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1. Introduction and statement of the results. In 1937 I. M. Vino-
gradov [28] proved that for every sufficiently large odd integer n the equa-
tion

(1.1) p1 + p2 + p3 = n

has a solution in prime numbers. It is still not known whether every suffi-
ciently large even integer n can be represented as

(1.2) p1 + p2 = n,

where p1, p2 are primes. Denote by E(N) the number of even integers not
exceeding N and not representable in the form (1.2). Many researchers have
worked to obtain non-trivial upper bounds for this quantity. The most im-
portant result belongs to Montgomery and Vaughan [19]. They proved in
1975 that there exists an effective constant δ > 0 such that E(N)� N 1−δ.

Another important approach for studying the equation (1.2) is by the
use of sieve methods. The strongest result in this direction belongs to Chen
[3]. Denote, as usual, by Pr any integer with no more than r prime factors,
counted according to multiplicity. In 1973 Chen proved that every suffi-
ciently large even n can be represented as a sum of a prime and a P2. He
also proved that there are infinitely many primes p such that p+ 2 = P2.

In 1938 Hua studied the equation

(1.3) p2
1 + p2

2 + p2
3 = n

for solvability in prime numbers. By elementary considerations one may see
that necessary conditions for the solvability of (1.3) are n ≡ 3 (mod 24) and
n 6≡ 0 (mod 5). Denote by E1(N) the number of integers n ≤ N satisfying
these congruences and which are not representable in the form (1.3). Hua [8]
proved the existence of a constant B > 0 such that E1(N)� N(logN)−B.
Schwarz [22] proved this estimate with arbitrarily large B > 0. In 1993
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M.-C. Leung and M.-C. Liu [14] showed that E1(N) � N1−δ for some
δ > 0. Short-interval versions of this problem were considered by J. Liu and
T. Zhan [15] and Mikawa [16].

As a corollary to his theorem Hua established that the equation

(1.4) p2
1 + p2

2 + p2
3 + p2

4 + p2
5 = n

is solvable in primes provided that n is sufficiently large and satisfies n ≡ 5
(mod 24).

In 1939 van der Corput [26] established that there exist infinitely many
arithmetic progressions of three different primes. The corresponding ques-
tion for progressions of four or more primes is still open. In 1981, however,
Heath-Brown [6] proved that there exist infinitely many arithmetic progres-
sions of four different terms, three of which are primes and the fourth is P2.

The work of Heath-Brown motivated the author to study additive prob-
lems with primes p such that p + 2 is almost-prime. In [21] Peneva and
the author proved that there exist infinitely many arithmetic progressions
of three different primes p1, p2, p3 such that (p1 + 2)(p2 + 2) = P9. Later
the author used some ideas of Brüdern and Fouvry [1] and Heath-Brown
and was able to impose a multiplicative restriction on p3 + 2 as well. It
was proved in [23] that there exist infinitely many arithmetic progressions
of three different primes p1, p2, p3 = 1

2 (p1 + p2) such that p1 + 2 = P5,
p2 + 2 = P′5, p3 + 2 = P8. Peneva [20] used the method of [23] to consider
the corresponding problem for the equation (1.1).

Recently the author considered the equation (1.4) for solvability in
primes of the type described above. It was established in [24] that if n is a
sufficiently large integer satisfying n ≡ 5 (mod 24) then (1.4) has a solution
in primes p1, . . . , p5 such that each of the numbers p1 + 2, p2 + 2, p3 + 2,
p4 + 2 is P6 and p5 + 2 = P7. We should also mention the earlier result [13]
of Laporta and the author, which is somewhat related to [24].

In the present paper we study the equations (1.2) and (1.3) with variables
prime numbers of the type mentioned above. We prove that they are solvable
for almost all n satisfying some natural congruence conditions. The following
theorems hold:

Theorem 1. Denote by K the set of integers n for which the equation
(1.3) has a solution in primes p1, p2, p3 such that p1 + 2 = P5, p2 + 2 = P′5,
p3 + 2 = P8. Consider the set

F = {n ≤ N : n ≡ 3 (mod 24), n 6≡ 0 (mod 5)} \ K
and let Y(N) be its cardinality. Then for arbitrarily large B > 0 we have

Y(N)� N(logN)−B.
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Theorem 2. Denote by K0 the set of integers n for which the equation
(1.2) has a solution in different primes p1, p2 such that p1 + 2 = P5, p2 + 2
= P7. Consider the set

F0 = {n ≤ N : n ≡ 4 (mod 6)} \ K0

and let Y0(N) be its cardinality. Then for arbitrarily large B > 0 we have

Y0(N)� N(logN)−B.

From Theorem 1 we easily obtain

Corollary 1. For every sufficiently large integer n ≡ 5 (mod 24) the
equation (1.4) has a solution in prime numbers p1, . . . , p5 such that p1 + 2
= P2, p2 + 2 = P′2, p3 + 2 = P5, p4 + 2 = P′5, p5 + 2 = P8.

P r o o f. Consider the sets of primes

A =
{
p ≤ 1

2

√
n : p ≡ 11 (mod 30), p+ 2 = P2

}

and
A′ =

{
p ≤ 1

2

√
n : p ≡ 17 (mod 30), p+ 2 = P2

}
.

Applying the arguments of Chen we establish that the cardinalities of A and
A′ are � √n(logn)−2.

Suppose that n 6≡ 2 (mod 5). Consider the set {n − p2 − q2 : p, q ∈ A}.
It is not difficult to see that it contains � n(logn)−9 distinct integers k
satisfying k ≡ 3 (mod 24), k 6≡ 0 (mod 5). It remains to apply Theorem 1.

If n ≡ 2 (mod 5) then we consider the set {n− p2 − q2 : p ∈ A, q ∈ A′}
and then we proceed as in the first case.

Similarly, from Theorem 2 we obtain the following corollaries:

Corollary 2. For every sufficiently large integer n ≡ 3 (mod 6) the
equation (1.1) has a solution in prime numbers p1, p2, p3 such that p1 + 2 =
P2, p2 + 2 = P5, p3 + 2 = P7.

