

and A2. This part is again combinatorial in nature.
In principle it is possible to give an explicit description of C∗µ, T (µ)

ν ,

U
(µ)
ν and ε in terms of ỹν , x̃ν and the coefficients of the gν . In Sections 4,

5 and 6 this is done for the local lattice point asymptotics. In the global
asymptotics an explicit description of all the constants and functions would
make it necessary to distinguish between a lot of cases. Therefore I chose the
above formulation which lays emphasis on the structure of the asymptotic
formula and not on explicit calculations.

In the following ε > 0 will be a sufficiently small constant, K > 0 a
sufficiently large constant and Kj > 0, j ∈ N, constants depending only on
the gν . Furthermore ψ(x) := x− [x]− 1/2.

I would like to thank the referee for a suggestion which led to an im-
provement of the paper.

2. Reduction to algebraic boundary curves. Define an auxiliary
function h : [0, ξ̃1]→ R+ by h(x) := g̃2(x, ỹ1(x)).

Lemma 2.1. The function h is not constant.

P r o o f. Assume h(x) = λ ∈ R+ for each x ∈ [0, ξ̃1]. Then for 0 < x < ξ̃1,

λd1 g̃1(1, x−1ỹ1(x))d2 = λd1x−d1d2 g̃1(x, ỹ1(x))d2 = h(x)d1x−d1d2

= x−d1d2 g̃2(x, ỹ1(x))d1 = g̃2(1, x−1ỹ1(x))d1 .

With ỹ1(x) → ỹ1(0) > 0 as x → 0 + 0 it follows that x−1ỹ1(x) → ∞
as x → 0 + 0. Therefore the identity λd1 g̃1(1, y)d2 = g̃2(1, y)d1 holds for
infinitely many y and consequently it holds as a polynomial identity. This
contradicts the assumption on (1.1).

Define the homogeneous polynomials of degree dν

gν(τ, x, y) :=
∑

i+j≤dν
a

(ν)
ij τ

dν−i−jxiyj ∈ Z[τ, x, y].

Define

j
(ν)
0 := min{1 ≤ j ≤ dν | a(ν)

dν−j,j 6= 0},
i
(ν)
0 := min{1 ≤ i ≤ dν | a(ν)

i,dν−i 6= 0}.

For 0 ≤ τ < (a(ν)
00 )−1/dν the functions yν(τ, ·) : [0, ξν(τ)]→ R+

0 and xν(τ, ·) :
[0, ην(τ)]→ R+

0 are implicitly defined by

gν(τ, x, yν(τ, x)) = 1, 0 ≤ x ≤ ξν(τ), yν(τ, ξν(τ)) = 0,

gν(τ, xν(τ, y), y) = 1, 0 ≤ y ≤ ην(τ), xν(τ, ην(τ)) = 0.
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Both are strictly decreasing and inverse to each other. For 0 ≤ x < ξν(τ),

(2.1) gνy(τ, x, yν(τ, x))

≥ max{a(ν)

dν−j(ν)
0 ,j

(ν)
0

j
(ν)
0 xdν−j

(ν)
0 yν(τ, x)j

(ν)
0 −1, a

(ν)
0dνdνyν(τ, x)dν−1} > 0.

Consequently, yν is C∞ on an open neighbourhood of

{(τ, x) | 0 ≤ τ < (a(ν)
00 )−1/dν , 0 ≤ x < ξν(τ)}

by the implicit function theorem. If j(ν)
0 = 1 then (2.1) is also valid for

x = ξν(τ) and consequently yν is C∞ on an open neighbourhood of

{(τ, x) | 0 ≤ τ < (a(ν)
00 )−1/dν , 0 ≤ x ≤ ξν(τ)}.

We have ην(τ) = yν(τ, 0) for 0 ≤ τ < (a(ν)
00 )−1/dν . Consequently, ην is C∞

in this interval and ην(τ) = η̃ν +O(τ) as τ → 0. Analogous results are valid
for xν .

For A1, A2 > max{a(1)
00 , a

(2)
00 , 1} define fA1,A2 : [0, %A1,A2 ]→ R+

0 by

fA1,A2(x) := min{A1/d1
1 y1(A−1/d1

1 , A
−1/d1
1 x), A1/d2

2 y2(A−1/d2
2 , A

−1/d2
2 x)},

%A1,A2 := min{A1/d1
1 ξ1(A−1/d1

1 ), A1/d2
2 ξ2(A−1/d2

2 )}.
Then the following equivalence holds for x, y ≥ 0:

(2.2) gν(x, y) ≤ Aν , ν = 1, 2

⇔ gν(A−1/dν
ν , A−1/dν

ν x,A−1/dν
ν y) ≤ 1, ν = 1, 2

⇔ A−1/dν
ν x ≤ ξν(A−1/dν

ν ), A−1/dν
ν y ≤ yν(A−1/dν

ν , A−1/dν
ν x), ν = 1, 2

⇔ x ≤ %A1,A2 , y ≤ fA1,A2(x).

Now it is clear that R(A1, A2) is the number of lattice points below the
graph of fA1,A2 . The function δ : (0, (ξ̃1ξ̃−1

2 )d2 ]→ R with

δ(C) := min{ỹ1(x)− C1/d2 ỹ2(C−1/d2x) | 0 ≤ x ≤ C1/d2 ξ̃2}
is continuous with limC→0 δ(C) = ỹ1(0) > 0 and δ((ξ̃1ξ̃−1

2 )d2) ≤ ỹ1(ξ̃1) −
ξ̃1ξ̃
−1
2 ỹ2(ξ̃2) = 0. Choose 0 < C0 ≤ (ξ̃1ξ̃−1

2 )d2 minimal with δ(C0) = 0 and
fix 0 < x0 < x1 < C

1/d2
0 ξ̃2 with h′(x0) 6= 0. Set C1 := (x1ξ̃

−1
2 )d2 < C0. Then

for 0 < C ≤ C1, 0 ≤ x ≤ C1/d2 ξ̃2 we have

ỹ1(x)− C1/d2 ỹ2(C−1/d2x) ≥ δ(C) ≥ min{δ(C ′) | 0 ≤ C ′ ≤ C1} =: K1 > 0.

So for A1, A2 ≥ K, C := A2A
−d2/d1
1 ≤ C1, 0 ≤ x ≤ %A1,A2 , with τν :=

A
−1/dν
ν , we have

A
1/d2
2 y2(τ2, τ2x) ≤ A1/d1

1 C1/d2 ỹ2(C−1/d2τ1x) ≤ A1/d1
1 (ỹ1(τ1x)−K1).
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In particular ỹ1(τ1x) ≥ K1 > 0 and so τ1x ≤ ξ̃1 −K3 with some constant
K3 > 0. Now y1 is C∞ on an open neighbourhood of [0, τ0]× [0, ξ̃1−K3] for
sufficiently small τ0. The mean value theorem gives y1(τ1, τ1x) = ỹ1(τ1x) +
O(τ1) and so

A
1/d2
2 y2(τ2, τ2x) ≤ A1/d1

1 (ỹ1(τ1x)−K1) ≤ A1/d1
1 y1(τ1, τ1x)

if K is sufficiently large. It follows that

(2.3) fA1,A2(x) = A
1/d2
2 y2(τ2, τ2x).

Furthermore from x1 < ξ̃1 it follows that

A
1/d2
2 ξ2(τ2) = A

1/d2
2 (ξ̃2 +O(τ2)) ≤ A1/d1

1 C
1/d2
1 ξ̃2 +O(1)

= A
1/d1
1 (x1 +O(τ1)) ≤ A1/d1

1 ξ1(τ1)

and consequently

(2.4) %A1,A2 = A
1/d2
2 ξ2(τ2).

Set C2 := max{(2ξ̃1ξ̃−1
2 )d2 , (2ỹ1(0)ỹ2(ξ̃2/2)−1)d2}. Then for C ≥ C2, 0 ≤

x ≤ ξ̃1 we have

ỹ1(x) ≤ ỹ1(0) ≤ C1/d2 ỹ2(ξ̃2/2)/2 ≤ C1/d2(ỹ2(C−1/d2x)− ỹ2(ξ̃2/2)/2).

For A1, A2 ≥ K, C := A2A
−d2/d1
1 ≥ C2, 0 ≤ x ≤ %A1,A2 , it follows that

A
1/d1
1 y1(τ1, τ1x) ≤ A1/d1

1 ỹ1(τ1x) ≤ A1/d1
1 C1/d2(ỹ2(C−1/d2τ1x)−ỹ2(ξ̃2/2)/2).

In particular ỹ2(C−1/d2τ1x) ≥ ỹ2(ξ̃2/2)/2 > 0 and so τ2x ≤ ξ̃2 − K4 for
some constant K4 > 0. Therefore

A
1/d1
1 y1(τ1, τ1x) ≤ A1/d2

2 (ỹ2(τ2x) +O(τ2)) = A
1/d2
2 y2(τ2, τ2x)

for sufficiently large K and so

(2.5) fA1,A2(x) = A
1/d1
1 y1(τ1, τ1x).

Furthermore

A
1/d1
1 ξ1(τ1) = A

1/d1
1 (ξ̃1 +O(τ1)) ≤ A1/d2

2 C
−1/d2
2 ξ̃1 +O(1)

≤ A1/d2
2 ξ̃2/2 +O(1) ≤ A1/d2

2 ξ2(τ2)

and consequently

(2.6) %A1,A2 = A
1/d1
1 ξ1(τ1).

It remains to analyse the range C1 ≤ C ≤ C2. The functions ỹν can be
continued holomorphically to regions of the form

Gν := {z ∈ C | −ε < <z < ξ̃ν + ε, |=z| < ε, z 6∈ [ξ̃ν ,∞)}
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with at most an ordinary algebraic singularity of order ≤ dν at ξ̃ν . This
follows from general theorems on algebraic functions (for example [1], Chap-
ter 8.2). Therefore h′ is holomorphic on G1 with at most an algebraic
pole at ξ̃1 and consequently in (0, ξ̃1) it has only a finite number of ze-
ros ξ1 < . . . < ξr−1 with r ∈ N. Define ξ0 := 0, ξr := ξ̃1. Let n% ∈
N0 be the order of the zero ξ% of h′. For each 1 ≤ % ≤ r the function
h�[ξ%−1, ξ%] is strictly monotonic and continuous. Therefore it has an inverse
k% : [a%, b%] → [ξ%−1, ξ%] which is strictly monotonic and continuous. For
A1, A2 ≥ K, C := A2A

−d2/d1
1 ∈ [C1, C2], we have

(2.7)
x0 < x1 < C

1/d2
0 ξ̃2 ≤ ξ̃1,

C−1/d2x0 ≤ C−1/d2
1 x0 = x0x

−1
1 ξ̃2 =: x2 < ξ̃2

and consequently

A
−1/d1
1 %A1,A2 = min{ξ1(τ1), C1/d2ξ2(τ2)}

= min{ξ̃1 +O(τ1), C1/d2(ξ̃2 +O(τ2))} ≥ x0

for sufficiently large K. Furthermore

y0 := y0,A1,A2 := A
−1/d1
1 fA1,A2(A1/d1

1 x0)

= min{ỹ1(x0) +O(τ1), C1/d2(ỹ2(C−1/d2x0) +O(τ2))}.
So there are constants y1, y2 with

(2.8)

y0 ≤ ỹ1(x0) +O(τ1) ≤ y1 < η̃1,

C−1/d2y0 ≤ ỹ2(C−1/d2x0) +O(τ2)

≤ ỹ2(C−1/d2
2 x0) +O(τ2) ≤ y2 < η̃2

for sufficiently large K.

Lemma 2.2. Let 1 ≤ % ≤ r, ξ%−1 ≤ x ≤ ξ%, x < ξ̃1, 0 < x < ξ̃2,
C2 > C1 > 0. There are constants ε,K > 0 with the property : For A1, A2 ≥
K, C := A2A

−d2/d1
1 ∈ [C1, C2], |C − a%|, |C − b%| ≥ A−ε1 , x ∈ [ξ%−1, x],

x ≤ C1/d2x, and |x− k%(C)| ≥ A−50/(73d1)
1 if C ∈ [a%, b%] then

(2.9) fA1,A2(A1/d1
1 x) =

{
A

1/d1
1 y1(τ1, x), h(x) < C,

A
1/d2
2 y2(τ2, C−1/d2x), h(x) ≥ C.

P r o o f. From the mean value theorem it follows that, with ζ between
ỹ1(x) and C1/d2 ỹ2(C−1/d2x),

|h(x)− C| = |g̃2(x, ỹ1(x))− Cg̃2(C−1/d2x, ỹ2(C−1/d2x))|(2.10)

= |ỹ1(x)− C1/d2 ỹ2(C−1/d2x)| · |g̃2y(x, ζ)|
� |ỹ1(x)− C1/d2 ỹ2(C−1/d2x)|.
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Assume first C ∈ [a%, b%]. Define y := k%(C) ∈ [ξ%−1, ξ%]. Assume y >
(ξ%−1 + ξ%)/2.

Case 1: % = r, y > (x+ξ%)/2. The monotonicity of h�[ξ%−1, ξ%] together
with (2.10) gives

|ỹ1(x)− C1/d2 ỹ2(C−1/d2x)| � |h(x)− C| = |h(x)− h(y)|(2.11)

≥ |h(x)− h((x+ ξ̃1)/2)| � 1.

Case 2: % < r or y ≤ (x+ ξ%)/2. Taylor’s formula gives

h(x)− C = h(x)− h(y) = h′(y)(x− y) +O(|x− y|2).

In the case % = r, (ξ%−1 + ξ%)/2 < y ≤ (x+ ξ%)/2, we have

|h′(y)| � 1 � |y − ξ%|n% .
In the case % < r the function h′ has a zero of order n% at ξ% and is nonzero
on [(ξ%−1 + ξ%)/2, ξ%). This gives |h′(y)| � |y − ξ%|n% again. So in Case 2 we
have

(2.12)
|h(x)− C|
|x− k%(C)| = |h′(y) +O(|x− y|)| � |y − ξ%|n%

if |x− y| ≤ δ|y − ξ%|n% . Here δ > 0 depends only on h�[ξ%−1, ξ%].

Case 2.1: |x− y| ≤ δ|y − ξ%|n% . With (2.10) it follows that

(2.13) |ỹ1(x)− C1/d2 ỹ2(C−1/d2x)| � |x− k%(C)| · |y − ξ%|n% .
Case 2.2: |x−y| > δ|y−ξ%|n% . Then x 6∈ [x1, x2], x1/2 := y∓δ|y−ξ%|n% .

In the case x < x1 it follows from the monotonicity of h�[ξ%−1, ξ%] that

|h(x)− h(y)| ≥ |h(x1)− h(y)| � |x1 − k%(C)| · |y − ξ%|n% = δ|y − ξ%|2n%

as in (2.12). The same is true in the case x > x2. So in Case 2.2 we have

(2.14) |ỹ1(x)− C1/d2 ỹ2(C−1/d2x)| � |y − ξ%|2n% .
In the case % < r Taylor’s formula gives

h(y)− h(ξ%) =
h(n%+1)(ξ%)
(n% + 1)!

(y − ξ%)n%+1(1 +O(|y − ξ%|)).

With δ′ > 0 depending only on h�[ξ%−1, ξ%] it follows that, for |y − ξ%| ≤ δ′,
|y − ξ%|n%+1 � |h(y)− h(ξ%)| = |C − h(ξ%)|,

and for |y − ξ%| > δ′,

|y − ξ%|n%+1 ≥ δ′n%+1 � 1� |C − h(ξ%)|.
The last estimate is true also in the case % = r, y ≤ (x+ ξ%)/2.
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Taking ε := 23/(73d1) it follows in Case 2 from (2.13) and (2.14) and
h(ξ%) ∈ {a%, b%} that

(2.15) |ỹ1(x)− C1/d2 ỹ2(C−1/d2x)|
� min{|x− k%(C)| · |y − ξ%|n% , |y − ξ%|2n%}

� min{A−50/(73d1)
1 |C − h(ξ%)|n%/(n%+1), |C − h(ξ%)|2n%/(n%+1)}

� min{A−50/(73d1)−εn%/(n%+1)
1 , A

−2εn%/(n%+1)
1 } � A−κ1

with some constant 0 < κ < 1/d1. By (2.11) this estimate also holds in
Case 1. Under the assumption y ≤ (ξ%−1 + ξ%)/2 the same arguments can
be simplified somewhat.

In the case C 6∈ [a%, b%] it follows from (2.10) that

|ỹ1(x)− C1/d2 ỹ2(C−1/d2x)| � min{|a% − C|, |b% − C|} � A−ε1 ,

which also gives (2.15).
The equivalence

(2.16) ỹ1(x) ≥ C1/d2 ỹ2(C−1/d2x)

⇔ g̃2(C−1/d2x,C−1/d2 ỹ1(x)) ≥ 1 ⇔ h(x) ≥ C
follows from the definitions. As x ≤ x < ξ̃1, C−1/d2x ≤ x < ξ̃2 it follows
from the mean value theorem that

y1(τ1, x) = ỹ1(x) +O(τ1), y2(τ2, C−1/d2x) = ỹ2(C−1/d2x) +O(τ2).

If h(x) < C then by (2.16) and (2.15),

y1(τ1, x)− C1/d2y2(τ2, C−1/d2x) = ỹ1(x)− C1/d2 ỹ2(C−1/d2x) +O(τ1)

≤ −K4A
−κ
1 +K5A

−1/d1
1 < 0

for sufficiently large K where K4,K5 > 0 are constants independent of
A1, A2. If h(x) ≥ C the same reasoning gives

y1(τ1, x)− C1/d2y2(τ2, C−1/d2x) > 0.