Corollary 3. There are infinitely many arithmetic progressions of three
different primes p1, p2, p3 = 1

2 (p1 + p2) such that p3 + 2 = P2, p1 + 2 = P5,
p2 + 2 = P7.

To prove the theorems we apply the method of [20], [23] and [24]. In
many places we omit the calculations because they are similar to those in
the papers mentioned above. We present only the proof of Theorem 1. The
proof of Theorem 2 is simpler and it was briefly explained in [25].

In Section 2 we introduce the notations and state a Proposition, which
is of some independent interest. It asserts that the expected asymptotic
formula for the number of the solutions of (1.3) in primes from arithmetic
progressions is valid “on average”.
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In Section 3 we prove Theorem 1. We consider the sum Γ defined by
(3.3) and we show that it is not large. On the other hand, we estimate it
from below using the vector sieve of Iwaniec [10] and Brüdern–Fouvry [1].
We find that if the cardinality Y(N) of the set F were large then the lower
bound for Γ would be considerably larger than Γ, which is not possible.
This proves the theorem.

In Sections 4 and 5 we prove the Proposition by means of the circle
method. We consider the minor arcs in Section 4. The crucial point is formula
(4.4) which gives a non-trivial estimate for a double exponential sum. The
idea is due to Heath-Brown, who pointed out to the author that non-trivial
estimates exist for such kind of sums. We also find an estimate for the mean
value of the same sum.

To treat the major arcs we work as in [13], [21], [23], [24]. We find
asymptotic formulae for exponential sums over primes lying in arithmetic
progressions. It appears that the error terms of these formulae are small “on
average” and applying the Bombieri–Vinogradov theorem we find that their
contribution is negligible. The computations are presented in Section 5.
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the author’s visit to the Institute of Mathematics of the University of Oxford.
The author thanks the Royal Society for financial support, the staff of the
Institute for the excellent working conditions and also Plovdiv University
Scientific Fund (grant PU2-MM) for covering some other expenses.

The author is especially grateful to Professor D. R. Heath-Brown for
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2. Notations and statement of the Proposition. The letter p is re-
served for prime numbers. Lower case Latin letters (except x, y, z and p) de-
note integers. Other letters denote real or complex numbers and the meaning
is always clear from the context. As usual, µ(n), ϕ(n), Λ(n), ν(n) denote the
Möbius function, Euler’s function, von Mangoldt’s function and the number
of distinct prime factors of n, respectively; τk(n) denotes the number of so-
lutions of the equation m1 . . .mk = n in integers m1, . . . ,mk; τ(n) = τ2(n).
We denote by (m1, . . . ,mk) and [m1, . . . ,mk] the greatest common divisor
and least common multiple of m1, . . . ,mk, respectively. For real y, z, how-
ever, (y, z) denotes the open interval on the real line with endpoints y and z.
Instead of m ≡ n (mod k) we sometimes write for simplicity m ≡ n (k). As
usual ‖y‖ denotes the distance from y to the nearest integer and e(y) =
exp(2πiy). We write pl ‖n if pl |n and pl+1 -n. The Legendre symbol is de-
noted by

( ·
p

)
. For positive U and V we write U � V instead of U � V � U .

Suppose that A ≥ 10000 is a constant. If not explicitly specified, con-
stants in O-terms and Vinogradov’s symbols are absolute or depend only
on A. Let N be sufficiently large and put X =

√
N and L = logX.
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A central point in our paper is the study of the sum

(2.1) I(n; k1, k2, k3) =
∑

p2
1+p2

2+p2
3=n

pi+2≡0 (mod ki)
i=1,2,3

log p1 log p2 log p3,

where k1, k2, k3 are odd squarefree numbers and n ≤ N. It is clear that

I(n; k1, k2, k3) =
1�

0

Sk1(α)Sk2(α)Sk3(α)e(−nα) dα,

where

(2.2) Sk(α) =
∑

p≤X
p+2≡0 (k)

log p e(αp2).

Define

Q = L1000A, τ = X2L−2000A,(2.3)

E1 =
⋃

q<Q

q−1⋃

a=0
(a,q)=1

(
a

q
− 1
qτ
,
a

q
+

1
qτ

)
, E2 =

(
−1
τ
, 1− 1

τ

)
\E1.(2.4)

We have

(2.5) I(n; k1, k2, k3) = I1 + I2,

where

(2.6) Ij =
�

Ej

Sk1(α)Sk2(α)Sk3(α)e(−nα) dα, j = 1, 2.

Define

sk(a, q) =
ϕ((k, q))
ϕ(q)

∑

1≤m≤q
(m,q)=1

m+2≡0 ((k,q))

e

(
am2

q

)
,(2.7)

t(q) = t(q;n; k1, k2, k3)(2.8)

=
∑

0≤a≤q−1
(a,q)=1

sk1(a, q)sk2(a, q)sk3(a, q)e
(
−na

q

)
.

The function t(q) is multiplicative with respect to q. Using the definition
(2.7) of sk(a, q) and the properties of the Gauss sum (see, for example, Hua
[9], Chapter 7) it is not difficult to compute t(pl).

We find that if n ≡ 3 (mod 8) and k1, k2, k3 are odd integers then

(2.9) t(2) = 1, t(4) = 2, t(8) = 4, t(2l) = 0 for l > 3.
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Define

h0(p) =





(−n
p

)
p2 +

(
3
(
n
p

)
+ 3
(−1
p

))
p+ 1

(p− 1)3 if p -n,

−3
(−1
p

)
p− 1

(p− 1)2 if p |n,
(2.10)

h1(p) =





(
−2
(
n−4
p

)
−
(−1
p

))
p− 1

(p− 1)2 if p -n− 4,
(−1
p

)
p+ 1

p− 1 if p |n− 4,

(2.11)

h2(p) =





(
n−8
p

)
p+ 1

p− 1 if p -n− 8,

−1 if p |n− 8,
(2.12)

h3(p) =
{
−1 if p -n− 12,
p− 1 if p |n− 12.

(2.13)

If p > 2 and k1, k2, k3 are squarefree integers then we have

(2.14)
t(p) =





h0(p) if p - k1k2k3,
h1(p) if p ‖ k1k2k3,
h2(p) if p2 ‖ k1k2k3,
h3(p) if p3 ‖ k1k2k3,

t(pl) = 0 if l > 1.

We leave the calculations to the reader.
Define

(2.15) S = S(n;Q; k1, k2, k3) = 8
∏

2<p<Q

(1 + t(p;n; k1, k2, k3)).

We write

(2.16) I(n; k1, k2, k3) =
π

4

√
n

S(n;Q; k1, k2, k3)
ϕ(k1)ϕ(k2)ϕ(k3)

+ R(n;Q; k1, k2, k3).

The first summand arises from the application of the circle method. We
cannot find a non-trivial estimate for the remainder R for individual n, k1,
k2, k3, but we prove that it is small on average. We have:

Proposition. Suppose that

(2.17) K1,K2 ≤ X1/2L−20000A, K3 ≤ X1/3L−20000A

and let βi(ki), ki ≤ Ki, i = 1, 2, 3, be complex numbers satisfying

(2.18) βi(k) = 0 if 2 | k or µ(k) = 0; |βi(k)| ≤ τ(k).
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Then for

U =
∑

n≤N
n≡3 (24)
n6≡0 (5)

∣∣∣
∑

ki≤Ki
i=1,2,3

β1(k1)β2(k2)β3(k3)R(n;Q; k1, k2, k3)
∣∣∣

we have

(2.19) U � X3L−A.

For brevity we will write
∑∗
n≤N to emphasize that the summation is

taken over the integers n satisfying n ≡ 3 (mod 24) and n 6≡ 0 (mod 5).
To prove the Proposition we consider

(2.20) U1 =
∑

n≤N

∗
∣∣∣∣
∑

ki≤Ki
i=1,2,3

β1(k1)β2(k2)β3(k3)

×
(
I1 −

π

4

√
n

S(n;Q; k1, k2, k3)
ϕ(k1)ϕ(k2)ϕ(k3)

)∣∣∣∣,

(2.21) U2 =
∑

n≤N

∣∣∣
∑

ki≤Ki
i=1,2,3

β1(k1)β2(k2)β3(k3)I2
∣∣∣.

Obviously

(2.22) U � U1 + U2.

We study U2 in Section 4 and U1 in Section 5 and we prove that

(2.23) U1,U2 � X3L−A.

The estimate (2.19) is a consequence of (2.22) and (2.23).
Note that only in the proof of the inequality (4.4) do we need the tight

restriction on K3 imposed by (2.17). So the validity of (4.4) for larger values
of K3 would certainly imply an improvement of Theorem 1.

3. Proof of Theorem 1. Let F be the set defined in Theorem 1. We
put

(3.1) Q0 = L0.6, z1 = z2 = X0.167, z3 = X0.116.

Let R = {p ≥ 11 : p -n− 4} ∪ {p ≥ 11 : p |n− 4, p ≡ 1 (mod 4)}. We define

(3.2) B0 =
∏

3≤p<Q0

p, P0 =
∏

Q0≤p<Q
p∈R

p, Pi =
∏

Q≤p<zi
p, i = 1, 2, 3.
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Consider the sum

(3.3) Γ =
∑

n∈F

∑

p2
1+p2

2+p2
3=n

(pi+2,B0P0Pi)=1
i=1,2,3

log p1 log p2 log p3 =
∑

n∈F
w(n),

say. Suppose that w(n) > 0 for some n ∈ F . Then there exist primes
p1, p2, p3 satisfying the conditions imposed in the inner sum of formula (3.3).
For one of them, p1 say, we should have (p1 + 2,

∏
p<z1

p) > 1, otherwise we
would have (pi + 2,

∏
p<zi

p) = 1 for i = 1, 2, 3, which would contradict the
definitions of F and zi.

If p1 = 2 then w(n)� L3∑
n=m2

1+m2
2+4 1.

If p1 > 2 then p1 + 2 would have a prime factor p > 2 such that p |n− 4
and p ≡ 3 (mod 4). Hence p2

2 + p2
3 ≡ 0 (mod p), which implies p2 = p3 = p

and, therefore w(n)� L3∑
p|n−4 1.

Consequently,

(3.4) Γ � L3
( ∑

m2
1+m2

2+4≤N
1 +

∑

n≤N
τ(n− 4)

)
� X2L4.

Now we will use the vector sieve to estimate Γ from below. First we get
rid of the summands corresponding to integers n such that n− 4 has many
distinct prime factors. From this point onwards

∑# stands for a sum over
n such that ν(n − 4) ≤ A logL. For technical reasons we sieve separately
by the primes from the intervals [3, Q0), [Q0, Q) and [Q,∞). From the basic
property of Möbius’ function we get

(3.5) Γ ≥
∑

n∈F

# ∑

p2
1+p2

2+p2
3=n

log p1 log p2 log p3 Φ1Φ2Φ3Λ1Λ2Λ3Λ4Λ5Λ6,

where

(3.6)

Φi =
∑

d|(pi+2,B0)

µ(d), i = 1, 2, 3;

Λi =





∑
d|(pi+2,Pi)

µ(d) for i = 1, 2, 3,
∑

d|(pi−3+2,P0)
µ(d) for i = 4, 5, 6.

Define

(3.7)
D1 = D2 = X1/2 exp(−4L0.6),

D3 = X1/3 exp(−4L0.6), D0 = exp(L0.6).

By λ±i (d) we denote Rosser’s weights of order Di, 0 ≤ i ≤ 3 (see Iwaniec
[11], [12] for the definition). In particular, we have

(3.8) |λ±i (d)| ≤ 1, λ±i (d) = 0 for d ≥ Di, 0 ≤ i ≤ 3.
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Denote

(3.9) Λ±i =





∑
d|(pi+2,Pi)

λ±i (d) for i = 1, 2, 3,
∑

d|(pi−3+2,P0)
λ±i (d) for i = 4, 5, 6.