From this (2.9) follows.

3. Decomposition of the lattice point set. For A1, A2 ≥ K, C :=
A2A

−d2/d1
1 ≤ C1 it follows from (2.2), (2.3) and (2.4) that

R(A1, A2) = #{(x, y) ∈ N2 | x ≤ A1/d2
2 ξ2(τ2), y ≤ A1/d2

2 y2(τ2, τ2x)}.
If C ≥ C2 it follows from (2.5) and (2.6) that

R(A1, A2) = #{(x, y) ∈ N2 | x ≤ A1/d1
1 ξ1(τ1), y ≤ A1/d1

1 y1(τ1, τ1x)}.
So in these cases the problem of evaluating R(A1, A2) asymptotically in-
volves only one polynomial. This situation was investigated in [9]. There
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the error estimates are more precise than in this paper and an explicit de-
scription of the terms Tν and Uν is possible. Therefore in the remainder of
this paper the range C ∈ [C1, C2] is investigated. Then

(3.1) R(A1, A2) = R†(A1, A2) +R#(A1, A2)− [A1/d1
1 y0,A1,A2 ][A1/d1

1 x0]

with

R†(A1, A2) = #{(x, y) ∈ N2 | x ≤ A1/d1
1 x0, y ≤ fA1,A2(x)},

R#(A1, A2) = #{(x, y) ∈ N2 | y ≤ A1/d1
1 y0,A1,A2 , x ≤ f−1

A1,A2
(y)}.

From h′(x0) 6= 0 it follows that there is some 1 ≤ %0 ≤ r with ξ%0−1 < x0 <
ξ%0 . Take % = %0, x = x = x0, x = x2, C1 = C1, C2 = C2 in Lemma 2.2.
From (2.7) it follows that for A1, A2 ≥ K, C := A2A

−d2/d1
1 ∈ [C1, C2],

|C − a%0 |, |C − b%0 | ≥ A−ε1 and |x0 − k%0(C)| ≥ A
−50/(73d1)
1 if C ∈ [a%0 , b%0 ]

then

(3.2) y0,A1,A2

=
{
y1(τ1, x0) = ỹ1(x0) +O(τ1), C > h(x0),
C1/d2y2(τ2, C−1/d2x0) = C1/d2 ỹ2(C−1/d2x0) +O(τ1), C ≤ h(x0).

From k′%0
(h(x0)) = h′(x0)−1 6= 0 it follows that for C ∈ [a%0 , b%0 ] by Taylor’s

theorem we have

C −h(x0) = h(k%0(C))−h(x0) = h′(x0)(k%0(C)−x0)(1 +O(|k%0(C)−x0|))
and consequently |C − h(x0)| � |k%0(C) − x0| for k%0(C) near x0. In the
opposite case the same holds by the monotonicity of h�[ξ%0−1, ξ%0 ]. Therefore
there are constants ε0,K > 0 so that (3.2) holds for A1, A2 ≥ K, C :=
A2A

−d2/d1
1 ∈ [C1, C2], |C − a%0 |, |C − b%0 |, |C − h(x0)| ≥ A−ε01 .
R†(A1, A2) and R#(A1, A2) are defined in the same way but with x and

y interchanged. The only asymmetry is that x0 is constant whereas y0,A1,A2

depends on A1, A2. Therefore the following notation is introduced which
covers both cases: Let C2 > C1 > 0 and 0 < z < ξ̃1, 0 < z < ξ̃2. Let
z : [K,∞)2 → R+ be a function with

z(A1, A2) ≤ z, C−1/d2z(A1, A2) ≤ z
for A1, A2 ≥ K, C := A2A

−d2/d1
1 ∈ [C1, C2]. Define

R∗(A1, A2) := #{(x, y) ∈ N2 | x ≤ A1/d1
1 z(A1, A2), y ≤ fA1,A2(x)}.

From (2.7) and (2.8) it follows that both R† and R# are of this type. Then
R∗(A1, A2) =

∑r
%=1R

∗
%(A1, A2) with

R∗%(A1, A2) := #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 min{ξ%, z(A1, A2)},
0 < y ≤ fA1,A2(x)}.
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The following lemma gives a reduction of R∗% to the case where only one
algebraic curve is involved.

Lemma 3.1. Let 1 ≤ % ≤ r. Then for A1, A2 ≥ K, C := A2A
−d2/d1
1 ∈

[C1, C2], |C − a%|, |C − b%| ≥ A−ε1 we have:

• in the case C ∈ [a%, b%], h�[ξ%−1, ξ%] increasing with z%(A1, A2) :=
min{k%(C), z(A1, A2)}:
R∗%(A1, A2) = #{(x, y) ∈ Z2 | A1/d1

1 ξ%−1<x ≤ A1/d1
1 z%(A1, A2),

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

+ #{(x, y) ∈ Z2 | A1/d1
1 k%(C) < x ≤ A1/d1

1 min{ξ%, z(A1, A2)},
0 < y ≤ A1/d2

2 y2(τ2, τ2x)}+O(A46/(73d1)
1 );

• in the case C ∈ [a%, b%], h�[ξ%−1, ξ%] decreasing :

R∗%(A1, A2) = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1<x ≤ A1/d1

1 z%(A1, A2),

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

+#{(x, y) ∈ Z2 | A1/d1
1 k%(C) < x ≤ A1/d1

1 min{ξ%, z(A1, A2)},
0 < y ≤ A1/d1

1 y1(τ1, τ1x)}+O(A46/(73d1)
1 );

• in the case C < a%:

R∗%(A1, A2) = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 min{ξ%, z(A1, A2)},
0 < y ≤ A1/d2

2 y2(τ2, τ2x)};
• in the case C > b%:

R∗%(A1, A2) = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 min{ξ%, z(A1, A2)},
0 < y ≤ A1/d1

1 y1(τ1, τ1x)}.
P r o o f. Only the case z(A1, A2) > ξ%−1 is of interest. Assume first

C ∈ [a%, b%], h�[ξ%−1, ξ%] increasing. For ξ%−1 ≤ x ≤ min{ξ%, z(A1, A2)},
|x−k%(C)| ≥ τ50/73

1 it follows from Lemma 2.2 with x := min{ξ%, z}, x := z
that

fA1,A2(A1/d1
1 x) =

{
A

1/d2
2 y2(τ2, C−1/d2x), x > k%(C),

A
1/d1
1 y1(τ1, x), x < k%(C).

Consequently,

R∗%(A1, A2)

= #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 min{k%(C)− τ50/73
1 , z(A1, A2)},

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}
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+ #{(x, y) ∈ Z2 | A1/d1
1 max{ξ%−1, k%(C)− τ50/73

1 } < x

≤ A1/d1
1 min{k%(C) + τ

50/73
1 , z(A1, A2), ξ%}, 0 < y ≤ fA1,A2(x)}

+ #{(x, y) ∈ Z2 | A1/d1
1 (k%(C) + τ

50/73
1 ) < x ≤ A1/d1

1 min{ξ%, z(A1, A2)},
0 < y ≤ A1/d2

2 y2(τ2, τ2x)}.
For max{ξ%−1, k%(C)− τ50/73

1 } ≤ x ≤ min{ξ%, k%(C) + τ
50/73
1 , z(A1, A2)} we

have x = k%(C) + O(τ50/73
1 ), k%(C) ≤ z(A1, A2) + τ

50/73
1 and by Taylor’s

theorem

(3.3)
y1(τ1, x) = ỹ1(k%(C)) +O(τ 50/73

1 ),

y2(τ2, C−1/d2x) = ỹ2(C−1/d2k%(C)) +O(τ 50/73
2 ).

Furthermore

g̃2(C−1/d2k%(C), C−1/d2 ỹ1(k%(C))) = C−1g̃2(k%(C), ỹ1(k%(C)))

= C−1h(k%(C)) = 1

and consequently

(3.4) ỹ2(C−1/d2k%(C)) = C−1/d2 ỹ1(k%(C)).

This gives

fA1,A2(A1/d1
1 x) = A

1/d1
1 ỹ1(k%(C)) +O(A23/(73d1)

1 )(3.5)

= A
1/d2
2 ỹ2(C−1/d2k%(C)) +O(A23/(73d2)

2 ).

It follows that

R∗%(A1, A2)

= #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 z%(A1, A2),

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

−
∑

A
1/d1
1 max{k%(C)−τ50/73

1 ,ξ%−1}<x≤A1/d1
1 z%(A1,A2)

[A1/d1
1 y1(τ1, τ1x)]

+
∑

A
1/d1
1 max{ξ%−1,k%(C)−τ50/73

1 }<x≤A1/d1
1 z%(A1,A2)

[fA1,A2(x)]

+
∑

A
1/d1
1 max{k%(C)−τ50/73

1 ,z%(A1,A2)}<x≤A1/d1
1 min{k%(C)+τ50/73

1 ,z(A1,A2),ξ%}

[fA1,A2(x)]

+ #{(x, y) ∈ Z2 | A1/d1
1 k%(C) < x ≤ A1/d1

1 min{ξ%, z(A1, A2)},
0 < y ≤ A1/d2

2 y2(τ2, τ2x)}
−

∑

A
1/d1
1 k%(C)<x≤A1/d1

1 min{k%(C)+τ50/73
1 ,ξ%,z(A1,A2)}

[A1/d2
2 y2(τ2, τ2x)].
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By (3.3) and (3.5) the difference between the first and the second sum is
O(A23/(73d1)

1 A
1/d1
1 τ

50/73
1 ) = O(A46/(73d1)

1 ). The difference between the third
and the fourth sum is

O(A23/(73d2)
2 A

1/d1
1 τ

50/73
1 )

+
∑

A
1/d1
1 max{k%(C)−τ50/73

1 ,z%(A1,A2)}<x≤A1/d1
1 z%(A1,A2)

[fA1,A2(x)].

The sum is zero and the error term is O(A46/(73d1)
1 ). The case of h�[ξ%−1, ξ%]

decreasing is handled in the same way.
Assume now C < a%. For ξ%−1 ≤ x ≤ min{ξ%, z(A1, A2)} we have h(x) ≥

a% > C. From Lemma 2.2 it follows that fA1,A2(A1/d1
1 x) = A

1/d2
2 y2(τ2,

C−1/d2x). This proves the conclusion of the theorem. The case C > b% is
handled in the same way.

4. The case of irrational slope. In this and the next section the
following general situation is investigated:

Let τ0 > 0, d ∈ N, a, b ∈ R, and let f : U → R be C∞ on the open neigh-
bourhood U of {(τ, x) | 0 ≤ τ ≤ τ0, a ≤ x ≤ b}. Define f̃ := f(0, ·). For
A ≥ τ−d0 , A1/da ≤ x ≤ A1/db, define fA(x) := A1/df(A−1/d, A−1/dx). Let
a, b : [0, τ0]→ R be functions with a(τ) = a+O(τ), b(τ) = b+O(τ) as τ → 0.

The argument of this section follows the general line of Müller–Nowak [6].
The main difference is that the estimates are uniform in the variable τ . This
gives rise to additional complications.

Lemma 4.1. Let I ⊆ R be an interval and f ∈ C∞(I) with g̃ν(x, f(x))=1
for x ∈ I. Then f (k) 6≡ 0 for each k ∈ N0. In particular ỹ(k)

ν 6≡ 0 on [0, ξ̃ν)
and x̃

(k)
ν 6≡ 0 on [0, η̃ν) for each k ∈ N0.

P r o o f. Surely f is not constant. If f (k) ≡ 0 is assumed for some k ∈ N0

then let k be minimal with this property. Then k ≥ 2 and f(x) =
∑k−1
κ=0 bκx

κ

on I with coefficients bκ ∈ C and bk−1 6= 0. Then

∑

i+j=dν

a
(ν)
ij x

i
( k−1∑

κ=0

bκx
κ
)j

= 1.

For k ≥ 3 this gives the contradiction 1 = a
(ν)
0dν (bk−1x

k−1)dν+ monomials of
lower order. Therefore k = 2 and

dν∑

m=0

xm
∑

0≤ι≤j≤dν
dν−ι=m

a
(ν)
dν−j,j

(
j

ι

)
bj−ι1 bι0 = 1.
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This gives a(ν)
0dν b

dν
0 = 1 and therefore b0 6= 0, and for 1 ≤ m ≤ dν ,

0 =
dν∑

j=dν−m
a

(ν)
dν−j,j

(
j

dν −m

)
b
j−(dν−m)
1 bdν−m0

= bdν−m0
1

(dν −m)!
· ∂

dν−m

∂ydν−m
g̃ν(1, b1).

Therefore b1 is a zero of g̃ν(1, y) with multiplicity at least dν and so g̃ν(1, y) =
a

(ν)
0dν (y − b1)dν . Since the coefficients of g̃ν are real this would imply b1 ∈ R

and g̃ν(x, y) = a
(ν)
0dν (y − b1x)dν contrary to assumption (1.2).

Lemma 4.2. Let x0 ∈ [0, ξ̃ν) with ỹ′′ν (x0) = 0. Then ỹ′ν(x0) is algebraic
over Q.

P r o o f. Twofold differentiation of g̃ν(x, ỹν(x)) = 1 shows (x0, ỹν(x0)) is
a zero of k := g̃ν − 1 and l := g̃νxxg̃

2
νy − 2g̃νxy g̃νxg̃νy + g̃νyy g̃

2
νx. Now l is not

zero because otherwise ỹ′′ν ≡ 0 contrary to Lemma 4.1. Let 0 6= b(x) ∈ Z[x]
be the leading coefficient of l as a polynomial in y with coefficients in
Z[x]. Let R(x) ∈ Z[x] be the resultant of k and l with respect to y. Then
R(x0) = 0 or b(x0) = 0 because k has leading coefficient a(ν)

0dν 6= 0 with
respect to y (van der Waerden [10], p. 104). If R 6= 0 then x0 ∈ Q.
Then k(x0, ·) 6= 0 has algebraic coefficients and therefore its zero ỹν(x0)
is algebraic. Consequently,

ỹ′ν(x0) = −g̃νx(x0, ỹν(x0))g̃νy(x0, ỹν(x0))−1 ∈ Q.
Now the assumption R = 0 will be proved contradictory. Then for each

z ∈ C with b(z) 6= 0 the polynomials k(z, ·) and l(z, ·) would have a common
zero. The discriminant Dk(x) of k with respect to y is not zero because
Dk(0) = (−1)dν−1(dνa

(ν)
0dν )dν 6= 0. Let x1 ∈ R with Dk(x1) 6= 0, b(x1) 6= 0.

From general theorems on algebraic functions it follows that there is an open
disk U ⊆ C with centre x1 where b and Dk have no zeros and on which there
exist dν holomorphic branches w̃1, . . . , w̃dν of the algebraic function which
is defined by k(z, w) = 0. Twofold differentiation of k(z, w̃j(z)) = 0 gives
w̃′′j (z) = −(l/g̃3

νy)(z, w̃j(z)) on U . Here g̃νy(z, w̃j(z)) 6= 0 for z ∈ U because
k(z, ·) has only simple zeros. We have b(z) 6= 0 and w̃1(z), . . . , w̃dν (z) are the
zeros of k(z, ·). Therefore by assumption there is some 1 ≤ j(z) ≤ dν with
l(z, w̃j(z)(z)) = 0 and consequently w̃′′j(z)(z) = 0. From the identity theorem
it follows that w̃′′j (z) = 0 on U for some 1 ≤ j ≤ dν . This contradicts
Lemma 4.1.

The following lemma is used for parts of the boundary curve on which
the curvature does not vanish.
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Lemma 4.3. Let f̃ ′′, f̃ ′′′ be zerofree on [a, b]. Then for A ≥ τ−d0 , a ≤ a′ <
b′ ≤ b we have ∑

A1/da′<n≤A1/db′

ψ(fA(n))� A46/(73d)(logA)315/146.

P r o o f. Define τ := A−1/d, M := [A1/d(b − a)], T := A1/dM . For
A1/da ≤ x ≤ A1/db, 0 ≤ τ ≤ τ0 the mean value theorem gives

f ′′A(x) = A−1/dfxx(τ, τx) = A−1/d(f̃ ′′(τx) +O(τ)).

f̃ ′′ is zerofree and consequently |f̃ ′′(τx)| � 1. For large A this gives |f ′′A(x)| �
A−1/d � TM−3 and similarly |f ′′′A (x)| � TM−4. Let c ∈ [a, b], Mc :=
M + [A1/d(c− a)]. Define h(x) := fA(x+ [A1/da]−M), x ∈ [M, 2M ]. Then
|h′′(x)| � TM−3, |h′′′(x)| � TM−4, M ≤ Mc ≤ 2M , T 1/2 � M , and the
discrete Hardy–Littlewood method in the form of [2], Theorem 18.2.2, gives

∑

A1/da<n≤A1/dc

ψ(fA(n))=
∑

M≤n≤Mc

ψ(h(n)) +O(1)� A46/(73d)(logA)315/146

uniformly in A and c. In this theorem f(τ, ·) is assumed to be independent
of τ . This is not an essential assumption as was pointed out in [7], Theo-
rem B. Choosing c = b′ and c = a′ and subtracting proves the lemma.

The next lemma is used for parts of the boundary curve which do not
come too close to points of vanishing curvature.