By the properties of Rosser’s weights (see Iwaniec [11], [12]) we have
Λ−i ≤ Λi ≤ Λ+

i , 1 ≤ i ≤ 6. We apply the inequality

Λ1Λ2Λ3Λ4Λ5Λ6 ≥ Λ−1 Λ+
2 Λ

+
3 Λ

+
4 Λ

+
5 Λ

+
6 + Λ+

1 Λ
−
2 Λ

+
3 Λ

+
4 Λ

+
5 Λ

+
6

+ Λ+
1 Λ

+
2 Λ
−
3 Λ

+
4 Λ

+
5 Λ

+
6 + Λ+

1 Λ
+
2 Λ

+
3 Λ
−
4 Λ

+
5 Λ

+
6

+ Λ+
1 Λ

+
2 Λ

+
3 Λ

+
4 Λ
−
5 Λ

+
6 + Λ+

1 Λ
+
2 Λ

+
3 Λ

+
4 Λ

+
5 Λ
−
6

− 5Λ+
1 Λ

+
2 Λ

+
3 Λ

+
4 Λ

+
5 Λ

+
6 .

The proof is the same as in Lemma 13 of [1]. Using this inequality and (3.5)
we get

(3.10) Γ ≥
6∑

i=1

Γi − 5Γ7,

where

Γ1 =
∑

n∈F

# ∑

p2
1+p2

2+p2
3=n

log p1 log p2 log p3 Φ1Φ2Φ3Λ
−
1 Λ

+
2 Λ

+
3 Λ

+
4 Λ

+
5 Λ

+
6 .

The definition of the other sums Γi is clear. We change the order of sum-
mation to get

Γ1 =
∑

n∈F

# ∑

νi|B0, δi|P0
di|Pi, i=1,2,3

µ(ν1)µ(ν2)µ(ν3)λ−1 (d1)λ+
2 (d2)λ+

3 (d3)

× λ+
0 (δ1)λ+

0 (δ2)λ+
0 (δ3)I(n; ν1δ1d1, ν2δ2d2, ν3δ3d3),

where I(n; k1, k2, k3) is defined by (2.1).
Using formula (2.16) we split Γ1 into two parts:

(3.11) Γ1 = Γ ′1 + Γ ′′1 ,

where Γ ′1 and Γ ′′1 are the contributions from the main term and error term
of the formula (2.16) respectively.

Consider Γ ′′1 . We write it in the form

Γ ′′1 =
∑

n∈F

# ∑

ki≤B0D0Di
i=1,2,3

γ1(k1)γ2(k2)γ3(k3)R(n;Q; k1, k2, k3),

where

γ1(k) =
∑

ν|B0, δ|P0, d|P1
νδd=k

µ(ν)λ+
0 (δ)λ−1 (d),
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γi(k) =
∑

ν|B0, δ|P0, d|Pi
νδd=k

µ(ν)λ+
0 (δ)λ+

i (d) for i = 2, 3.

Now we use (3.1), (3.2), (3.7), (3.8) and apply the Proposition to find that

(3.12) Γ ′′1 � X3L−A.
Consider Γ ′1. Using the definitions (2.8) and (2.15) of t(q) and S, respec-

tively, we find that if νi | B0, δi | P0 and di | Pi, i = 1, 2, 3, then

S(n;Q; ν1δ1d1, ν2δ2d2, ν3δ3d3)

= 8
∏

3≤p<Q0

(1 + t(p;n; ν1, ν2, ν3))
∏

Q0≤p<Q
(1 + t(p;n; δ1, δ2, δ3)).

So, after some calculations we find that

(3.13) Γ ′1 = 2π
∑

n∈F

#√
n
( ∏

3≤p<Q0

Vp(n)
)
H+(n)G−1 G+

2 G+
3 ,

where

Vp(n) =
∑

ν1,ν2,ν3|p

µ(ν1)µ(ν2)µ(ν3)
ϕ(ν1)ϕ(ν2)ϕ(ν3)

(1 + t(p;n; ν1, ν2, ν3)),

H±(n) =
∑

δ1,δ2,δ3|P0

λ±0 (δ1)λ+
0 (δ2)λ+

0 (δ3)
ϕ(δ1)ϕ(δ2)ϕ(δ3)

∏

Q0≤p<Q
(1 + t(p;n; δ1, δ2, δ3)),

G±i =
∑

d|Pi

λ±i (d)
ϕ(d)

, i = 1, 2, 3.

We treat the sums Γi, 2 ≤ i ≤ 7, in the same manner and we find formulas
similar to (3.11)–(3.13). Then we apply (3.10) to get

Γ ≥ 2π
∑

n∈F

#√
n
( ∏

3≤p<Q0

Vp(n)
)

(3.14)

× (H+(n)(G−1 G+
2 G+

3 + G+
1 G−2 G+

3 + G+
1 G+

2 G−3 − 5G+
1 G+

2 G+
3 )

+ 3H−(n)G+
1 G+

2 G+
3 ) +O(X3L−A).

Using (2.7), (2.8) we establish that

Vp(n) =
p

(p− 1)3

∑

1≤m1,m2,m3≤p−1
m1,m2,m3 6=p−2
m2

1+m2
2+m2

3≡n (p)

1.

This formula gives 0.001 ≤ Vp(n) ≤ 3 for p = 3, 5, 7 and 11. By the definition
of Vp(n) and (2.14) we find another expression:

Vp(n) = 1 + h0(p)− 3
1 + h1(p)
p− 1

+ 3
1 + h2(p)
(p− 1)2 −

1 + h3(p)
(p− 1)3 .
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Using this formula and (2.10)–(2.13) we find that 1− 9(p− 1)−1 ≤ Vp(n) ≤
1 + 9(p − 1)−1 for p > 11. From the observations above and the definition
(3.1) of Q0 we obtain

(3.15) (logL)−9 �
∏

3≤p<Q0

Vp(n)� (logL)9.

We leave the computations to the reader.
Consider the other quantities included in formula (3.14). Obviously

(3.16) G±i � L, i = 1, 2, 3.

We have logD0/logQ → ∞ as X → ∞. Hence we may expect that the
sums H±(n) can be approximated by

H0(n) =
∑

δ1,δ2,δ3|P0

µ(δ1)µ(δ2)µ(δ3)
ϕ(δ1)ϕ(δ2)ϕ(δ3)

∏

Q0≤p<Q
(1 + t(p;n; δ1, δ2, δ3)).

More precisely, we will prove that uniformly for n ∈ F satisfying ν(n− 4) ≤
A logL the following formula holds:

(3.17) H±(n) = H0(n) +O(L−2A).

We present the proof of (3.17) at the end of this section.
The sum H0(n) is much more easy to deal with. We use (2.8)–(2.14) and

after some elementary considerations we represent it as a product:

H0(n) =
∏

Q0≤p<Q
p-P0

(1 + h0(p))
∏

p|P0

Vp(n).

Now we are able to verify that

(3.18) (logL)−14 � H0(n)� (logL)14.

Using (3.14)–(3.17) we get

(3.19) Γ ≥ 2π
∑

n∈F

#√
n
( ∏

3≤p<Q0

Vp(n)
)
H0(n)N +O(X3L−A),

where
N = G−1 G+

2 G+
3 + G+

1 G−2 G+
3 + G+

1 G+
2 G−3 − 2G+

1 G+
2 G+

3 .

Arguing as in Section 8 of [23] we get

(3.20) N� (logL)3L−3.

Therefore using (3.15), (3.18)–(3.20) we find that

Γ ≥ L−5
∑

n∈F

#√
n+O(X3L−A).
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We combine the last estimate with (3.4) to obtain
∑

n∈F

#√
n� X3L5−A.

Denote by Y#(N) the cardinality of the set {n ∈ F : ν(n − 4) ≤ A logL}.
From the last formula we get

Y#(N)� X2L5−A/2.

It remains to notice that Y(N)−Y#(N)� X2L−A logA+A−1 (see Hall and
Tenenbaum [5], Chapter 0, for example). Therefore

Y(N)� X2L5−A/2.

This proves Theorem 1.

It remains to establish the asymptotic formula (3.17). Consider, for ex-
ample, the sum H+(n). We have

(3.21) H+(n) = H′ +H′′,
where in H′ we sum over δ1, δ2, δ3 such that (δ1, δ2), (δ1, δ3), (δ2, δ3) ≤ L6A.
The sum H′′ is the contribution from the other summands. Using (2.10)–
(2.14) we may easily estimate the product from the formula for H+(n) to
get

H′′ � L
∑

δ1,δ2,δ3|P0

(δ1,δ2)>L6A

µ2(δ1)µ2(δ2)µ2(δ3)
ϕ(δ1)ϕ(δ2)ϕ(δ3)

τ4(δ1)τ4(δ2)τ4(δ3)(δ1, δ2, δ3).

After some standard calculations, which we leave to the reader, we find that

(3.22) H′′ � L−2A.

Consider now H′. We have
∏
Q0≤p<Q(1 + t(p)) = Π0Π1Π2Π3, where Πν

denotes the product of the primes dividing exactly ν of the integers δ1, δ2, δ3.
It is clear that Π2 and Π3 are actually functions of (δ2, δ3), (δ1, δ3), (δ1, δ2).
Consider Π0 and Π1. For h0(p) defined by (2.10), we have 1 + h0(p) > 0 for
any prime p ≥ Q0. The product P0 defined by (3.2) does not contain prime
factors p > 2 such that p |n− 4 and p ≡ 3 (mod 4). Hence for any p | P0 we
also have 1 + h1(p) > 0. We use the inclusion-exclusion principle and find
that

Π0Π1 = ξ(n)
∏

p|δ1

1 + h1(p)
1 + h0(p)

∏

p|δ2

1 + h1(p)
1 + h0(p)

∏

p|δ3

1 + h1(p)
1 + h0(p)

Π ′,

where

(3.23) ξ(n) =
∏

Q0≤p<Q
(1 + h0(p)),
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and where Π ′ is actually a function of (δ2, δ3), (δ1, δ3), (δ1, δ2). So we may
write

H′ = ξ(n)
∑

δ1,δ2,δ3|P0

(δi,δj)≤L6A

1≤i<j≤3

κ((δ2, δ3), (δ1, δ3), (δ1, δ2))
3∏

ν=1

(
λ+

0 (δν)
ω(δν)
δν

)
,(3.24)

where κ arises from Π ′, Π2, Π3 and where

(3.25) ω(k) =





k

ϕ(k)

∏

p|k

1 + h1(p)
1 + h0(p)

if (k, 2B0) = 1,

0 otherwise.

We may easily find an explicit formula for κ(l1, l2, l3). Then we use (2.10)–
(2.13) to find that

(3.26) κ(l1, l2, l3)� (l1l2l3)10.

In fact, a much sharper estimate is available. We leave the calculations to
the reader.

We use (3.24) to represent H′ as follows:

H′ = ξ(n)
∑

l1,l2,l3|P0

l1,l2,l3≤L6A

κ(l1, l2, l3)(3.27)

×
∑

δ1,δ2,δ3|P0
(δ2,δ3)=l1, (δ1,δ3)=l2

(δ1,δ2)=l3

3∏

ν=1

(
λ+

0 (δν)
ω(δν)
δν

)

= ξ(n)
∑

l1,l2,l3|P0

l1,l2,l3≤L6A

κ(l1, l2, l3)

×
∑

δ1,δ2,δ3|P0
δ1≡0 ([l2,l3]), δ2≡0 ([l1,l3])

δ3≡0 ([l1,l2])

3∏

ν=1

(
λ+

0 (δν)
ω(δν)
δν

)

×
∑

h1|(δ2/l1,δ3/l1)

µ(h1)
∑

h2|(δ1/l2,δ3/l2)

µ(h2)
∑

h3|(δ1/l3,δ2/l3)

µ(h3)

= ξ(n)
∑

l1,l2,l3|P0

l1,l2,l3≤L6A

κ(l1, l2, l3)
∑

hi|P0/li
i=1,2,3

µ(h1)µ(h2)µ(h3)D1D2D3,
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where

Di =
∑

δ|P0
δ≡0 (%i)

λ+
0 (δ)

ω(δ)
δ

, i = 1, 2, 3

and

(3.28) %1 = [l2h2, l3h3], %2 = [l1h1, l3h3], %3 = [l1h1, l2h2].