Lemma 4.4. Let f̃ ′, f̃ ′′, f̃ ′′′ be zerofree on (a, b]. Let µ ∈ N with f̃ (k)(a)
= 0 for 2 ≤ k ≤ µ + 1 and f̃ (µ+2)(a) 6= 0. Let 0 < λ < (µ + 1)−1 and
λ0 := min{20(83µ+103)−1, λ}. Then for A ≥ τ−d0 , a+τλ0 ≤ b′ ≤ b we have

∑

A1/d(a+τλ)<n≤A1/db′

ψ(fA(n))� A46/(73d)(logA)315/146 + A(λµ+1)/(2d).

P r o o f. Let a < c < b. For 0 < τ ≤ τ0, a+ τλ ≤ x ≤ c, k = 2, 3, Taylor’s
theorem gives

∂kf

∂xk
(τ, x) =

f̃ (µ+2)(a)
(µ+ 2− k)!

(x− a)µ+2−k(1 +O(|c− a|+ τ 1−λ(µ+2−k))),

fx(τ, x) = f̃ ′(a) +
f̃ (µ+2)(a)
(µ+ 1)!

(x− a)µ+1(1 +O(|c− a|+ τ 1−λ(µ+1))).

Fixing c close to a gives, with 1− λ(µ+ 1) > 0,

|fxx(τ, x)| � |x− a|µ, |fxxx(τ, x)| � |x− a|µ−1.

In the case f̃ ′(a) 6= 0 we have |fx(τ, x)| � 1 and with constants K1,K2 > 0,

|fx(τ, x)fxxx(τ, x)− 3fxx(τ, x)2| ≥ |x− a|µ−1(K1 −K2|x− a|µ+1)

� |x− a|µ−1|fx(τ, x)|
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for c sufficiently close to a. In the case f̃ ′(a) = 0 we have |fx(τ, x)| �
|x− a|µ+1 and

|fx(τ, x)fxxx(τ, x)− 3fxx(τ, x)2|

= f̃ (µ+2)(a)2|x− a|2µ
∣∣∣∣
µ− 3(µ+ 1)

(µ+ 1)!µ!
+O(|c− a|+ τ 1−λ(µ+1))

∣∣∣∣

� |x− a|µ−1|fx(τ, x)|.

For A1/d(a+ τλ) ≤ x ≤ A1/dc this gives

(4.1)
|f ′′A(x)| � A−1/d|A−1/dx− a|µ, |f ′′′A (x)| � A−2/d|A−1/dx− a|µ−1,

|f ′A(x)f ′′′A (x)− 3f ′′A(x)2| � |f ′A(x)|A−2/d|A−1/dx− a|µ−1.

Define M0 := A1/dτλ0 , MJ := A1/d(c− a), J := [logA], B := (MJ/M0)1/J .
Then B = eλ0/d + o(1) as A→∞. For 1 ≤ j ≤ J define Mj := M0B

j and

gj(x) := fA(x+ [2Mj−1−Mj ] + [A1/da]) on [Mj −Mj−1, 2(Mj −Mj−1)].

Then

S1 :=
∑

A1/d(a+τλ0 )<n≤A1/d min{b′,c}
ψ(fA(n))

=
J∑

j=1

∑

Mj−Mj−1<n≤M ′j(b′)
ψ(gj(n)) +O(J)

with

Mj(b′) := min{2(Mj−Mj−1), A1/d(b′−a)−2Mj−1 +Mj} ≤ 2(Mj−Mj−1).

For 1 ≤ j ≤ J define T := A−(µ+1)/dMµ+3
j−1 , M := Mj −Mj−1. For x ∈

[M, 2M ] it follows that

|g′′j (x)| � TM−3, |g′′′j (x)| � TM−4,

|g′j(x)g′′′j (x)− 3g′′j (x)2| � TM−4|g′j(x)|.

From the choice of λ0 it follows that MT−83/146 � 1 and T 1/2M−1

� 1. Theorem 18.2.2 in [2] gives S1 � A46/(73d)(logA)315/146. Lemma 4.3
gives

S2 :=
∑

A1/dc<n≤A1/db′

ψ(fA(n))� A46/(73d)(logA)315/146.

By (4.1), f ′′A and f ′′′A are zerofree on [A1/d(a+ τλ), A1/d(a+ τλ0)] and con-
sequently f ′′A is monotonic. From van der Corput’s theorem (Krätzel [3],
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Theorem 2.3) it follows that

S3 :=
∑

A1/d(a+τλ)<n≤A1/d(a+τλ0 )

ψ(fA(n))

�
A1/d(a+τλ0 )�

A1/d(a+τλ)

A−1/(3d)|A−1/dx− a|µ/3 dx+ (A−1/dτλµ)−1/2

� A46/(73d) + A(1+λµ)/(2d)

using the special choice of λ0.

The main result of this section is

Proposition 4.5. Let f̃ ′(a) be an algebraic irrational , f̃ ′, f̃ ′′, f̃ ′′′ ze-
rofree on (a, b] and µ ∈ N with f̃ (k)(a) = 0 for 2 ≤ k ≤ µ + 1 and
f̃ (µ+2)(a) 6= 0. Let δ > 0. Then for A ≥ τ−d0 and a+ τ20/(83µ+103) ≤ b′ ≤ b
we have ∑

A1/da(A−1/d)<n≤A1/db′

ψ(fA(n))� A(1/d)(1−1/µ+δ) + A46/(73d)(logA)315/146.

P r o o f. Define λ := 1/(3µ+ 2). For h ∈ N define

S(h) :=
∑

A1/d(a+τ1/µ−δ)<n≤A1/d(a+τλ)

e(hfA(n)).

From Krätzel [3], Theorem 1.8 for s = 2 it follows that for arbitrary H > 0,

S :=
∑

A1/d(a+τ1/µ−δ)<n≤A1/d(a+τλ)

ψ(fA(n))(4.2)

� A(1−λ)/dH−1 +
∑

h≥1

min
{
H2

h3 ,
1
h

}
|S(h)|.

Let C1 be the arc of the circle with radius r := CA1/d(τλ − τ1/µ−δ) which
starts at

P1 := (A1/d(a+ τ1/µ−δ), fA(A1/d(a+ τ1/µ−δ)))

and proceeds clockwise to its endpoint

P2 := (A1/d(a+ τλ), fA(A1/d(a+ τλ)))

and whose centre M lies below the line (P1P2). Here C ≥ 1 is a constant
which is fixed later. The �-constants below are independent of C.

Let 2α be the angle under which C1 is seen from its centre M and ∓β
(β ≥ 0) the angle between (P1P2) and the horizontal axis. In the follow-
ing the upper resp. lower sign is valid whenever (P1P2) has negative resp.
positive slope. From the mean value theorem it follows that

|∓ tanβ| = |f ′A(ζ)| � 1 with A1/d(a+ τ1/µ−δ) < ζ < A1/d(a+ τλ).
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Consequently, there is a constant ε0 > 0 with 0 ≤ β ≤ π/2− ε0. Therefore

|P1P2| = (cosβ)−1(A1/d(a+ τλ)−A1/d(a+ τ1/µ−δ)) < 2r

for sufficiently large C ≥ 1. For such C the arc C1 exists in the form described
above. From sinα = (2C cosβ)−1 it follows that α � C−1. Choose C ≥ 1
sufficiently large so that 0 < α ≤ ε0/2. Further conditions on C will be
given below. If m(P ) denotes the slope of C1 in P ∈ C1 then

(4.3) sup
P∈C1

|m(P )| ≤ max{|tan(α∓ β)|, |tan(α± β)|} � 1.

Let P3 ∈ C1 be the midpoint of C1. For A1/d(a+τ1/µ−δ) ≤ x ≤ A1/d(a+τλ)
there is some θ between ζ and x with

|f ′A(x)± tanβ| = |f ′A(x)− f ′A(ζ)| = |f ′′A(θ)(x− ζ)| � τλ.

For the slope m1 := tan(α/2 ∓ β) of (P1P3) and 0 < τ ≤ τ0(C) it follows
that

m1 − f ′A(x) = ±(cos θ2)−2(±α/2) +O(τλ) ≥ α/2 +O(τλ) > 0

with some θ2 between β and β∓α/2. Therefore the graph of fA between P1

and P2 lies below (P1P3). The same holds for (P3P2) and consequently the
graph of fA lies below C1. Let FA : [A1/d(a + τ1/µ−δ), A1/d(a + τλ)] → R
be the function whose graph is C1. Then we have |F ′A| � 1 by (4.3). For
A1/d(a+τ1/µ−δ) ≤ x ≤ A1/d(a+τλ) we obtain r−1 = |F ′′A(x)|(1+F ′A(x)2)−3/2

and consequently |F ′′A(x)| � r−1 � C−1A−1/dτ−λ. From van der Corput’s
theorem (Krätzel [3], Theorem 2.1) it follows that, for h ∈ N,

(4.4) S1(h)

:=
∑

A1/d(a+τ1/µ−δ)<n≤A1/d(a+τλ)

e(hFA(n))� h1/2A(1−λ)/(2d)C1/2.

The main task is the estimation of S2(h) := S1(h)− S(h). Let C2 be the
part of the graph of fA between P1 and P2 and

B := {(x, y) ∈ R2 | A1/d(a+ τ1/µ−δ) ≤ x ≤ A1/d(a+ τλ),

fA(x) ≤ y ≤ FA(x)}.
For ~k := (k, h) ∈ Z×N define I(k, h) := �

B
e(kx+ hy) dx dy and the vector

field ~ν(~x) = ~ν~k(~x) := e(~x~k)~k(2πi‖~k‖2)−1 where ‖~k‖ is the Euclidean norm
of ~k. From Poisson’s sum formula (Krätzel [3], p. 23, equation (1.11)),

S2(h) =
∑

k∈Z

A1/d(a+τλ)�

A1/d(a+τ1/µ−δ)

(e(hFA(x))− e(hfA(x)))e(kx) dx+O(1)(4.5)

=
∑

k∈Z
2πihI(k, h) +O(1).
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From the divergence theorem it follows that, for ~k ∈ Z× N,

(4.6) I(~k) =
�

B

div ~ν(~x) d~x = −
�

C1
~ν · ~n∗ dσ +

�

C2
~ν · ~n∗ dσ

where ~n∗ is the outer normal unit vector on ∂B. The second integral is
estimated first. Let L be the arc length of τC2 and ~u : [0, L] → R2 the
natural parametrization of τC2. Then ~t(s) = ~u′(s) is the tangent unit vector
to τC2 in ~u(s) and ~u′′(s) = κ(s)~n(s) where κ(s) is the curvature of τC2 in ~u(s)
and ~n(s) is the normal unit vector to τC2 in ~u(s). Let g(s) := ~k · ~u(s)‖~k‖−1.
Then

(4.7)
�

C2
~ν · ~n∗ dσ = −A1/d(2πi‖~k‖2)−1

L�

0

e(g(s)A1/d‖~k‖)~k · ~n(s) ds.

For 0 ≤ s ≤ L we have

(4.8) κ(s)� 1 and ‖~n′(s)‖ = ‖− κ(s)~t(s)‖ � 1.

Furthermore L� τλ. Now |g′| is estimated from below.

Case 1: |g′(0)| ≥ 1/2. For 0 ≤ s ≤ L and 0 < τ ≤ τ0 it follows from (4.8)
and the mean value theorem that |g′(s) − g′(0)| = |g′′(ζ)s| ≤ Lκ(s) ≤ 1/4
with 0 ≤ ζ ≤ s. Therefore |g′(s)| ≥ 1/4.

Case 2: |g′(0)| < 1/2. Then |~k ·~n(0)| ·‖~k‖−1 =
√

1− g′(0)2 ≥
√

3/4 and
the mean value theorem and (4.8) give |~k · ~n(s) − ~k · ~n(0)| · ‖~k‖−1 ≤

√
3/4

for 0 ≤ s ≤ L and 0 ≤ τ ≤ τ0. Consequently,

(4.9) |~k · ~n(s)| · ‖~k‖−1 ≥
√

3/4.

Taylor’s formula gives for a+ τ 1/µ−δ ≤ x ≤ a+ τλ

fxx(τ, x) =
f̃ (µ+2)(a)

µ!
(x− a)µ +O(τ + |x− a|µ+1)

=
f̃ (µ+2)(a)

µ!
(x− a)µ(1 +O(τ δµ + τλ)) � |x− a|µ

and consequently |κ(s)| � |fxx(τ, u1(s))| � |u1(s)− a|µ. Furthermore

|u1(s)− a| �
u1(s)�

a

(1 + fx(τ, x)2)1/2 dx = %(τ) + s

with %(τ) := � a+τ1/µ−δ

a
(1 + fx(τ, x)2)1/2 dx ≥ 0. With (4.9) it follows that

(4.10) |g′′(s)| = |~k · ~n(s)κ(s)| · ‖~k‖−1 � κ(s) � (%(τ) + s)µ.

In particular g′ is strictly monotonic and consequently there is exactly one
0 ≤ s0 ≤ L with |g′(s0)| = min0≤s≤L |g′(s)|. Choose 0 ≤ γ = γ~k ≤ π/2 so
that π/2− γ is the angle between ~t(0) and ±~k.
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Case 2.1: |g′(s0)| ≥ |g′(0)|/2. It follows from g′(0) = ± cos(π/2 − γ)
that |g′(s′)| ≥ |g′(s0)| � γ for 0 ≤ s′ ≤ L.

Case 2.2: |g′(s0)| < |g′(0)|/2. It follows from (4.10) that for 0 ≤ s′ ≤ L,

|g′(s′)| ≥ |g′(s′)− g′(s0)| =
∣∣∣
s′�

s0

g′′(s) ds
∣∣∣�

∣∣∣
s′�

s0

(%(τ) + s)µ ds
∣∣∣

� |(%(τ) + s′)µ+1 − (%(τ) + s0)µ+1| ≥ |s′ − s0|(%(τ) + s0)µ,

γ � |g′(0)| ≤ 2|g′(0)− g′(s0)| �
∣∣∣
s0�

0

g′′(s) ds
∣∣∣� (%(τ) + s0)µ+1

and consequently |g′(s′)| � |s′ − s0|γµ/(µ+1).
Summarizing, in Case 1 we have |g′(s)| ≥ 1/4 and in Case 2 we have

|g′(s)| � min{|s− s0|γµ/(µ+1), γ} for 0 ≤ s ≤ L.
Let γ > 0 and δ := (A1/d‖~k‖γµ/(µ+1))−1/2. From (4.7) and (4.8) it

follows that in both cases (with arbitrary s0 in the first case), after partial
integration,

�

C2
~ν · ~n∗ dσ

= −A1/d(2πi‖~k‖2)−1
( �

|s−s0|<δ
+

�

|s−s0|>δ

)

� A1/d‖~k‖−1δ

+ ‖~k‖−2
(

sup
|s−s0|≥δ

|g′(s)|−1 +
�

|s−s0|≥δ
(|g′(s)|−1 + |g′′(s)|g′(s)−2) ds

)
.

In Case 1 the terms in parentheses are � 1. In Case 2, g′′ > 0 or g′′ < 0 by
(4.10) and the terms in parentheses are � δ−1γ−µ/(µ+1) + γ−1. So in both
cases

(4.11)
�

C2
~ν · ~n∗ dσ � A1/(2d)‖~k‖−3/2γ−µ/(2(µ+1)) + ‖~k‖−2γ−1.

The same arguments hold for the first integral in (4.6) in a simplified form
and therefore only the differences are indicated. The corresponding objects
are written with a tilde .̃ We have L̃ � τλ with some �-constant in-
dependent of C. Furthermore κ̃(s) = A1/dr−1 � C−1τ−λ and ‖~̃n′(s)‖ =

‖− κ̃(s)~̃t(s)‖ � C−1τ−λ for 0 ≤ s ≤ L̃.
In the first case |g̃′(0)| ≥ 1/2 use |g̃′(s)− g̃′(0)| � C−1 for 0 ≤ s ≤ L̃. If

we choose C sufficiently large the upper bound becomes ≤ 1/4. In the second
case |g̃′(0)| < 1/2 use |~k · ~̃n(s)−~k · ~̃n(0)| · ‖~k‖−1 � C−1 for 0 ≤ s ≤ L̃. For C
sufficiently large we have |~k · ~̃n(s)| · ‖~k‖−1 � 1. Then |g̃′′(s)| � C−1τ−λ � 1
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for 0 < τ ≤ τ0(C). This was the last condition on C. Now, g̃′ is strictly
monotonic. Let |g̃′| take its infimum at s0. Then |g̃′(s′)| ≥ |g̃′(s′)− g̃′(s0)| =
| � s′
s0
g̃′′(s) ds| � |s′ − s0| for 0 ≤ s′ ≤ L̃. Similar arguments with δ :=

(A1/d‖~k‖)−1/2 and |g̃′′(s)| � C−1τ−λ for 0 ≤ s ≤ L̃ give
�

C1
~ν · ~n∗ dσ � A1/(2d)‖~k‖−3/2.

From (4.11) and (4.6) it follows that

(4.12) I(~k)� A1/(2d)‖~k‖−3/2γ
−µ/(2(µ+1))
~k

+ ‖~k‖−2γ−1
~k

for all ~k = (k, h) ∈ Z×N with 0 < γ~k ≤ π/2 and π/2−γ~k the angle between
~t(0) and ±~k.

Next γ~k is estimated from below. Set (τ1, τ2) := ~t(0) and for h ∈ N define
k(h) ∈ Z by −1/2 < k(h) + hτ2/τ1 ≤ 1/2. From Taylor’s theorem it follows
that

τ2
τ1

= fx(τ, a+ τ1/µ−δ)(4.13)

= f̃ ′(a) +
µ∑

l=1

f̃ (l+1)(a)
l!