It is not difficult to see that the function ω(k) defined by (3.25) satisfies

∏

w1≤p<w2

(
1− ω(p)

p

)−1

≤ logw2

logw1

(
1 +

c

logw1

)
,

for some constant c > 0 and for arbitrary 2 ≤ w1 < w2. Only at this point
do we use the fact that the integers n satisfy ν(n − 4) ≤ A logL. We note
that logD0/logQ ≥

√
L. Therefore we may use Lemma 11 of [1] to get

(3.29) Di = Ei +O(τ(%i) exp(−
√
L)), i = 1, 2, 3,

where

Ei =
∑

δ|P0
δ≡0 (%i)

µ(δ)
ω(δ)
δ

, i = 1, 2, 3.

It is also easy to see that the sums Di and Ei defined above satisfy

(3.30) |Di|, |Ei| � µ2(%i)τ3(%i)%−1
i L.

We replace the product D1D2D3 from (3.27) by E1E2E3 and denote the new
sum by H∗. Proceeding as in Section 7 of [23] and using (3.23), (3.26)–(3.30)
we get

(3.31) H′ = H∗ +O(L−2A).

To study H∗ we apply the procedures above in reverse order and we obtain

(3.32) H∗ = H0(n) +O(L−2A).

Formula (3.17) for H+(n) is a consequence of (3.21), (3.22), (3.31) and
(3.32).

4. Proof of the Proposition—minor arcs. The object of this section
is to prove the inequality (2.23) for U2. We substitute the expression for I2,
given by (2.6), in formula (2.21) and change the order of summation and
integration to obtain

U2 =
∑

n≤N

∣∣∣
�

E2

K1(α)K2(α)K3(α)e(−nα) dα
∣∣∣,

where
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(4.1) Ki(α) =
∑

k≤Ki
βi(k)Sk(α), i = 1, 2, 3.

We apply the Cauchy and Bessel inequalities to get

U2
2 � N

∑

n≤N

∣∣∣
�

E2

K1(α)K2(α)K3(α)e(−nα) dα
∣∣∣
2

(4.2)

� N
�

E2

|K1(α)K2(α)K3(α)|2 dα

� N(max
α∈E2

|K3(α)|)2
1�

0

|K1(α)K2(α)|2 dα

� N(max
α∈E2

|K3(α)|)2
( 1�

0

|K1(α)|4 dα+
1�

0

|K2(α)|4 dα
)
.

To estimate the last expression we prove the inequalities

(4.3)
1�

0

|Ki(α)|4 dα� X2L1027, i = 1, 2,

and

(4.4) max
α∈E2

|K3(α)| � XL−2A.

Formula (2.23) for U2 is a consequence of (4.2)–(4.4).
First we prove (4.3). Denote the integral on the left-hand side of (4.3)

by I. We use (2.2), (2.18) and (4.1) to get

I =
1�

0

∑

k1,...,k4≤Ki
βi(k1)βi(k2)βi(k3)βi(k4)Sk1(α)Sk2(α)Sk3(−α)Sk4(−α) dα

=
∑

k1,...,k4≤Ki
βi(k1)βi(k2)βi(k3)βi(k4)

×
1�

0

∑

p1,...,p4≤X
pj+2≡0 (kj), 1≤j≤4

(log p1) . . . (log p4)e(α(p2
1 + p2

2 − p2
3 − p2

4)) dα

=
∑

k1,...,k4≤Ki
βi(k1)βi(k2)βi(k3)βi(k4)

×
∑

p1,...,p4≤X
pj+2≡0 (kj), 1≤j≤4

p2
1+p2

2=p2
3+p2

4

(log p1) . . . (log p4)



68 D. I. Tolev

� L4
∑

k1,...,k4≤Ki
τ(k1) . . . τ(k4)

∑

n1,...,n4≤X
nj+2≡0 (kj), 1≤j≤4
n2

1+n2
2=n2

3+n2
4

1

= L4
∑

n1,...,n4≤X
n2

1+n2
2=n2

3+n2
4

( ∑

k1≤Ki
k1|n1+2

τ(k1)
)
. . .
( ∑

k4≤Ki
k4|n4+2

τ(k4)
)

� L4
∑

n1,...,n4≤X
n2

1+n2
2=n2

3+n2
4

τ2(n1 + 2)τ2(n2 + 2)τ2(n3 + 2)τ2(n4 + 2).

To estimate the last sum we apply the inequality xyzt ≤ x4 + y4 + z4 + t4.
Then we split the new sum into two parts to obtain

(4.5) I� L4
∑

n1,...,n4≤X
n2

1+n2
2=n2

3+n2
4

τ8(n1 + 2)� X2L259 + L4U0,

where

(4.6) U0 =
∑

n1,...,n4≤X
(n1−n3)(n1+n3)=(n4−n2)(n4+n2)
n1 6=n3, n1 6=n4, n2 6=n3, n2 6=n4

τ8(n1 + 2).

We divide U0 into two subsums:

(4.7) U0 = U1 + U2.

In the domain of summation of U1 the condition n1 6= n3 is replaced by
n1 > n3, in U2 it is replaced by n1 < n3.

Consider U1. We have

U1 =
∑

h1,...,h4≤2X
h1h3=h2h4

h1≡h3 (2), h2≡h4 (2)

∑

n1,...,n4≤X
n1−n3=h1, n1+n3=h3
n4−n2=h2, n4+n2=h4

τ8(n1 + 2)

�
∑

h1,...,h4≤2X
h1h3=h2h4

τ8(h1 + h3 + 4)

=
∑

k,l≤2X

∑

h1,...,h4≤2X
h1h3=h2h4

(h1,h2)=k, (h3,h4)=l

τ8(h1 + h3 + 4)

�
∑

k,l≤2X

∑

h1,h2≤(2X)/k; h3,h4≤(2X)/l
h1h3=h2h4

(h1,h2)=(h3,h4)=1

τ8(h1k + h3l + 4).
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The conditions (h1, h2) = (h3, h4) = 1, h1h3 = h2h4 imply h1 = h4, h2 = h3.
Hence

U1 �
∑

k,l≤2X

∑

h1,h2≤min((2X)/k,(2X)/l)

τ8(h1k + h2l + 4)

=
∑

m1,m2≤2X

τ8(m1 +m2 + 4)
∑

k,l≤2X
h1,h2≤min((2X)/k,(2X)/l)

h1k=m1, h2l=m2

1

�
∑

m1,m2≤2X

τ8(m1 +m2 + 4)τ(m1)τ(m2).