τ (1/µ−δ)l +O(τ (1/µ−δ)(µ+1) + τ)

= f̃ ′(a) +O(τ).

In particular |τ2/τ1| � 1 and consequently k(h) � h for h ∈ N. Further-
more 1 ≥ τ1 = (1 + fx(τ, a + τ1/µ−δ)2)−1/2 � 1. Applying Roth’s theorem
to the algebraic irrational f̃ ′(a) gives |f̃ ′(a) + k(h)/h| ≥ K3(δ)h−(2+δ) for
h ∈ N with some constant K3(δ) > 0. From (4.13) it follows that with some
constant K4 > 0 for ~k = (k(h), h),

γ~k ≥ sin γ~k = |k(h)τ1 + hτ2| · ‖~k‖−1

� ||k(h) + hf̃ ′(a)| − |hf̃ ′(a)− hτ2/τ1||h−1

≥ (K3h
−(1+δ) −K4hτ)h−1.

For 1 ≤ h ≤ A(1−δ/2)/(2d) we have hτ/h−(1+δ) � τ δ
2/4 and consequently

γ~k � h−(2+δ) for sufficiently large A. (4.12) gives, for 1 ≤ h ≤ A(1−δ/2)/(2d),

(4.14) I(k(h), h)� A1/(2d)h(1+δ/2)µ/(µ+1)−3/2 + hδ.

For ~k = (k, h) ∈ Z× N, k 6= k(h) the choice of k(h) gives

γ~k ≥ |kτ1 + hτ2| · ‖~k‖−1 ≥ ‖~k‖−1τ1(|k − k(h)| − |k(h) + hτ2/τ1|)
≥ ‖~k‖−1τ1(|k − k(h)| − |k − k(h)|/2)� ‖~k‖−1|k − k(h)|.
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For h ∈ N it follows from (4.12) that
∑

k 6=k(h)

|I(k, h)| � A1/(2d)h−1/2 + 1.

From (4.5) and (4.14) it follows that |S2(h)| � A1/(2d)h1/2 for 1 ≤ h ≤
A(1−δ/2)/(2d). The trivial estimate S(h) � A(1−λ)/d gives, with (4.2) and
(4.4) for H ≥ 1,

S � A(1−λ)/dH−1 +
∑

h≤A(1−δ/2)/(2d)

min
{
H2

h3 ,
1
h

}
A1/(2d)h1/2

+
∑

h≥A(1−δ/2)/(2d)

H2

h3 A
(1−λ)/d

� A(1−λ)/dH−1 + A1/(2d)H1/2 +H2A(1/d)(δ/2−λ).

The optimal choice H = A2(1/2−λ)/(3d) gives S � A(2−λ)/(3d). Lemma 4.4
and the choice of λ give

∑

A1/da(A−1/d)<n≤A1/db′

ψ(fA(n))

� A1/dτ1/µ−δ + A(2−λ)/(3d)

+ A46/(73d)(logA)315/146 + A(λµ+1)/(2d)

� A(1/d)(1−1/µ+δ) + A46/(73d)(logA)315/146.

5. The case of rational slope. The following lemma is used in the
asymptotic evaluation of the lattice integral.

Lemma 5.1. Let 0 < ω < 1. For v ≥ 0, 0 6= T ∈ R, define

H(v, T ) :=
∞�

v

uω−1e−iTu du.

Then for v > 0, T 6= 0,

(5.1) |H(v, T )| �ω |T |−1vω−1, |H(v, T )| �ω |T |−ω + vω

and for T 6= 0,

(5.2) H(0, T ) = Γ (ω)e−(signT )iωπ/2|T |−ω.
P r o o f. The first and the third statement can be found in [4], p. 155.

The second statement is a slight generalization of the essential part of the
proof of Lemma 5 in [4]. Let T > 0, R > v > 0, let K1 resp. K3 be the
straight paths from iv to iR resp. from v to R, and K2 resp. K4 the circular
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arcs with centre 0 from iv to v resp. from R to iR. Cauchy’s theorem gives

(5.3)
�

K1

zω−1e−Tzdz =
�

K2

+
�

K3

+
�

K4

.

Decomposing K4 into those z with <z ≥ R(1−ω)/2 and their complement
gives � K4

� Rωexp(−TR(1−ω)/2) +R(ω−1)/2. Letting R→∞ in (5.3) gives

eiπω/2H(v, T ) =
�

K2

zω−1e−Tz dz +
∞�

v

zω−1e−Tz dz

� vω +
∞�

0

tω−1e−Tt dt�ω v
ω + T−ω.

The case T < 0 can be reduced to this case by complex conjugation.

The following proposition is the analogue of Proposition 4.5 in the case
of rational slope at the point of vanishing curvature. The proof follows the
general line of [8].

Proposition 5.2. Assume 0 ≤ a < b and f̃ > 0 on [a, b]. Let f̃ ′(a) =
−p/q, p ∈ N0, q ∈ N, (p, q) = 1, and µ ∈ N with f̃ (k)(a) = 0 for 2 ≤ k ≤
µ+ 1 and f̃ (µ+2)(a) 6= 0. Let f̃ ′, f̃ ′′, f̃ ′′′ be zerofree on (a, b]. There is some
λ > 0 with the property : For A ≥ τ−d0 , a+ τλ ≤ b′ ≤ b we have

N := #{(x, y) ∈ Z2 | A1/da(A−1/d) < x ≤ A1/db′, 0 < y ≤ fA(x)}

=
A1/db′�

A1/da(A−1/d)

fA(x) dx− ψ(A1/db′)fA(A1/db′)

+ ψ(A1/da(A−1/d))fA(A1/da(A−1/d)) +
1
2
A1/d(a(A−1/d)− b′)

+ CA(1/d)(1−1/(µ+2))

×
∑

h≥1

1
h1+1/(µ+2)

sin
(

2πh(A1/d(pa+qf̃(a))+qfτ (0, a))+
π(−1)α+1

2(µ+ 2)

)

+O(A(1/d)(1−1/(µ+2)−1/(µ+2)2) logA+ A46/(73d)(logA)315/146).

The constants are defined by

α :=
{

0, f̃ (µ+2)(a) < 0,
1, f̃ (µ+2)(a) > 0,

C := q−1−1/(µ+2)((µ+ 1)!)1/(µ+2)(µ+ 2)−(µ+1)/(µ+2)Γ

(
1

µ+ 2

)

× 2−1/(µ+2)π−1−1/(µ+2)|f̃ (µ+2)(a)|−1/(µ+2).
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P r o o f. Choose % := (µ + 3)(µ + 2)−2 and 0 < λ < 1/(µ + 1). In
what follows several further conditions will be imposed on λ. Define κ :=
min{λ, 1− %(µ+ 1)} > 0. Define

Gτ (x) := px+ qf(τ, x) for a+ τ% ≤ x ≤ a+ τλ.

Taylor’s formula gives, for these x,

fx(τ, x) = − p

q
+
f̃ (µ+2)(a)
(µ+ 1)!

(x− a)µ+1 +O(|x− a|µ+2 + τ)(5.4)

= − p

q
+
f̃ (µ+2)(a)
(µ+ 1)!

(x− a)µ+1(1 +O(τκ)).(5.5)

In the following only the case f̃ (µ+2)(a) < 0 is handled. The opposite case
is completely analogous. Then G′τ (x) = p+ qfx(τ, x) < p+ q(−p/q) = 0 by
(5.5). Define Fτ := G−1

τ : [βτ , γτ ]→ [a+ τ%, a+ τλ] with βτ = Gτ (a+ τλ),
γτ = Gτ (a+ τ%). For t ∈ Z define

N(t) := #{x ∈ Z | px ≡ t (q), A1/d(a+ τ%) < x ≤ A1/d(a+ τλ),

px < t ≤ A1/dGτ (A−1/dx)}.
Then

(5.6) #{(x, y) ∈ Z2 | A1/d(a+ τ%) < x ≤ A1/d(a+ τλ), 0 < y ≤ fA(x)}
=
∑

t∈Z
N(t).

For t > A1/dγτ it follows that N(t) = 0. For A1/dβτ ≥ t,
N(t) = #{(x, y) ∈ Z2 | px+qy = t, A1/d(a+τ%) < x ≤ A1/d(a+τλ), y > 0}
and consequently

∑

t≤A1/dβτ

N(t) = #{(x, y) ∈ Z2 | A1/d(a+ τ%) < x ≤ A1/d(a+ τλ),

0 < y ≤ (1/q)(A1/dβτ − px)}.
Here (A1/dβτ −px)/q ≥ A1/df(τ, a+τλ) > 0 for sufficiently large A. Partial
summation and � v

u
ψ(x) dx� 1 for u < v give

(5.7)
∑

t≤A1/dβτ

N(t)

=
1
q

(A1/dβτ − ψ(A1/dβτ ))A1/d(τλ − τ%)− p

2q
A2/d(a+ τλ)2

+
p

2q
A2/d(a+ τ%)2 − ψ(A1/d(a+ τλ))A1/df(τ, a+ τλ) +O(1)

+ ψ(A1/d(a+ τ%))
1
q
A1/d(βτ − p(a+ τ%))− 1

2
A1/d(τλ − τ%).
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For A1/dβτ < t ≤ A1/dγτ we have

N(t) = #{x ∈ Z | px ≡ t (q), A1/d(a+ τ%) < x ≤ A1/dFτ (A−1/dt)}
because Fτ is strictly decreasing and t− px ≥ A1/dqf(τ, a+ τλ) > 0 for suf-
ficiently large A. For t0 ∈ {0, . . . , q − 1} there is exactly one x0 = x0(t0) ∈
{0, . . . , q − 1} with t0 ≡ px0 (q). Decomposing the range of t into the re-
mainder classes modulo q gives

∑

A1/dβτ<t≤A1/dγτ

N(t) = H + S1 + S2

with

H =
1
q
A1/d

q−1∑

t0=0

∑

A1/dβτ<t≤A1/dγτ , t≡t0 (q)

(Fτ (A−1/dt)− (a+ τ%)),

(5.8) S1 = −
q−1∑

t0=0

∑

A1/dβτ<t≤A1/dγτ , t≡t0 (q)

ψ

(
1
q

(A1/dFτ (A−1/dt)−x0(t0))
)
,

(5.9) S2 =
1
q
A1/d(γτ − βτ )ψ(A1/d(a+ τ%)) +O(1).

Partial summation and substitution t = A1/dGτ (x) give

H = A2/d
a+τλ�

a+τ%
f(τ, x) dx+

1
q
A2/dβτ (τ% − τλ)− p

2q
A2/d(a+ τ%)2(5.10)

+
p

2q
A2/d(a+ τλ)2 +

1
q
A1/dψ(A1/dβτ )(τλ − τ%)

+
1
q

A1/dγτ�

A1/dβτ

F ′τ (A−1/dt)ψ(t) dt.

A trivial estimation of the lattice remainder and f ′A(x)� 1 give

(5.11) #{(x, y) ∈ Z2 | A1/da(A−1/d) < x ≤ A1/d(a+ τ%), 0 < y ≤ fA(x)}

=
A1/d(a+τ%)�

A1/da(A−1/d)

fA(x) dx− ψ(A1/d(a+ τ%))fA(A1/d(a+ τ%))

+ ψ(A1/da(A−1/d))fA(A1/da(A−1/d)) +O(A1/dτ%).

Choose 0 < λ ≤ 20/(83µ + 103) < 19/(73µ). Partial summation and
Lemma 4.4 give

#{(x, y) ∈ Z2 | A1/d(a+ τλ) < x ≤ A1/db′, 0 < y ≤ fA(x)}
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=
A1/db′�

A1/d(a+τλ)

fA(x) dx− ψ(A1/db′)fA(A1/db′)

+ ψ(A1/d(a+ τλ))fA(A1/d(a+ τλ)) +
A1/db′�

A1/d(a+τλ)

f ′A(x)ψ(x) dx

− 1
2A

1/d(b′ − a− τλ) +O(A46/(73d)(logA)315/146).

The function ψ1(x) := � x0 ψ(t) dt, x ∈ R, is continuous, piecewise contin-
uously differentiable and bounded. From f ′A � 1, f ′′A � A−1/d it follows
by partial integration that the second integral above is � 1. Together with
(5.6) to (5.11) it follows that

N =
A1/db′�

A1/da(τ)

fA(x) dx+
1
q
I + S1 −

1
2
A1/d(b′ − a(τ))(5.12)

+ ψ(A1/da(τ))fA(A1/da(τ))− ψ(A1/db′)fA(A1/db′)

+O(A1/dτ%) +O(A46/(73d)(logA)315/146)

with

I :=
A1/dγτ�

A1/dβτ

F ′τ (A−1/dt)ψ(t) dt.

The asymptotic development of this integral is done with tools from [4]. The
asymptotic behaviour of F ′′τ and F ′′′τ cannot be determined as in that paper
because the influence of τ and x on the value of f(τ, x) cannot be separated
by inverting functions.

Define δτ := pa + qf̃(a) + qfτ (0, a)τ . For a+ τ% ≤ x ≤ a+ τλ, Taylor’s
formula gives

f(τ, x)

(5.13) =
1
q
δτ −

p

q
x+

f̃ (µ+2)(a)
(µ+ 2)!

(x− a)µ+2(1 +O(|x− a|+ τ |x− a|−µ−1))

(5.14) =
1
q
δτ −

p

q
x+

f̃ (µ+2)(a)
(µ+ 2)!

(x− a)µ+2(1 +O(τκ)).

We have pa+ qf̃(a) > 0 and consequently δτ > 0 and δτ � 1 for sufficiently
large A. Now (5.13) gives

(5.15) δτ − γτ = −qf̃
(µ+2)(a)

(µ+ 2)!
τ%(µ+2)(1 +O(τ1−%(µ+1)))
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and in particular γτ < δτ . From (5.14) it follows analogously that

(5.16) δτ − βτ � τλ(µ+2).

For βτ ≤ t ≤ γτ it follows from (5.14) that

(5.17) t = Gτ (Fτ (t)) = δτ + q(Fτ (t)− a)µ+2 f̃
(µ+2)(a)
(µ+ 2)!

(1 +O(τκ))

and consequently

(5.18) (δτ − t)1/(µ+2) � Fτ (t)− a.
Define ΦA(t) := F ′τ (t)(δτ − t)(µ+1)/(µ+2) on [βτ , γτ ]. From (5.5) and (5.17)
it follows that

ΦA(t) = (δτ − t)(µ+1)/(µ+2)G′τ (Fτ (t))−1(5.19)

=
∣∣∣∣
qf̃ (µ+2)(a)

(µ+ 2)!

∣∣∣∣
(µ+1)/(µ+2)(

qf̃ (µ+2)(a)
(µ+ 1)!

)−1

+O(τκ)

and in particular |ΦA(t)| � 1. Furthermore

Φ′A(t) = −ΦA(t)G′τ (Fτ (t))−2
(
G′′τ (Fτ (t)) +

µ+ 1
µ+ 2

(δτ − t)−1G′τ (Fτ (t))2
)
.

For the expression in parentheses Taylor’s formula and (5.4) give
q

µ!
f̃ (µ+2)(a)(Fτ (t)− a)µ +O(|Fτ (t)− a|µ+1)

+ (δτ − t)−1q
f̃ (µ+2)(a)

µ!
(Fτ (t)− a)µ

×
(
qf̃ (µ+2)(a)

(µ+ 2)!
(Fτ (t)− a)µ+2 +O(τ |Fτ (t)− a|+ |Fτ (t)− a|µ+3)

)
.

Using (5.13) gives the more exact asymptotics

t = δτ + q(Fτ (t)− a)µ+2
(
f̃ (µ+2)(a)
(µ+ 2)!

+O(|Fτ (t)− a|+ τ |Fτ (t)− a|−µ−1)
)
.

With (5.18) this gives, for the expression in parentheses,

qf̃ (µ+2)(a)
µ!

(Fτ (t)− a)µ +O(|Fτ (t)− a|µ+1)

+ (δτ − t)−1 qf̃
(µ+2)(a)
µ!

(Fτ (t)− a)µ

× (t− δτ +O(|Fτ (t)− a|µ+3 + τ |Fτ (t)− a|))
� |Fτ (t)− a|µ+1 + τ |Fτ (t)− a|−1.
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From this together with (5.19) and (5.18) it follows that

(5.20) |Φ′A(t)| � (δτ − t)−(µ+1)/(µ+2) + τ(δτ − t)−(2µ+3)/(µ+2).

Substituting the Fourier development ψ(t) = (−1/(2πi))
∑
h6=0 h

−1e(ht),
which is valid in L2[0, 1], into I gives I = (−1/(2πi))

∑
h6=0 h

−1Ih with

Ih = −A1/dδ1/(µ+2)
τ eiT

γτ/δτ�

βτ/δτ

ΦA(δτ t)
∂H

∂v
(1− t, T ) dt,

T := 2πhA1/dδτ , ω :=
1

µ+ 2
.

Partial integration together with γτ < δτ and δτ � 1 give

Ih = A1/dδ1/(µ+2)
τ eiTΦA(γτ )H(1− γτ/δτ , T )

+O(A1/d|ΦA(βτ )H(1− βτ/δτ , T )|)

+O
(
A1/d

γτ/δτ�

βτ/δτ

|Φ′A(δτ t)H(1− t, T )| dt
)
.

The first half of (5.1), |ΦA(t)| � 1 and (5.16) show that the first error term
is� A1/d|T |−1τ−λ(µ+1). (5.20), (5.15) and (5.1) show that the second error
term is

� A1/d
γτ/δτ�

βτ/δτ

|1− t|−(µ+1)/(µ+2)|T |−1|1− t|ω−1 dt

+A1/d
γτ/δτ�

βτ/δτ

τ |1− t|−(2µ+3)/(µ+2)(|T |−ω + |1− t|ω) dt

� |h|−1τ−µ% + |T |−ωτ−(µ+1)% + τ−µ%.

(5.15) gives

|H(0, T )−H(1− γτ/δτ , T )| �
1−γτ/δτ�

0

uω−1 du� τ%.

(5.4) yields

F ′τ (γτ ) = G′τ (a+ τ%)−1 =
(
qf̃ (µ+2)(a)

(µ+ 1)!

)−1

τ−%(µ+1)(1 +O(τ1−%(µ+1))).

This together with (5.15) gives

ΦA(γτ ) =
(
qf̃ (µ+2)(a)

(µ+ 1)!

)−1∣∣∣∣
qf̃ (µ+2)(a)

(µ+ 2)!

∣∣∣∣
(µ+1)/(µ+2)

(1 +O(τ1−%(µ+1))).
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Putting everything together and using (5.2) and the choice of % we get

Ih = − A(1/d)(1−1/(µ+2))|h|−1/(µ+2)e

(
hA1/dδτ −

signh
4(µ+ 2)

)
Cqπ(5.21)

+O(A(1−%)/d)

if 0 < λ ≤ (1− %)/(µ+ 1).
A better estimation is needed for large T . Uniformly in βτ/δτ ≤ t0 ≤

γτ/δτ it follows from partial integration and (5.20) that

Ih = A1/dδ1/(µ+2)
τ

[
e(hA1/dδτ t)
2πihA1/dδτ

ΦA(δτ t)(1− t)−(µ+1)/(µ+2)
]t0

βτ/δτ

− A1/dδ1/(µ+2)
τ

t0�

βτ/δτ

e(hA1/dδτ t)
2πihA1/dδτ

(
δτΦ

′
A(δτ t)(1− t)−(µ+1)/(µ+2)

+ ΦA(δτ t)
µ+ 1
µ+ 2

(1− t)−(µ+1)/(µ+2)−1
)
dt

+ A1/dδ1/(µ+2)
τ

γτ/δτ�

t0

e(hA1/dδτ t)ΦA(δτ t)(1− t)−(µ+1)/(µ+2) dt

� |h|−1(1− t0)−(µ+1)/(µ+2)

+ |h|−1
t0�

βτ/δτ

(1− t)−(µ+1)/(µ+2)−1 dt+A1/d
γτ/δτ�

t0

(1− t)−(µ+1)/(µ+2) dt.

The first term in the �-estimate only appears if t0 > βτ/δτ .
In the case 1 − |h|−1A−1/d ≤ βτ/δτ take t0 := βτ/δτ . Then from 1 −

βτ/δτ ≤ |h|−1A−1/d it follows that Ih � A(1/d)(1−1/(µ+2))|h|−1/(µ+2).
In the case 1−|h|−1A1/d ≥ γτ/δτ take t0 := γτ/δτ . Then from 1−γτ/δτ ≥

|h|−1A−1/d the same estimate for Ih follows.
In the case βτ/δτ < 1 − |h|−1A−1/d < γτ/δτ take t0 := 1 − |h|−1A−1/d

and again the same estimate for Ih follows.
Together with (5.21) this gives

I = − 1
2πi

∑

0<|h|≤A

1
h
Ih −

1
2πi

∑

|h|>A

1
h
Ih(5.22)

=
qC

2i
A(1/d)(1−1/(µ+2))

×
∑

0<|h|≤A

signh
|h|1+1/(µ+2)

exp
(
i signh

(
2π|h|A1/dδτ −

π

2(µ+ 2)

))

+O(A(1/d)(1−%) logA).
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Extending the sum over all integers 6= 0 gives the additional error term

� A(1/d)(1−1/(µ+2))
∑

|h|>A

1
|h|1+1/(µ+2)

� A(1/d)(1−1/(µ+2))−1/(µ+2)(5.23)

� A(1/d)(1−%) logA.

Next the lattice remainder is estimated by the discrete Hardy–Littlewood
method. Taylor’s formula gives, for a+ τ % ≤ x ≤ a+ τλ, k = 2, 3,

∂kf(τ, x)
∂xk

=
f̃ (µ+2)(a)

(µ+ 2− k)!
(x− a)µ+2−k(1 +O(τκ)).

Together with (5.5) it follows that

G′′′τ (x)G′τ (x)− 3G′′τ (x)2

=
q2f̃ (µ+2)(a)2(−2µ− 3)

µ!(µ+ 1)!
(x− a)2µ(1 +O(τκ)) � |x− a|2µ

and analogously |G′τ (x)| � |x− a|µ+1, |G′′τ (x)| � |x− a|µ.
(5.18) gives, for βτ ≤ t ≤ γτ ,

|F ′′τ (t)| =
∣∣∣∣−

G′′τ (Fτ (t))
G′τ (Fτ (t))3

∣∣∣∣ � |δτ − t|−2+1/(µ+2),

|F ′′′τ (t)| � |δτ − t|−3+1/(µ+2).

Set M0 := 2q−1A46/(73d), MJ := q−1A1/d(γτ − βτ − 2τ27/73), J := [logA],
B := (MJ/M0)1/J , Mj := M0B

j for 0 ≤ j ≤ J . Arguments similar to those
which led to (5.15) give γτ − βτ = K10τ

λ(µ+2)(1 + o(1)) > 2τ 27/73 with
some constant K10 > 0 if 0 < λ < (27/73)(µ+ 2)−1. Consequently, logB =
(1/d)(27/73 − λ(µ + 2)) + o(1) as A → ∞ and therefore B = K11 + o(1)
with some constant K11 > 1. For t0 ∈ {0, . . . , q − 1}, 1 ≤ j ≤ J , set

ht0,j(x) := q−1A1/dFτ (A−1/dt0 + A−1/dq([q−1A1/dγτ ]

− x− [2Mj−1 −Mj ]))− q−1x0(t0)

on [Mj−Mj−1, 2(Mj−Mj−1)]. From (5.15) it follows that, for Mj−Mj−1 ≤
x ≤ 2(Mj −Mj−1),

|δτ − A−1/dt0 − A−1/dq([q−1A1/dγτ ]− x− [2Mj−1 −Mj ])|
= |δτ − γτ +A−1/dq(x+ 2Mj−1 −Mj) +O(τ)| � A−1/dMj−1.

Choosing M := Mj −Mj−1, T := A(1/d)(1−1/(µ+2))(Mj −Mj−1)(µ+3)/(µ+2),
it follows that |h′′t0,j(x)| � TM−3, |h′′′t0,j(x)| � TM−4 for x ∈ [M, 2M ].
Furthermore T 1/3 ≤M � T 1/2. We have

S1 = −
q−1∑

t0=0

J∑

j=1

∑

Mj−Mj−1<n≤2(Mj−Mj−1)

ψ(ht0,j(n)) +O(A46/(73d) + J).
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Applying Theorem 18.2.2 of [2] gives S1 � A46/(73d)(logA)315/146. From
(5.12), (5.22) and (5.23) the proposition follows.

6. The tails of the boundary curve. The result of this section is
used in the case where x̃′ν(0) = x̃′′′ν (0) = 0 and x̃′′ν(0) 6= 0. Then it is not
possible to apply Propositions 4.5 or 5.2. Instead one goes to the inverse
function ỹν = x̃−1

ν . This function is not C∞ at the point ξ̃ν but the order of
the singularity of ỹ(k)

ν for k = 2, 3 is small so that no additional main term
arises. It is possible to improve this section considerably so that it can be
applied generally in the case j(ν)

0 ≥ 2. This would give a slight improvement
of the error term in the contribution of the tails of the boundary curve. For
this the reader is refered to [9].

Proposition 6.1. Let x̃′ν(0) = 0 6= x̃′′ν(0). There are constants 0 < ξ

< ξ̃ν and K > 0 with the property : For Aν ≥ K, τν := A
−1/dν
ν , ξ ≤ ξ ≤

ξν(τν) we have

R := #{(x, y) ∈ Z2 | A1/dν
ν ξ < x ≤ A1/dν

ν ξν(τν), 0 < y ≤ A1/dν
ν yν(τν , τνx)}

= A2/dν
ν

ξν(τν)�

ξ

yν(τν , τνx) dx− 1
2A

1/dν
ν (ξν(τν)− ξ)

+ ψ(A1/dν
ν ξ)A1/dν

ν yν(τν , ξ) +O(A46/(73dν )
ν (logAν)315/146).

P r o o f. Choose 0 < ξ < ξ̃ν with ỹν(ξ) < η̃ν/2. A second condition on ξ

will be given below. For 0 < x̃ν(2ỹν(ξ)) ≤ x ≤ ξ̃ν we have

a
(ν)
dν0ξ̃

dν
ν = g̃ν(ξ̃ν , 0) = 1 = g̃ν(x, ỹν(x)) =

∑

i+j=dν

a
(ν)
ij x

iỹν(x)j

and consequently

ξ̃ν − x � a(ν)
dν0ξ̃

dν
ν − a(ν)

dν0x
dν

= ỹν(x)j
(ν)
0

dν∑

j=j(ν)
0

a
(ν)
dν−j,jx

dν−j ỹν(x)j−j
(ν)
0 � ỹν(x)j

(ν)
0 .

For 0 ≤ y ≤ 2ỹν(ξ) < η̃ν it follows that

(6.1) |ξ̃ν − x̃ν(y)| � yj
(ν)
0 .

For 0 ≤ k ≤ 3, 0 ≤ y ≤ 2ỹν(ξ) Taylor’s theorem gives

x̃(k)
ν (y) =

j
(ν)
0 −k∑

l=0

1
l!
x̃(k+l)
ν (0)yl +O(yj

(ν)
0 −k+1).

With x̃ν(0) = ξ̃ν and (6.1) the choice k = 0 gives x̃(l)
ν (0) = 0 for l = 1,

. . . , j
(ν)
0 −1 and x̃(j(ν)

0 )
ν (0) 6= 0. From the assumptions it follows that j(ν)

0 = 2.
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Let K20 > 0 be a constant which will be chosen appropriately below. For
1 ≤ k ≤ 3, K20τν ≤ y ≤ 2ỹν(ξ) Taylor’s theorem gives

∂kxν
∂yk

(τν , y) = ((1− δ3k)x̃′′ν(0) +O(τνyk−2 + y))y2−k.

The error term is

� τν(1 + (K20τν)−1) + ỹν(ξ)� τν +K−1
20 + ỹν(ξ).

Choosing K20 sufficiently large and ξ sufficiently close to ξ̃ν gives, for k =
1, 2,

(6.2)
∣∣∣∣
∂kxν
∂yk

(τν , y)
∣∣∣∣ � y2−k

and

|xνyyy(τν , y)xνy(τν , y)− 3xνyy(τν , y)2|
= | − 3x̃′′ν(0)2 +O(K−1

20 + τν + ỹν(ξ))| � 1.

For x̃ν(2ỹν(ξ)) ≤ x ≤ ξ̃ν −K21τν (≤ ξν(τν)) with sufficiently large K21 > 0
if follows that 2ỹν(ξ) ≥ ỹν(x) ≥ yν(τν , x) ≥ 0, and (6.1) yields

yν(τν , x)2 � |ξ̃ν − xν(τν , yν(τν , x)) +O(τν)| � |ξ̃ν − x|.
In particular

yν(τν , x)� |ξ̃ν − x|1/2 � (K21τν)1/2 ≥ K20τν

and from (6.2) it follows that

|yνx(τν , x)| = |xνy(τν , yν(τν , x))−1| � |ξ̃ν − x|−1/2,

|yνxx(τν , x)| = |− xνyy(τν , yν(τν , x))xνy(τν , yν(τν , x))−3| � |ξ̃ν − x|−3/2,

|yνxxx(τν , x)| = |− (xνyyy(τν , yν(τν , x))xνy(τν , yν(τν , x))

− 3xνyy(τν , yν(τν , x))2)xνy(τν , yν(τν , x))−5|�|ξ̃ν − x|−5/2.

Partial summation gives, for ξ ≤ ξ ≤ ξν(τν),

R =
A1/dν
ν ξν(τν)�

A
1/dν
ν ξ

(
A1/dν
ν yν(τν , τνx)− 1

2

)
dx(6.3)

+ ψ(A1/dν
ν ξ)A1/dν

ν yν(τν , ξ)

+O(1) +
A1/dν
ν ξν(τν)�

A
1/dν
ν ξ

yνx(τν , τνx)ψ(x) dx

−
∑

A
1/dν
ν ξ<x≤A1/dν

ν ξν(τν)

ψ(A1/dν
ν yν(τν , τνx)).
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As in the proof of Proposition 5.2 it follows by partial integration that the
second integral in (6.3) is

= yνx(τν , τνx)ψ1(x)
∣∣∣
A1/dν
ν (ξ̃ν−K21τν)

A
1/dν
ν ξ

−
A1/dν
ν (ξ̃ν−K21τν)�

A
1/dν
ν ξ

τνyνxx(τν , τνx)ψ1(x) dx

+
A1/dν
ν ξν(τν)�

A
1/dν
ν (ξ̃ν−K21τν)

yνx(τν , τνx)ψ(x) dx

� (K21τν)−1/2 + τν

A1/dν
ν (ξ̃ν−K21τν)�

A
1/dν
ν ξ

|ξ̃ν − τνx|−3/2dx

+
A1/dν
ν ξν(τν)�

A
1/dν
ν (ξ̃ν−K21τν)

|ξ̃ν − τνx|−1/2 dx

� τ−1/2
ν .

Let J :=[logA], M0 :=A
46/(73dν )
ν , MJ :=[A1/dν

ν (ξ̃ν − ξ)], B :=(MJM
−1
0 )1/J ,

Mj := M0B
j for 0 ≤ j ≤ J . Then B = B0 + o(1) with some constant

B0 > 1. For x ∈ [Mj −Mj−1, 2(Mj −Mj−1)] define

fj(x) := A1/dν
ν yν(τν , τν([A1/dν

ν ξ̃ν ]− [2Mj−1 −Mj ]− x)).

Then

|f ′′j (x)| � A−1/dν
ν |ξ̃ν − A−1/dν

ν (A1/dν
ν ξ̃ν − 2Mj−1 +Mj − x+O(1))|−3/2

� A−1/dν
ν (A−1/dν

ν Mj−1)−3/2 � T (Mj −Mj−1)−3,

|f ′′′j (x)| � T (Mj −Mj−1)−4

with T := A
1/(2dν )
ν M

3/2
j−1. Furthermore T 63/146(log T )63/292 ≤ (Mj −Mj−1)

� T 1/2. From Theorem 18.2.2 of [2] it follows that the lattice remainder in
(6.3) is

=
J∑

j=1

∑

Mj−Mj−1≤n≤min{2(Mj−Mj−1),A1/dν
ν (ξ̃ν−ξ)−2Mj−1+Mj}

ψ(fj(n)) +O(J)

+O(A46/(73dν )
ν )

� A46/(73dν )
ν (logAν)315/146.
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7. Combinatorial composition of the results. R† is handled first.
Choose Z ⊆ R+

0 , |Z| <∞, with the properties:

(Z†1) The zeros of ỹ′′j ỹ
′′′
j in [0, ξ̃j] are contained in Z for j = 1, 2.

(Z†2) The zeros of x̃′′j x̃
′′′
j in [0, η̃j ] are contained in ỹj(Z) for j = 1, 2.

(Z†3) ξ0, . . . , ξr, x0, x2 ∈ Z.
(Z†4) If ỹ′j(0) = 0 6= ỹ′′j (0) for j = 1 or j = 2 then the value η which comes

from the application of Proposition 6.1 with x and y interchanged
is contained in ỹj(Z).

Choose 0 = ζ0 < . . . < ζn with the properties:

(Z†5) Z ⊆ {ζ0, . . . , ζn}.
(Z†6) For each ζ, ζ ′ ∈ Z with ζ < ζ ′ there is some 1 ≤ ν ≤ n with

ζ < ζν < ζ ′.

The next two lemmas combine the results of Sections 4 to 6.

Lemma 7.1. Let j ∈ {1, 2} and 1 ≤ ν ≤ n with ζν < ξ̃j . There are
constants κ,K > 0 so that for ζ ∈ (ζν−1 + τκj , ζν − τκj ) and Aj ≥ K,

R := #{(x, y) ∈ Z2 | A1/dj
j ζν−1 < x ≤ A1/dj

j ζ,(7.1)

0 < y ≤ A1/dj
j yj(τj , τjx)}

= A
2/dj
j

ζ�

ζν−1

yj(τj , x) dx− 1
2A

1/dj
j (ζ − ζν−1) + T (Aj) + U(Aj)

+ ψ(A1/dj
j ζν−1)A1/dj

j yj(τj , ζν−1)− ψ(A1/dj
j ζ)A1/dj

j yj(τj , ζ)

+O(A46/(73dj )
j (logAj)315/146).

The representation

T (Aj) = A
(1/dj)(1−1/(µ+2))
j H(A1/dj

j )(7.2)

+O(A(1/dj)(1−1/(µ+2)−1/(µ+2)2)
j logAj)

holds with some constant µ ∈ N and some periodic function H which is
given by an absolutely convergent Fourier series. T (Aj) can only occur if
ỹ′′j has a zero of order µ at ζν−1 and ỹ′j(ζν−1) ∈ Q.