Now we apply the inequality x8yz ≤ x10 + y10 + z10 to get

U1 �
∑

m1,m2≤2X

τ10(m1 +m2 + 4) +
∑

m1,m2≤2X

τ10(m1)(4.8)

�
∑

l≤4X+4

τ10(l)
∑

m1,m2≤2X
m1+m2+4=l

1 +X2L210−1 � X2L210−1.

We treat U2 similarly to obtain

(4.9) U2 � X2L210−1.

The inequality (4.3) follows from (4.5), (4.7)–(4.9).
Let us now prove (4.4). For simplicity we write K and β(k) instead of K3

and β3(k), respectively. We decompose K3(α) into O(L) sums of the form

K(α, Y ) =
∑

k≤K
β(k)

∑

Y <p≤2Y
p+2≡0 (k)

log p e(αp).

We may assume that XL−2A−4 < Y ≤ X/2, for otherwise we can use the
trivial estimate for K(α, Y ). We have

(4.10) K(α, Y ) = W (Y,K, α) +O(X2/3),

where
W (Y,K, α) =

∑

Y <n≤2Y

Λ(n)e(αn2)
∑

k≤K
k|n+2

β(k).

We apply Heath-Brown’s identity [7] to decompose W (Y,K, α) into O(L6)
sums of two types.

Type I sums are

W1 =
∑

M<m≤M1

∑

L<l≤L1

Y <ml≤2Y

ame(αm2l2)
∑

k≤K
k|ml+2

β(k)

and
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W ′1 =
∑

M<m≤M1

∑

L<l≤L1

Y <ml≤2Y

am(log l)e(αm2l2)
∑

k≤K
k|ml+2

β(k),

where

(4.11) M1 ≤ 2M, L1 ≤ 2L, ML � Y, L ≥ Y 0.498, |am| � τ5(m)L.
Type II sums are

W2 =
∑

M<m≤M1

∑

L<l≤L1

Y <ml≤2Y

amble(αm2l2)
∑

k≤K
k|ml+2

β(k),

where

(4.12)
M1 ≤ 2M, L1 ≤ 2L, ML � Y, Y 0.001 ≤ L ≤ 230Y 1/3,

|am| � τ5(m)L, |bl| � τ5(l)L.
Consider type II sums. We have

|W2| � L
∑

M<m≤M1

τ5(m)
∣∣∣
∑

L<l≤L1

∑

k≤K
Y<ml≤2Y
ml+2≡0 (k)

blβ(k)e(αm2l2)
∣∣∣.

An application of Cauchy’s inequality gives

|W2|2 �ML26
∑

M<m≤M1

∣∣∣
∑

L<l≤L1

∑

k≤K
Y<ml≤2Y
ml+2≡0 (k)

blβ(k)e(αm2l2)
∣∣∣
2

= ML26
∑

M<m≤M1

∑

L<l1,l2≤L1

∑

k1,k2≤K
Y<l1m,l2m≤2Y

lim+2≡0 (ki), i=1,2

bl1bl2

× β(k1)β(k2)e(αm2(l21 − l22)).

Therefore, by (2.18) and (4.12),

|W2|2 �ML28
∑

k1,k2≤K

∑

L<l1,l2≤L1

(k1k2,2)=(l1,k1)=(l2,k2)=1
l1≡l2 ((k1,k2))

τ(k1)τ(k2)τ5(l1)τ5(l2)|V |,(4.13)

where

V =
∑

M ′<m≤M ′1
lim+2≡0 (ki), i=1,2

e(αm2(l21 − l22)),

M ′ = max(Y/l1, Y/l2,M), M ′1 = min(2Y/l1, 2Y/l2,M1).(4.14)

Note that if l1 6≡ l2 ((k1, k2)) then the system of congruences lim+2 ≡ 0 (ki),
i = 1, 2, is not solvable and, therefore, V = 0. Using only the basic properties
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of the congruences we easily find that if the conditions imposed on li, ki in
(4.13) hold, then there exists some integer h0 = h0(l1, l2, k1, k2) satisfying
1 ≤ h0 ≤ [k1, k2] and such that the system lim + 2 ≡ 0 (ki), i = 1, 2, is
equivalent to the congruence m ≡ h0 ([k1, k2]). In this case we have

|V | =
∣∣∣

∑

M ′<m≤M ′1
m≡h0 ([k1,k2])

e(αm2(l21 − l22))
∣∣∣

=
∣∣∣
∑

H<r≤H1

e(α(h0 + r[k1, k2])2(l21 − l22))
∣∣∣

=
∣∣∣
∑

H<r≤H1

e(α(r2[k1, k2]2 + 2h0r[k1, k2])(l21 − l22))
∣∣∣,

where

(4.15) H =
M ′ − h0

[k1, k2]
, H1 =

M ′1 − h0

[k1, k2]
.

The trivial estimate for the sum V is

|V | � M

[k1, k2]
.

Note that, according to (2.17), (4.12) and our assumption Y > XL−2A−4,
we have [k1, k2]�ML−200A. If the upper bound for K given by (4.3) were
greater, for example X1/3+ε for some ε > 0, then our method would not
work. Indeed, in this case the trivial estimate for V would be |V | � 1 for
some k1, k2 and it would be difficult to find a non-trivial estimate for the
sum W2.

We easily see that the contribution of the summands with l1 = l2 in the
expression on the right-hand side of (4.13) is

�M2L28
∑

k1,k2≤K

τ(k1)τ(k2)
[k1, k2]

∑

L<l≤L1

τ2
5 (l)�M2LL100.