Furthermore

(7.3) U(Aj) = Oδ(A
(1/dj)(1−1/µ+δ)
j )

for each δ > 0 and this function can only occur if ỹ′′j has a zero of order µ
at ζν−1 and ỹ′j(ζν−1) 6∈ Q.

P r o o f. From the choice of the ζν it follows that ỹ′′j ỹ
′′′
j has zeros in

[ζν−1, ζν ] at most at ζν−1 or ζν but not at both points.



34 M. Peter

Case 1: ỹ′′j ỹ
′′′
j (ζν−1) 6= 0 and ỹ′′j ỹ

′′′
j (ζν) 6= 0. Partial summation gives

R =

A
1/dj
j ζ�

A
1/dj
j ζν−1

(
A

1/dj
j yj(τj , τjx)− 1

2

)
dx(7.4)

+

A
1/dj
j ζ�

A
1/dj
j ζν−1

yjx(τj , τjx)ψ(x) dx

+ ψ(A1/dj
j ζν−1)

(
A

1/dj
j yj(τj , ζν−1)− 1

2

)

− ψ(A1/dj
j ζ)

(
A

1/dj
j yj(τj , ζ)− 1

2

)

−
∑

A
1/dj
j ζν−1<x≤A

1/dj
j ζ

ψ(A1/dj
j yj(τj , τjx)).

The lattice remainder is O(A46/(73dj )
j (logAj)315/146) as follows from Lemma

4.3. Partial integration gives the bound O(1) for the second integral.

Case 2: ỹ′′j has at ζν a zero of order µ ∈ N. Then ζν , 0 ∈ Z and by (Z†6)
it follows ζν−1 6∈ Z, i.e. ν ≥ 2. Therefore ỹ′j(x) 6= 0 for x ∈ [ζν−1, ζν ]. Choose
0 < κ < λ0 := 20/(83µ+103). By Lemma 4.4 the lattice remainder in (7.4) is

=
∑

A
1/dj
j (−ζν+τλ0

j )<x≤−A1/dj
j ζν−1

ψ(A1/dj
j yj(τj ,−τjx))

−
∑

A
1/dj
j (−ζν+τλ0

j )<x≤−A1/dj
j ζ

ψ(A1/dj
j yj(τj ,−τjx)) +O(1)

� A
46/(73dj )
j (logAj)315/146.

Case 3: ỹ′′j has at ζν−1 a zero of order µ ∈ N.

Case 3.1: ỹ′j(ζν−1) ∈ Q. Apply Proposition 5.2. Choose κ > 0 smaller
than the value λ which is given by this proposition.

Case 3.2: ỹ′j(ζν−1) 6∈ Q. Then ỹ′j(ζν−1) is algebraic over Q by Lemma
4.2. Apply Proposition 4.5 to the lattice remainder in (7.4) and choose 0 <
κ < 20/(83µ+ 103).

Case 4: There is some ν ′ ∈ {ν−1, ν} with ỹ′′′j (ζν′) = 0 and ỹ′′j (ζν′) 6= 0.
We have

(7.5) R = #{(x, y) ∈ Z2 | A1/dj
j yj(τj , ζ) < y ≤ A1/dj

j yj(τj , ζν−1),

0 < x ≤ A1/dj
j xj(τj , τjy)}

+ [A1/dj
j ζ][A1/dj

j yj(τj , ζ)]− [A1/dj
j ζν−1][A1/dj

j yj(τj , ζν−1)].
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x̃′′j x̃
′′′
j has no zeros in (ỹj(ζν), ỹj(ζν−1)). On [ỹj(ζν), ỹj(ζν−1)) we have

(7.6)
x̃′j(y) = ỹ′j(x̃j(y))−1, x̃′′j (y) = −ỹ′j(x̃j(y))−3ỹ′′j (x̃j(y)),

x̃′′′j (y) = −ỹ′j(x̃j(y))−5(ỹ′′′j (x̃j(y))ỹ′j(x̃j(y))− 3ỹ′′j (x̃j(y))2).

Case 4.1: ν ≥ 2. Then 0 < ζν−1 < ζν < ξ̃j and (7.6) is valid also in
ỹj(ζν−1). From (7.6) and the assumption of Case 4 it follows that
x̃′′j x̃

′′′
j (ỹj(ζν′)) 6= 0. If x̃′′j x̃

′′′
j had a zero in [ỹj(ζν), ỹj(ζν−1)] then this zero

would be of the form ỹj(ζ), ζ ∈ Z. Then ζν−1 ≤ ζ ≤ ζν , ζ 6= ζν′ , ζ, ζν′ ∈ Z.
Then there would be some ζν′′ between ζ and ζν′ and consequently be-
tween ζν−1 and ζν , which is a contradiction. Therefore x̃′′j x̃

′′′
j has no zeros

in [ỹj(ζν), ỹj(ζν−1)]. Applying partial summation and Lemma 4.3 to (7.5)
gives

R = A
2/dj
j

ζ�

ζν−1

yj(τj , x) dx− ψ(A1/dj
j ζ)A1/dj

j yj(τj , ζ)

+ ψ(A1/dj
j ζν−1)A1/dj

j yj(τj , ζν−1)− 1
2A

1/dj
j (ζ − ζν−1)

+O(A46/(73dj )
j (logAj)315/146).

Case 4.2: ν = 1, ỹ′j(0) 6= 0. Then ζν−1 = ζ0 = 0 and

0 6= −ỹ′j(0)g̃jy(0, ỹj(0)) = g̃jx(0, ỹj(0)) = a
(j)
1,d1−1η̃

dj−1
j

and consequently i(j)0 = 1 and x̃j ∈ C∞[0, η̃j ]. The proof is exactly the same
as in Case 4.1.

Case 4.3: ν = 1, ỹ′j(0) = 0. Now the argument of Cases 4.1 and 4.2
is no longer valid because x̃j is not C∞ at η̃j . We have ỹ′′j (0) 6= 0 because
otherwise ν ′ = 1 and ỹ′′j ỹ

′′′
j would have zeros at ζν−1 and ζν , which is

impossible. Apply Proposition 6.1 for x and y interchanged. If 0 < η < η̃j
is the value which corresponds to ξ in Proposition 6.1 then η ∈ ỹj(Z) by
(Z†4). Furthermore there is some 1 ≤ ν ′′ ≤ n with ζ0 < ζν′′ < x̃j(η).
Consequently, ζ1 < x̃j(η) and ỹj(ζ1) > η. Therefore for sufficiently large Aj
we have η ≤ yj(τj , ζ) =: η ≤ ηj(τj). Proposition 6.1 gives

R =

A
1/dj
j ηj(τj)�

A
1/dj
j η

A
1/dj
j xj(τj , τjy) dy + ψ(A1/dj

j η)A1/dj
j xj(τj , η)

− 1
2A

1/dj
j (ηj(τj)− η) +O(A46/(73dj)

j (logAj)315/146)

+ [A1/dj
j ζ][A1/dj

j yj(τj , ζ)].
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Substituting y = A
1/dj
j yj(τj , x) and partial integration give

R = A
2/dj
j

ζ�

0

yj(τj , x) dx− 1
2A

1/dj
j ζ − ψ(A1/dj

j ζ)A1/dj
j yj(τj , ζ)

+ ψ(A1/dj
j 0)A1/dj

j yj(τj , 0) +O(A46/(73dj )
j (logAj)315/146).

Lemma 7.2. Let j ∈ {1, 2} and 1 ≤ ν ≤ n with ζν < ξ̃j. There is some
constant K > 0 so that for Aj ≥ K, ζ ∈ (ζν−1, ζν ] with |ζ − ζν | � τj the
asymptotics (7.1) hold. T (Aj) is of the form (7.2) and can only appear if ỹ′′j
has a zero of order µ at ζν−1 or ζν and ỹ′j is rational at this point. U(Aj)
is of the form (7.3) and can only appear if ỹ′′j has a zero of order µ at ζν−1

or ζν and ỹ′j is irrational at this point.

P r o o f. It is quite similar to that of Lemma 7.1.

Case 1: ỹ′′j has a zero of order µ at ζν−1. Apply the reasoning of Case 3
of Lemma 7.1.

Case 2: ỹ′′j has a zero of order µ at ζν . From (Z†1) it follows that
ζν ∈ Z. From ζ0 = 0 ∈ Z it follows that ν ≥ 2 because there is some ζν′
between ζ0 and ζν . Therefore 0 < ζν−1 < ζν < ξ̃j . It follows from (7.6) and
x̃′j(ỹj(ζν)) 6= 0 that

|x̃′′j (y)| � |ỹ′′j (x̃j(y))| � |x̃j(y)− ζν |µ � |y − ỹj(ζν)|µ

as y → ỹj(ζν). Therefore x̃′′j has a zero of order µ at ỹj(ζν). Furthermore
x̃′j(ỹj(ζν)) ∈ Q if and only if ỹ′j(ζν) ∈ Q. From the construction of the ζν it
follows that x̃′′j x̃

′′′
j has no zero in (ỹj(ζν), ỹj(ζν−1)]. From the assumptions

it follows that

yj(τj , ζ) = ỹj(ζ)+O(τj) = ỹj(ζν)+O(τj), yj(τj , ζν−1) = ỹj(ζν−1)+O(τj).

Applying Proposition 5.2 or Proposition 4.5 to (7.5) gives the desired result.

Case 3: ỹ′′j (ζν−1) 6= 0 6= ỹ′′j (ζν).

Case 3.1: ỹ′′′j (ζν−1) 6= 0 6= ỹ′′′j (ζν). Use the reasoning of Case 1 of
Lemma 7.1.

Case 3.2: There is some ν ′ ∈ {ν − 1, ν} with ỹ′′′j (ζν′) = 0. Use the
reasoning of Case 4 of Lemma 7.1.

The following lemma is used in the construction of the decomposition of
[C1, C2]. For 1 ≤ % ≤ r define [a′%, b

′
%] := k−1

% ((−∞, x0]) if the right hand
side is nonempty.

Lemma 7.3. For each θ ∈ R, κ > 0, 1 ≤ % ≤ r, there is a decomposition
a′% = C∗0 < . . . < C∗m = b′% and constants ε,K > 0 with the property : If
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A1, A2 ≥ K, C := A2A
−d2/d1
1 ∈ [a′%, b

′
%], |C−C∗µ| ≥ A−ε1 for each 0 ≤ µ ≤ m,

then
|k%(C)− θ| ≥ τκ1 , |C−1/d2k%(C)− θ| ≥ τκ2 .

P r o o f. The function k̃% : [a′%, b
′
%] → C, C 7→ C−1/d2k%(C), is injective

and continuous: If C ∈ [a′%, b
′
%], x := C−1/d2k%(C), then

g̃2(x,C−1/d2 ỹ1(C1/d2x)) = C−1h(C1/d2x) = 1

and consequently 0 ≤ x ≤ ξ̃2, ỹ1(C1/d2x) = C1/d2 ỹ2(x). The left hand side
of the last equation is strictly decreasing in C whereas the right hand side is
strictly increasing. Therefore the value x is assumed at no other argument C.

If θ is not in the range of values of k̃% then

|C−1/d2k%(C)− θ| � 1 for C ∈ [a′%, b
′
%].

In the opposite case θ = k̃%(C∗) for some C∗ ∈ [a′%, b
′
%]. Then k%(C∗) ∈

[0, x0]∩ [ξ%−1, ξ%]. The function h is holomorphic in some neighbourhood of
[0, x0].

If h′(k%(C∗)) 6= 0 then h has a holomorphic inverse in some neighbour-
hood of k%(C∗) and therefore k% and k̃% are holomorphic in some neighbour-
hood of C∗. The function k̃% is nonconstant. Consequently, there are p ∈ N
and δ > 0 with |k̃%(C) − θ| � |C − C∗|p for C ∈ [a′%, b

′
%], |C − C∗| ≤ δ.

Choosing 0 < ε < κ/(d1p) gives |k̃%(C)− θ| � A−pε1 ≥ τκ2 for C ∈ [a′%, b
′
%] in

the case A−ε1 ≤ |C − C∗| ≤ δ. In the case |C − C∗| ≥ δ we have

|k̃%(C)− θ| ≥ min
C′∈[a′%,b′%], |C′−C∗|≥δ

|k̃%(C ′)− θ| = const. > 0.

If h′(k%(C∗)) = 0 it follows from Lemma 2.1 that there are p ∈ N \ {1} and
some neighbourhood U of k%(C∗) with

|h(x)− h(k%(C∗))| � |x− k%(C∗)|p for x ∈ U.
Consequently, there are constants δ,Ki > 0 with

|k̃%(C)− θ| = |(C∗)−1/d2k%(C)− (C∗)−1/d2k%(C∗)|
+O(|C−1/d2 − (C∗)−1/d2 | · |k%(C)|)

≥ K3|k%(C)− k%(C∗)| −K4|C − C∗|
≥ K5|h(k%(C))− h(k%(C∗))|1/p −K4|C − C∗|
= K5|C − C∗|1/p −K4|C − C∗| ≥ K6|C − C∗|1/p

for C ∈ [a′%, b
′
%], |C − C∗| ≤ δ. The remainder of the argument is as above.

The function k% is injective on [a′%, b
′
%]. If θ 6∈ k%([a′%, b′%]) then |k%(C)− θ|

� 1 for C ∈ [a′%, b
′
%]. In the opposite case there is some C∗ ∈ [a′%, b

′
%] with
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θ = k%(C∗) ∈ [0, x0]. From h ∈ C∞[0, x0] it follows that

|C − C∗| = |h(k%(C))− h(k%(C∗))| � |k%(C)− k%(C∗)|
for C ∈ [a′%, b

′
%]. The remainder of the argument is as above.

Now use Lemma 7.3 and the injectivity of k% and k̃% to construct a
decomposition C1 = C∗0 < . . . < C∗m = C2 and some ε > 0 with the
properties:

(C†1) If a′% ∈ [C1, C2] for some 1 ≤ % ≤ r then a′% ∈ {C∗0 , . . . , C∗m}. The
same holds for a%, b′%, b%.

(C†2) For 1 ≤ % ≤ r, 1 ≤ µ ≤ m, 0 ≤ ν ≤ n, with [C∗µ−1, C
∗
µ] ⊆ [a′%, b

′
%]:

For A1, A2 ≥ K, C := A2A
−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ) we

have
|k%(C)− ζν | ≥ τκ1 , |C−1/d2k%(C)− ζν | ≥ τκ2 .

(C†3) For 1 ≤ µ ≤ m, 1 ≤ ν ′ ≤ n, 0 ≤ ν ≤ n: For A1, A2 ≥ K, C :=
A2A

−d2/d1
1 ∈ (C∗µ−1+A−ε1 , C∗µ−A−ε1 ) we have |C−1/d2ζν′−ζν | ≥ τκ2 .

(C†4) For 1 ≤ % ≤ r, 1 ≤ µ ≤ m, 1 ≤ ν ′ ≤ n, 0 ≤ ν ≤ n we have

ζν 6∈ k%((C∗µ−1, C
∗
µ) ∩ [a′%, b

′
%]), ζν 6∈ k̃%((C∗µ−1, C

∗
µ) ∩ [a′%, b

′
%]),

ζν 6= C−1/d2ζν′ for C ∈ (C∗µ−1, C
∗
µ).

With this decomposition the following lemma holds which contains one
half of Theorem 1.1.

Lemma 7.4. Let 1 ≤ µ ≤ m, 1 ≤ % ≤ r with ξ%−1 < x0. Then for
A1, A2 ≥ K, C := A2A

−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ) we have

R†%(A1, A2) =
A

1/d1
1 min{ξ%,x0}�

A
1/d1
1 ξ%−1

fA1,A2(x) dx(7.7)

− 1
2A

1/d1
1 (min{ξ%, x0} − ξ%−1) + T

†(µ,%)
1 (A1)

+ T
†(µ,%)
2 (A2) + U

†(µ,%)
1 (A1) + U

†(µ,%)
2 (A2)

− ψ(A1/d1
1 min{ξ%, x0})fA1,A2(A1/d1

1 min{ξ%, x0})
+ ψ(A1/d1

1 ξ%−1)fA1,A2(A1/d1
1 ξ%−1)

+O(A46/(73d1)
1 (logA1)315/146).

The functions T †(µ,%)j and U †(µ,%)j are of the form described in Theorem 1.1.

P r o o f. Several cases have to be distinguished in order to apply Lem-
ma 3.1.
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Case 1: [C∗µ−1, C
∗
µ] ⊆ [a′%, b

′
%]. From (Z†3), (Z†5) and (C†4) it follows

that x0 is not contained in the interval k%((C∗µ−1, C
∗
µ)).

Case 1.1: k%((C∗µ−1, C
∗
µ)) ⊆ (−∞, x0). Then ξ%−1 ≤ k%(C) < x0.

Lemma 3.1 gives the decomposition in the following two cases.

Case 1.1.1: If h�[ξ%−1, ξ%] is increasing then

R†% = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 k%(C),

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

+ #{(x, y) ∈ Z2 | A1/d1
1 k%(C) < x ≤ A1/d1

1 min{ξ%, x0},
0 < y ≤ A1/d2

2 y2(τ2, τ2x)}
+O(A46/(73d1)

1 ).

Case 1.1.2: If h�[ξ%−1, ξ%] is decreasing then

R†% = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 k%(C),

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

+ #{(x, y) ∈ Z2 | A1/d1
1 k%(C) < x ≤ A1/d1

1 min{ξ%, x0},
0 < y ≤ A1/d1

1 y1(τ1, τ1x)}
+O(A46/(73d1)

1 ).

Case 1.2: k%((C∗µ−1, C
∗
µ)) ⊆ (x0,∞). Then ξ%−1 < x0 < k%(C) ≤ ξ%.

Lemma 3.1 gives the decomposition in the following two cases.

Case 1.2.1: If h�[ξ%−1, ξ%] is increasing then

R†% = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 x0, 0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

+O(A46/(73d1)
1 ).

Case 1.2.2: If h�[ξ%−1, ξ%] is decreasing then

R†% = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 x0, 0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

+O(A46/(73d1)
1 ).

Case 2: [C∗µ−1, C
∗
µ] ⊆ [a%, a′%] or [C∗µ−1, C

∗
µ] ⊆ [b′%, b%]. Then C ∈ [a%, b%]

and k%(C) > x0. For R†% the same holds as in Case 1.2.

Case 3: C∗µ ≤ a%. Then by Lemma 3.1

R†% = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 min{ξ%, x0},
0 < y ≤ A1/d2

2 y2(τ2, τ2x)}.



40 M. Peter

Case 4: C∗µ−1 ≥ b%. Then by Lemma 3.1

R†% = #{(x, y) ∈ Z2 | A1/d1
1 ξ%−1 < x ≤ A1/d1

1 min{ξ%, x0},
0 < y ≤ A1/d1

1 y1(τ1, τ1x)}.
In the following the proof of (7.7) is given only in Cases 1.1.1 and 1.1.2.

The other cases are similar but somewhat easier.
In Case 1.1.1 use (C†4), (2.7) and (Z†3) and choose 1 ≤ νj ≤ n with the

properties

k%((C∗µ−1, C
∗
µ)) ⊆ (ζν0−1, ζν0) ⊆ (ξ%−1,min{ξ%, x0}), ξ%−1 = ζν1−1,

min{ξ%, x0} = ζν2 , ν1 ≤ ν0 ≤ ν2, k̃%((C∗µ−1, C
∗
µ)) ⊆ (ζν3−1, ζν3),

C−1/d2ζν2 ∈ (ζν4−1, ζν4) ⊆ [0, x2] for C ∈ (C∗µ−1, C
∗
µ), ν3 ≤ ν4.

Then

R†% =
ν0−1∑

ν=ν1

#{(x, y) ∈ Z2 | A1/d1
1 ζν−1 < x ≤ A1/d1

1 ζν ,

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

+ #{(x, y) ∈ Z2 | A1/d1
1 ζν0−1 < x ≤ A1/d1

1 k%(C),

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

−#{(x, y) ∈ Z2 | A1/d2
2 ζν3−1 < x ≤ A1/d2

2 C−1/d2k%(C),

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

+
ν4−1∑

ν=ν3

#{(x, y) ∈ Z2 | A1/d2
2 ζν−1 < x ≤ A1/d2

2 ζν ,

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

+ #{(x, y) ∈ Z2 | A1/d2
2 ζν4−1 < x ≤ A1/d2

2 C−1/d2ζν2 ,

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

+O(A46/(73d1)
1 ).

It follows from (C†2) and (C†3) that the endpoints of the respective intervals
of x when renormalized with the corresponding A−1/dj

j have a distance ≥ τκj
from all ζν with 0 ≤ ν ≤ n, or are equal to one of these ζν . Furthermore
ζν0 < ξ̃1, ζν4 < ξ̃2. Application of Lemmas 7.1 and 7.2 to each of the sum-
mands gives

R†% = A
2/d1
1

k%(C)�

ζν1−1

y1(τ1, x) dx+ A
2/d2
2

C−1/d2ζν2�

C−1/d2k%(C)

y2(τ2, x) dx(7.8)

+ 1
2A

1/d1
1 ζν1−1 − 1

2A
1/d2
2 C−1/d2ζν2

+ T
†(µ,%)
1 (A1) + T

†(µ,%)
2 (A2)
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+ ψ(A1/d1
1 ζν1−1)A1/d1

1 y1(τ1, ζν1−1)

− ψ(A1/d1
1 k%(C))A1/d1

1 y1(τ1, k%(C))

+ ψ(A1/d2
2 C−1/d2k%(C))A1/d2

2 y2(τ2, C−1/d2k%(C))

+ U
†(µ,%)
1 (A1) + U

†(µ,%)
2 (A2)

− ψ(A1/d2
2 C−1/d2ζν2)A1/d2

2 y2(τ2, C−1/d2ζν2)

+O(A46/(73d1)
1 (logA1)315/146).

Lemma 2.2, (3.3) and (3.5) give for the first integral

k%(C)−τ50/73
1�

ξ%−1

τ1fA1,A2(A1/d1
1 x) dx

+
k%(C)�

k%(C)−τ50/73
1

(τ1fA1,A2(A1/d1
1 x) +O(τ50/73

1 )) dx,

for the second integral

C−1/d2

k%(C)+τ50/73
1�

k%(C)

(τ2fA1,A2(A1/d1
1 x) +O(τ50/73

2 )) dx

+ C−1/d2

ζν2�

k%(C)+τ50/73
1

τ2fA1,A2(A1/d1
1 x) dx

and
y1(τ1, k%(C)) = τ1fA1,A2(A1/d1

1 k%(C)) +O(τ 50/73
1 ),

y2(τ2, C−1/d2k%(C)) = τ2fA1,A2(A1/d1
1 k%(C)) +O(τ 50/73

2 ).

Substituting into (7.8) gives (7.7).
In Case 1.1.2 choose 1 ≤ νj ≤ n with the properties

k%((C∗µ−1, C
∗
µ)) ⊆ (ζν0−1, ζν0) ⊆ (ξ%−1,min{ξ%, x0}),

ξ%−1 = ζν1−1, min{ξ%, x0} = ζν2 , ν1 ≤ ν0 ≤ ν2, ζν2 < ξ̃1,

k̃%((C∗µ−1, C
∗
µ)) ⊆ (ζν3−1, ζν3) ⊆ [0, x2], ζν3 < ξ̃2,

C−1/d2ζν1−1 ∈ (ζν4−1, ζν4) or ≡ ζν4−1 (if % = 1)

for C ∈ (C∗µ−1, C
∗
µ), ν4 ≤ ν3.

Then

R†% = −#{(x, y) ∈ Z2 | A1/d2
2 ζν4−1 < x ≤ A1/d2

2 C−1/d2ζν1−1,

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}
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+
ν3−1∑

ν=ν4

#{(x, y) ∈ Z2 | A1/d2
2 ζν−1 < x ≤ A1/d2

2 ζν ,

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

+ #{(x, y) ∈ Z2 | A1/d2
2 ζν3−1 < x ≤ A1/d2

2 C−1/d2k%(C),

0 < y ≤ A1/d2
2 y2(τ2, τ2x)}

−#{(x, y) ∈ Z2 | A1/d1
1 ζν0−1 < x ≤ A1/d1

1 k%(C),

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

+
ν2∑

ν=ν0

#{(x, y) ∈ Z2 | A1/d1
1 ζν−1 < x ≤ A1/d1

1 ζν ,

0 < y ≤ A1/d1
1 y1(τ1, τ1x)}

+O(A46/(73d1)
1 ).

The remainder of the proof is as above.

Summing over 1 ≤ % ≤ r gives

Corollary 7.5. Let 1 ≤ µ ≤ m. Then for A1, A2 ≥ K, C := A2A
−d2/d1
1

∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ) we have

R†(A1, A2) =
A

1/d1
1 x0�

0

fA1,A2(x) dx− 1
2A

1/d1
1 x0 + T

†(µ)
1 (A1) + T

†(µ)
2 (A2)

+ U
†(µ)
1 (A1) + U

†(µ)
2 (A2)− 1

2fA1,A2(0)

− ψ(A1/d1
1 x0)fA1,A2(A1/d1

1 x0)

+O(A46/(73d1)
1 (logA1)315/146).

Now R# is handled similarly to R† but with the roles of x and y in-
terchanged. The analogue of h : [0, ξ̃1] → R+ is l : [0, η̃1] → R+ with
l(y) := g̃2(x̃1(y), y). Let 0 = η0 < . . . < ηt = η̃1 be the decomposition
which is analogous to 0 = ξ0 < . . . < ξr = ξ̃1 and mτ := (l�[ητ−1, ητ ])−1 :
[cτ , dτ ]→ [ητ−1, ητ ] for 1 ≤ τ ≤ t.

The situations for R† and R# are not completely symmetric because
y0 = y0,A1,A2 depends on A1 and A2 whereas x0 is constant. Therefore some
additional lemmas are needed.

Lemma 7.6. For y, κ > 0 there is a decomposition C1 = C∗0 < . . . <
C∗m = C2 and constants ε,K > 0 so that for 1 ≤ µ ≤ m the following holds:

(1) Uniformly for all A1, A2 ≥ K with C := A2A
−d2/d1
1 ∈ (C∗µ−1 + A−ε1 ,

C∗µ − A−ε1 ), one of the two cases y0,A1,A2 ≤ y or y0,A1,A2 > y is valid.
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(2) Uniformly for all A1, A2 ≥ K with C := A2A
−d2/d1
1 ∈ (C∗µ−1 + A−ε1 ,

C∗µ−A−ε1 ) one of the two estimates |y0,A1,A2−y| ≥ τκ1 or |y0,A1,A2−y| � τ1
is valid.

P r o o f. Choose g̃2(x0, y) as point of decomposition if it lies in [C1, C2].

Case 1: C∗µ ≤ g̃2(x0, y). Then C ≤ g̃2(x0, y)−A−ε1 and consequently

g̃2(C−1/d2x0, C
−1/d2y) ≥ 1 + C−1A−ε1

≥ g̃2(C−1/d2x0, ỹ2(C−1/d2x0)) + C−1
2 A−ε1 .

Therefore C−1/d2y > ỹ2(C−1/d2x0) and

|C−1/d2y − ỹ2(C−1/d2x0)|
� |g̃2(C−1/d2x0, C

−1/d2y)− g̃2(C−1/d2x0, ỹ2(C−1/d2x0))| � A−ε1 .

It follows that y ≥ C1/d2 ỹ2(C−1/d2x0)+K30A
−ε
1 with some constantK30>0.

From the definition of y0,A1,A2 it follows that

y0,A1,A2 ≤ C1/d2y2(τ2, C−1/d2x0) ≤ C1/d2 ỹ2(C−1/d2x0) ≤ y −K30A
−ε
1 .

Choosing 0 < ε < κ/d1 it follows that in (1) and (2) always the first cases
are valid.

Case 2: C∗µ−1 ≥ g̃2(x0, y). The same reasoning as above gives
C1/d2 ỹ2(C−1/d2x0) ≥ y +K30A

−ε
1 with some constant K30 > 0.

Case 2.1: ỹ1(x0) > y. Then with some constant K31 > 0,

y0,A1,A2 = min{y1(τ1, x0), C1/d2y2(τ2, C−1/d2x0)}
≥ min{ỹ1(x0)−K31τ1, C

1/d2 ỹ2(C−1/d2x0)−K31τ1}
≥ y +K30A

−ε
1 /2

and so if 0 < ε < min{1/d1, κ/d1} is chosen then in (1) always the second
case is valid and in (2) always the first case.

Case 2.2: ỹ1(x0) = y. Then with some constant K32 > 0 we have

C1/d2y2(τ2, C−1/d2x0) ≥ C1/d2 ỹ2(C−1/d2x0)−K32τ1

≥ ỹ1(x0)−K32τ1 +K30A
−ε
1 ≥ y1(τ1, x0)

and so y0 = y1(τ1, x0). Consequently, y0 ≤ ỹ1(x0) = y and |y0,A1,A2 − y| =
|y1(τ1, x0) − ỹ1(x0)| � τ1. So in (1) always the first case and in (2) always
the second case is valid.

Case 2.3: ỹ1(x0) < y. Then y0,A1,A2 ≤ y1(τ1, x0) ≤ ỹ1(x0) < y and
|y0,A1,A2 − y| ≥ y − ỹ1(x0) = const. > 0. So in (1) and (2) always the first
cases are valid.
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Lemma 7.7. For y, κ > 0 there is a decomposition C1 = C∗0 < . . . < C∗m
= C2 and K, ε > 0 so that for 1 ≤ µ ≤ m and uniformly for A1, A2 ≥ K

with C := A2A
−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ) one of the two cases

C−1/d2y0,A1,A2 ≥ y + τκ1 or C−1/d2y0,A1,A2 ≤ y − τκ1 is valid.

P r o o f. Case 1: y ≥ η̃2. Then

y − C−1/d2y0,A1,A2 ≥ η̃2 − y2(τ2, C−1/d2x0) ≥ η̃2 − ỹ2(C−1/d2x0)

≥ η̃2 − ỹ2(C−1/d2
2 x0) = const. > 0

and therefore always the second case is valid.

Case 2: y < η̃2. Choose (x0/x̃2(y))d2 and (ỹ1(x0)/y)d2 as division points
if they lie in [C1, C2].

Case 2.1: C∗µ ≤ (x0/x̃2(y))d2 . Then C ≤ (x0/x̃2(y))d2 − A−ε1 and by
Taylor’s theorem C−1/d2 ≥ x̃2(y)/x0+K40A

−ε
1 with some constant K40 > 0.

Applying Taylor’s theorem again gives

ỹ2(C−1/d2x0) ≤ ỹ2(x̃2(y) + x0K40A
−ε
1 ) ≤ y −K41A

−ε
1

with some constant K41 > 0 and so

y − C−1/d2y0,A1,A2 ≥ y − y2(τ2, C−1/d2x0) ≥ y − ỹ2(C−1/d2x0)

≥ K41A
−ε
1 ≥ τκ1

if 0 < ε < κ/d1. Therefore always the second case is valid.

Case 2.2: C∗µ−1 ≥ (x0/x̃2(y))d2 .

Case 2.2.1: C∗µ−1 ≥ (ỹ1(x0)/y)d2 . Then C ≥ (ỹ1(x0)/y)d2 + A−ε1 and
by Taylor’s theorem C1/d2 ≥ ỹ1(x0)/y +K40A

−ε
1 . Consequently,

y − C−1/d2y0,A1,A2 ≥ y − C−1/d2y1(τ1, x0) ≥ y − C−1/d2 ỹ1(x0)

≥ yC−1/d2K40A
−ε
1 ≥ τκ1

if 0 < ε < κ/d1. Therefore always the second case is valid.

Case 2.2.2: C∗µ ≤ (ỹ1(x0)/y)d2 . Then (x0/x̃2(y))d2 + A−ε1 ≤ C ≤
(ỹ1(x0)/y)d2 − A−ε1 and by Taylor’s theorem

C−1/d2 ≤ x̃2(y)
x0

−K40A
−ε
1 , C1/d2 ≤ ỹ1(x0)

y
−K40A

−ε
1 .

Applying Taylor’s theorem again gives

ỹ2(C−1/d2x0) ≥ ỹ2(x̃2(y)−K40x0A
−ε
1 ) ≥ y +K41A

−ε
1 .

With further constants K42,K43 > 0 it follows that

C−1/d2y0,A1,A2 = min{C−1/d2y1(τ1, x0), y2(τ2, C−1/d2x0)}
≥ min{C−1/d2(ỹ1(x0)−K42τ1), ỹ2(C−1/d2x0)−K42τ2}



A lattice point problem 45

≥ min{y + yC−1/d2K40A
−ε
1 − C−1/d2K42τ1,

y +K41A
−ε
1 −K42τ2}

≥ y +K43A
−ε
1 ≥ y + τκ1

if 0 < ε < min{1/d1, κ/d1} and so always the first case is valid.

Lemma 7.8. There is a decomposition C1 = C∗0 < . . . < C∗m = C2 and
constants ε,K > 0 with the property : For 1 ≤ µ ≤ m, 1 ≤ τ ≤ t we
have

(C∗µ−1, C
∗
µ) ∩ [cτ , dτ ] = ∅ or [C∗µ−1, C

∗
µ] ⊆ [cτ , dτ ].

In the latter case uniformly for A1, A2 ≥ K with C := A2A
−d2/d1
1 ∈

(C∗µ−1 +A−ε1 , C∗µ−A−ε1 ), one of the two cases mτ (C) ≤ y0,A1,A2 or mτ (C) ≥
y0,A1,A2 is valid.

P r o o f. As decomposition points the following points are chosen if they
lie in [C1, C2]:

(1) h(x0) and cτ , dτ for 1 ≤ τ ≤ t.
(2) The decomposition points arising from Lemma 7.6 applied to y = ητ ,

1 ≤ τ ≤ t.
Let 1 ≤ µ ≤ m, 1 ≤ τ ≤ t. Then (C∗µ−1, C

∗
µ)∩[cτ , dτ ] = ∅ or [C∗µ−1, C

∗
µ] ⊆

[cτ , dτ ]. Assume the latter case. Then uniformly for A1, A2 ≥ K with
C := A2A

−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ) one of the three cases y0,A1,A2

≤ ητ−1, y0,A1,A2 ∈ (ητ−1, ητ ] or y0,A1,A2 > ητ is valid. In the first case
y0,A1,A2 ≤ mτ (C). In the last case y0,A1,A2 > mτ (C). For the remainder of
the proof assume that the second case is valid. From the definition of mτ it
follows that

(7.9) mτ (C) ≤ y0,A1,A2 ⇔
{
C ≤ l(y0,A1,A2), l�[ητ−1, ητ ] increasing,
C ≥ l(y0,A1,A2), l�[ητ−1, ητ ] decreasing.

From (2.10) it follows that

(7.10) |ỹ1(x0)− C1/d2 ỹ2(C−1/d2x0)| � |h(x0)− C| ≥ A−ε1 .

Case 1: C∗µ−1 ≥ h(x0). Then ỹ1(x0) < C1/d2 ỹ2(C−1/d2x0) by (2.16),
and with (7.10) this gives ỹ1(x0) ≤ C1/d2 ỹ2(C−1/d2x0)−K50A

−ε
1 with some

constant K50 > 0. If 0 < ε < 1/d1 this gives

y1(τ1, x0) = ỹ1(x0) +O(τ1)

≤ C1/d2y2(τ2, C−1/d2x0) = C1/d2 ỹ2(C−1/d2x0) +O(τ1)

and consequently y0 = y1(τ1, x0) = ỹ1(x0) +O(τ1). Therefore
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l(y0) = g̃2(x̃1(y0), y0) = g̃2(x0 +O(τ1), ỹ1(x0) +O(τ1))

= g̃2(x0, ỹ1(x0)) +O(τ1)

= h(x0) +O(τ1) ≤ C∗µ−1 +O(τ1)

≤ C −A−ε1 +O(τ1) < C.

Case 2: C∗µ ≤ h(x0). From (2.16) and (7.10) it follows that

(7.11) ỹ1(x0) ≥ C1/d2 ỹ2(C−1/d2x0) +K50A
−ε
1 .

Just as above,

y0,A1,A2 = C1/d2y2(τ2, C−1/d2x0) = C1/d2 ỹ2(C−1/d2x0) +O(τ1).

Taylor’s theorem gives x̃1(ỹ1(x0) − K50A
−ε
1 ) ≥ x0 + K51A

−ε
1 with some

constant K51 > 0. From (7.11) it follows that

l(y0) = g̃2(x̃1(y0), y0)

= g̃2(x̃1(C1/d2 ỹ2(C−1/d2x0)) +O(τ1), C1/d2 ỹ2(C−1/d2x0) +O(τ1))

≥ g̃2(x̃1(ỹ1(x0)−K50A
−ε
1 ), C1/d2 ỹ2(C−1/d2x0)) +O(τ1)

≥ g̃2(x0 +K51A
−ε
1 , C1/d2 ỹ2(C−1/d2x0)) +O(τ1)

≥ g̃2(x0, C
1/d2 ỹ2(C−1/d2x0)) + a

(2)
d20(x0 +K51A

−ε
1 )d2 − a(2)

d20x
d2
0

+O(τ1)

≥ C + a
(2)
d20d2x

d2−1
0 K51A

−ε
1 +O(τ1) > C.

(7.9) shows in Cases 1 and 2 that uniformly throughout the given range
of (A1, A2) one of the two cases mτ (C) ≤ y0 or mτ (C) ≥ y0 is valid.

Choose Z ⊆ R+
0 , |Z| <∞ with the properties:

(Z#1) The zeros of x̃′′j x̃
′′′
j in [0, η̃j ] are contained in Z for j = 1, 2.

(Z#2) The zeros of ỹ′′j ỹ
′′′
j in [0, ξ̃j ] are contained in x̃j(Z) for j = 1, 2.

(Z#3) η0, . . . , ηt, y1, y2, h(x0) ∈ Z.
(Z#4) If x̃′j(0) = 0 6= x̃′′j (0) for j = 1 or j = 2, then the value of ξ

which comes from the application of Proposition 6.1 is contained
in x̃j(Z).

Choose 0 = ζ0 < . . . < ζn with the properties:

(Z#5) Z ⊆ {ζ0, . . . , ζn}.
(Z#6) For each ζ, ζ ′ ∈ Z with ζ < ζ ′ there is some 1 ≤ ν ≤ n with

ζ < ζν < ζ ′.

For 1 ≤ τ ≤ t define [c′τ , d
′
τ ] := m−1

τ ((−∞, y1]) and m̃τ (C) := C−1/d2mτ (C)
on [c′τ , d

′
τ ]. Now choose a decomposition C1 = C∗0 < . . . < C∗m = C2 and

constant ε > 0 with the properties:
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(C#1) If c′τ ∈ [C1, C2] for some 1 ≤ τ ≤ t then c′τ ∈ {C∗0 , . . . , C∗m}. The
same holds for cτ , d′τ and dτ .

(C#2) For 1 ≤ τ ≤ t, 1 ≤ µ ≤ m, 0 ≤ ν ≤ n with [C∗µ−1, C
∗
µ] ⊆ [c′τ , d

′
τ ]:

For A1, A2 ≥ K with C := A2A
−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 )

we have
|mτ (C)− ζν | ≥ τκ1 , |m̃τ (C)− ζν | ≥ τκ2 .

(C#3) For 1 ≤ µ ≤ m, 1 ≤ ν ′ ≤ n, 0 ≤ ν ≤ n: For A1, A2 ≥ K with
C := A2A

−d2/d1
1 ∈ (C∗µ−1 +A−ε1 , C∗µ − A−ε1 ) we have

|C−1/d2ζν′ − ζν | ≥ τκ2 .
(C#4) For 1 ≤ τ ≤ t, 1 ≤ µ ≤ m, 1 ≤ ν ′ ≤ n, 0 ≤ ν ≤ n we have

ζν 6∈ mτ ((C∗µ−1, C
∗
µ) ∩ [c′τ , d

′
τ ]), ζν 6∈ m̃τ ((C∗µ−1, C

∗
µ) ∩ [c′τ , d

′
τ ]),

ζν 6= C−1/d2ζν′ for C ∈ (C∗µ−1, C
∗
µ).

(C#5) All the decomposition points which arise from the application of
Lemmas 7.6 and 7.7 to y = ζ1, . . . , ζn and from Lemma 7.8 are
contained in {C∗0 , . . . , C∗m}.

The following lemma is the analogue of Lemma 7.4.

Lemma 7.9. Let 1 ≤ µ ≤ m, 1 ≤ τ ≤ t. Then uniformly for A1, A2 ≥ K
with C := A2A

−d2/d1
1 ∈ (C∗µ−1+A−ε1 , C∗µ−A−ε1 ) one of the two cases is valid :

(1) y0,A1,A2 ≤ ητ−1 and R#
τ (A1, A2) = 0.

(2) y0,A1,A2 ≥ ητ−1 and

R#
τ (A1, A2) =

A
1/d1
1 min{y0,ητ}�

A
1/d1
1 ητ−1

f−1
A1,A2

(y) dy − 1
2A

1/d1
1 (min{ητ , y0} − ητ−1)

+ T
#(µ,%)
1 (A1) + T

#(µ,%)
2 (A2) + U

#(µ,%)
1 (A1) + U

#(µ,%)
2 (A2)

+ ψ(A1/d1
1 ητ−1)f−1

A1,A2
(A1/d1

1 ητ−1)

− ψ(A1/d1
1 min{ητ , y0})f−1

A1,A2
(A1/d1

1 min{ητ , y0})
+O(A46/(73d1)

1 (logA1)315/146).

P r o o f. Again several cases have to be distinguished. From Lemma 7.6
for y = ητ−1 (in case τ ≥ 2) it follows that always y0 ≤ ητ−1 or y0 > ητ−1.
Assume the latter case.

Case 1: [C∗µ−1, C
∗
µ] ⊆ [c′τ , d

′
τ ]. From Lemma 7.6 for y = ητ and Lemma

7.8 it follows that uniformly in the given range of (A1, A2) one of the two
cases y0 ≤ ητ or y0 > ητ and one of the two cases mτ (C) ≤ y0 or mτ (C) ≥ y0

is valid.
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Case 1.1: mτ (C) ≤ y0 ≤ ητ . Applying Lemma 3.1 with x, y inter-
changed gives the decomposition in the following two cases.

Case 1.1.1: If l�[cτ , dτ ] increases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 mτ (C),

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+ #{(x, y) ∈ Z2 | A1/d1
1 mτ (C) < y ≤ A1/d1

1 y0,

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+O(A46/(73d1)
1 ).

Case 1.1.2: If l�[cτ , dτ ] decreases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 mτ (C),

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+ #{(x, y) ∈ Z2 | A1/d1
1 mτ (C) < y ≤ A1/d1

1 y0,

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+O(A46/(73d1)
1 ).

Case 1.2: y0 ≤ mτ (C) ≤ ητ .

Case 1.2.1: If l�[cτ , dτ ] increases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 y0, 0 < x ≤ A1/d1

1 x1(τ1, τ1y)}
+O(A46/(73d1)

1 ).

Case 1.2.2: If l�[cτ , dτ ] decreases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 y0, 0 < x ≤ A1/d2

2 x2(τ2, τ2y)}
+O(A46/(73d1)

1 ).

Case 1.3: y0 > ητ , y0 ≥ mτ (C).

Case 1.3.1: If l�[cτ , dτ ] increases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 mτ (C),

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+ #{(x, y) ∈ Z2 | A1/d1
1 mτ (C) < y ≤ A1/d1

1 ητ ,

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+O(A46/(73d1)
1 ).

Case 1.3.2: If l�[cτ , dτ ] decreases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 mτ (C),

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}
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+ #{(x, y) ∈ Z2 | A1/d1
1 mτ (C) < y ≤ A1/d1

1 ητ ,

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+O(A46/(73d1)
1 ).

The fourth combination mτ (C) ≥ y0 > ητ is not possible because always
mτ (C) ≤ ητ .

Case 2: [C∗µ−1, C
∗
µ] ⊆ [cτ , c′τ ] or ⊆ [d′τ , dτ ]. Then y0 ≤ y1 < mτ (C) ≤ ητ .

Case 2.1: If l�[cτ , dτ ] increases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 y0, 0 < x ≤ A1/d1

1 x1(τ1, τ1y)}
+O(A46/(73d1)

1 ).

Case 2.2: If l�[cτ , dτ ] decreases then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 y0, 0 < x ≤ A1/d2

2 x2(τ2, τ2y)}
+O(A46/(73d1)

1 ).

Case 3: C∗µ ≤ cτ . From Lemma 7.6 for y = ητ it follows that always
y0 ≤ ητ or y0 > ητ .

Case 3.1: If y0 ≤ ητ then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 y0, 0 < x ≤ A1/d2

2 x2(τ2, τ2y)}.
Case 3.2: If y0 > ητ then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 ητ , 0 < x ≤ A1/d2

2 x2(τ2, τ2y)}.
Case 4: C∗µ−1 ≥ dτ .

Case 4.1: If y0 ≤ ητ then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 y0, 0 < x ≤ A1/d1

1 x1(τ1, τ1y)}.
Case 4.2: If y0 > ητ then

R#
τ = #{(x, y) ∈ Z2 | A1/d1

1 ητ−1 < y ≤ A1/d1
1 ητ , 0 < x ≤ A1/d1

1 x1(τ1, τ1y)}.
As in the proof of Lemma 7.4 only Cases 1.1.1 and 1.1.2 are pursued

further. The other cases are similar but somewhat easier.
In Case 1.1.1 use (C#4), (C#5), (2.8) and (Z#3) and choose 1 ≤ νj ≤ n

with the properties

mτ ((C∗µ−1, C
∗
µ)) ⊆ (ζν0−1, ζν0) ⊆ (ητ−1,min{ητ , y1}), ζν1−1 = ητ−1,

ζν2 = min{ητ , y1}, ν1 ≤ ν0 ≤ ν2, ζν2 < η̃1,

m̃τ ((C∗µ−1, C
∗
µ)) ⊆ (ζν3−1, ζν3),

C−1/d2y0,A1,A2 ∈ (ζν4−1, ζν4) for A1, A2 ≥ K
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with

C := A2A
−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ), ν3 ≤ ν4, ζν4 < η̃2.

Then

R#
τ =

ν0−1∑

ν=ν1

#{(x, y) ∈ Z2 | A1/d1
1 ζν−1 < y ≤ A1/d1

1 ζν ,

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+ #{(x, y) ∈ Z2 | A1/d1
1 ζν0−1 < y ≤ A1/d1

1 mτ (C),

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

−#{(x, y) ∈ Z2 | A1/d2
2 ζν3−1 < y ≤ A1/d2

2 C−1/d2mτ (C),

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+
ν4−1∑

ν=ν3

#{(x, y) ∈ Z2 | A1/d2
2 ζν−1 < y ≤ A1/d2

2 ζν ,

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+ #{(x, y) ∈ Z2 | A1/d2
2 ζν4−1 < y ≤ A1/d2

2 C−1/d2y0,

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+O(A46/(73d1)
1 ).

In Case 1.1.2 choose 1 ≤ νj ≤ n with the properties

mτ ((C∗µ−1, C
∗
µ)) ⊆ (ζν0−1, ζν0) ⊆ (ητ−1,min{ητ , y1}), ζν1−1 = ητ−1,

ζν2 = min{ητ , y1}, ν1 ≤ ν0 ≤ ν2, ζν2 < η̃1,

m̃τ ((C∗µ−1, C
∗
µ)) ⊆ (ζν3−1, ζν3) ⊆ [0, y2],

ζν3 < η̃2, C−1/d2 η̃τ−1 ∈ (ζν4−1, ζν4) or ≡ ζν4−1 (if τ = 1), ν4 ≤ ν3,

y0,A1,A2 ∈ (ζν5−1, ζν5 ] for A1, A2 ≥ K
with

C := A2A
−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ), ν0 ≤ ν5.

Then

R#
τ = −#{(x, y) ∈ Z2 | A1/d2

2 ζν4−1 < y ≤ A1/d2
2 C−1/d2ητ−1,

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+
ν3−1∑

ν=ν4

#{(x, y) ∈ Z2 | A1/d2
2 ζν−1 < y ≤ A1/d2

2 ζν ,

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}

+ #{(x, y) ∈ Z2 | A1/d2
2 ζν3−1 < y ≤ A1/d2

2 C−1/d2mτ (C),

0 < x ≤ A1/d2
2 x2(τ2, τ2y)}



A lattice point problem 51

−#{(x, y) ∈ Z2 | A1/d1
1 ζν0−1 < y ≤ A1/d1

1 mτ (C),

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+
ν5−1∑

ν=ν0

#{(x, y) ∈ Z2 | A1/d1
1 ζν−1 < y ≤ A1/d1

1 ζν ,

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+ #{(x, y) ∈ Z2 | A1/d1
1 ζν5−1 < y ≤ A1/d1

1 y0,

0 < x ≤ A1/d1
1 x1(τ1, τ1y)}

+O(A46/(73d1)
1 ).

It follows from (C#2) and (C#3) that in each but the last set the endpoints
of the respective intervals of y when renormalized with the corresponding
A
−1/dj
j have a distance ≥ τκj from all ζν with 0 ≤ ν ≤ n or are equal to one

of these ζν . From (C#5) and Lemma 7.6 applied to y = ζν5−1 (if ν5 > 1) and
y = ζν5 it follows that for the last set the same holds or that |y0− ζν5 | � τ1
or |y0 − ζν5−1| � τ1 uniformly in (A1, A2). In the last case apply the trivial
estimation to the last set.

The remainder of the proof is as in the proof of Lemma 7.4.

Corollary 7.10. Let 1 ≤ µ ≤ m. Then for A1, A2 ≥ K with C :=
A2A

−d2/d1
1 ∈ (C∗µ−1 + A−ε1 , C∗µ − A−ε1 ) we have

R#(A1, A2) =
A

1/d1
1 y0�

0

f−1
A1,A2

(y) dy − 1
2A

1/d1
1 y0 + T

#(µ)
1 (A1) + T

#(µ)
2 (A2)

+ U
#(µ)
1 (A1) + U

#(µ)
2 (A2)− 1

2f
−1
A1,A2

(0)

− ψ(A1/d1
1 y0)f−1

A1,A2
(A1/d1

1 y0)

+O(A46/(73d1)
1 (logA1)315/146).

Corollaries 7.5 and 7.10 and (3.1) together with

fA1,A2(0) = min{A1/d1
1 η̃1, A

1/d2
2 η̃2}+O(1),

f−1
A1,A2

(0) = %A1,A2 = min{A1/d1
1 ξ̃1, A

1/d2
2 ξ̃2}+O(1)

give the asymptotics of Theorem 1.1. The estimation pµ,ν , qµ,ν ≤ dν − 2
follows from

Lemma 7.11. For each x0 ∈ [0, ξ̃ν) there is some 2 ≤ k ≤ dν with
ỹ

(k)
ν (x0) 6= 0. If j(ν)

0 = 1 then the statement is valid also for x0 = ξ̃ν .

P r o o f. Assume ỹ(k)(x0) = 0 for 2 ≤ k ≤ dν . Then Taylor’s theorem
implies

ỹν(x) = ỹν(x0) + ỹ′ν(x0)(x− x0) +O(|x− x0|dν+1)
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in some neighbourhood of x0 in [0, ξ̃ν ]. Consequently,

1 =
dν∑

j=0

a
(ν)
dν−j,jx

dν−j(ỹν(x0) + ỹ′ν(x0)(x− x0) +O(|x− x0|dν+1))j

and

1−
dν∑

j=0

a
(ν)
dν−j,jx

dν−j(ỹν(x0) + ỹ′ν(x0)(x− x0))j = O(|x− x0|dν+1)

for x close to x0. The left hand polynomial of order ≤ dν vanishes therefore
at x0 with order ≥ dν+1 and is consequently the zero polynomial. Therefore
g̃ν(x, ỹν(x0) + ỹ′ν(x0)(x− x0)) = 1 on R, which contradicts Lemma 4.1.
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