By the last observation, Cauchy’s inequality and the estimate (4.13) we get

|W2|4 �M4L2L200(4.16)

+M2L60
( ∑

k1,k2≤K

τ2(k1)τ2(k2)
[k1, k2]

∑

L<l1,l2≤L1

τ2
5 (l1)τ2

5 (l2)
)

×
( ∑

k1,k2≤K
(k1k2,2)=1

[k1, k2]
∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

|V |2
)

�M4L2L200 +M2L2L200Σ0,
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where

Σ0 =
∑

k1,k2≤K
(k1k2,2)=1

[k1, k2]
∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

×
∑

H<r1,r2≤H1

e(α((r2
1 − r2

2)[k1, k2]2 + 2h0[k1, k2](r1 − r2))(l21 − l22)).

We have

Σ0 =
∑

k1,k2≤K
(k1k2,2)=1

[k1, k2]
∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

(4.17)

×
∑

s1,s2

e(α(s1s2[k1, k2]2 + 2h0s1[k1, k2])(l21 − l22))
∑

H<r1,r2≤H1
r1−r2=s1
r1+r2=s2

1

=
∑

k1,k2≤K
(k1k2,2)=1

[k1, k2]
∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

×
∑

s1,s2: s1≡s2 (2)
2H<s2+s1≤2H1
2H<s2−s1≤2H1

e(α(s1s2[k1, k2]2 + 2h0s1[k1, k2])(l21 − l22))

=
∑

k1,k2≤K
(k1k2,2)=1

[k1, k2]
∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

×
∑

|s1|≤2H1−2H

e(2αh0s1[k1, k2](l21 − l22))

×
∑

s2: s2≡s1 (2)
2H−s1<s2≤2H1−s1
2H+s1<s2≤2H1+s1

e(αs1s2[k1, k2]2(l21 − l22)).

Define

(4.18) K0 = L50A.

We divide the sum Σ0 into two parts:

(4.19) Σ0 = Σ1 +Σ2.

In Σ1 the restriction [k1, k2] ≤ K0 is imposed on the domain of summation
over k1, k2, whilst in Σ2 we sum over k1, k2 satisfying the condition [k1, k2] >
K0. According to (4.17) and the definitions above, we put s2 = s1 + 2t and



Prime numbers of special type 73

obtain

Σ1 ≤
∑

k1,k2≤K0
(k1k2,2)=1

[k1, k2]
∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

(4.20)

×
∑

|s1|≤2H1−2H

∣∣∣
∑

H′<t≤H′1

e(2αs1[k1, k2]2(l21 − l22)t)
∣∣∣,

Σ2 ≤
∑

k1,k2≤K
(k1k2,2)=1
[k1,k2]>K0

[k1, k2]
∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

(4.21)

×
∑

|s1|≤2H1−2H

∣∣∣
∑

H′<t≤H′1

e(2αs1[k1, k2]2(l21 − l22)t)
∣∣∣,

where

(4.22) H ′ = max(H − s1,H), H ′1 = min(H1 − s1,H1).

Consider first Σ1. We have

(4.23) Σ1 = Σ
(1)
1 +Σ

(2)
1 ,

where Σ(1)
1 and Σ

(2)
1 denote the respective contributions of the summands

with s1 6= 0 and s1 = 0 on the right-hand side of (4.20). Obviously

(4.24) Σ
(2)
1 �ML2K2

0 .

Using the well known estimate for the linear exponential sums and (4.12),
(4.14), (4.15), (4.20), (4.22) we get

Σ
(1)
1 �

∑

k1,k2≤K0

[k1, k2]
∑

L<l1,l2≤L1
l1 6=l2

×
∑

0<|s|≤2M/[k1,k2]

min
(

M

[k1, k2]
,

1
‖2α(l21 − l22)[k1, k2]2s‖

)

� K3
0

∑

h≤K2
0

∑

L<l1,l2≤L1
l1 6=l2

∑

0<|s|≤2M

min
(
M,

1
‖2α(l21 − l22)h2s‖

)

= K3
0

∑

h≤K2
0

∑

t1,t2

( ∑

L<l1,l2≤L1
l1−l2=t1, l1+l2=t2

l1 6=l2

1
) ∑

0<|s|≤2M

min
(
M,

1
‖2αt1t2h2s‖

)

� K3
0

∑

h≤K2
0

∑

0<|t1|≤L
1≤t2≤4L

∑

0<|s|≤2M

min
(
M,

1
‖2αt1t2h2s‖

)
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� K3
0

∑

h≤K2
0

∑

1≤t1,t2≤4L

∑

1≤s≤2M

min
(
M,

1
‖2αt1t2h2s‖

)

� K3
0

∑

1≤m≤64K4
0L

2M

τ5(m) min
(
M,

1
‖αm‖

)
.

To get rid of τ5(m) weights we apply Cauchy’s inequality. Then we use
Lemma 2.2 of Vaughan [27] and (2.3), (2.4), (4.12), (4.18) to obtain Σ(1)

1 �
M2L2L−140A. We leave the calculations to the reader. The last estimate and
(4.23), (4.24) give

(4.25) Σ1 �M2L2L−140A.

Consider now the sum Σ2. According to (4.21) we have

(4.26) Σ2 � L max
K0≤T≤K2

(TΣ(1)
2 ),

where

Σ
(1)
2 = Σ

(1)
2 (T ) =

∑

k1,k2≤K
(k1k2,2)=1

T≤[k1,k2]≤2T

∑

L<l1,l2≤L1, l1 6=l2
(k1,l1)=(k2,l2)=1
l1≡l2 ((k1,k2))

×
∑

|s1|≤2H1−2H

∣∣∣
∑

H′<t≤H′1

e(2αs1[k1, k2]2(l21 − l22)t)
∣∣∣.

The interval of summation over t in the sum above depends on the other
variables, which is not convenient. To get rid of this dependence, we apply
Lemma 2.2 of Bombieri and Iwaniec [2] and estimate Σ(1)

2 by means of the
mean value of a similar sum, in which the interval of summation over t does
not depend on ki, li, s1. In the new sum we may already extend the domain of
summation over ki, li, s1. After that the quantity under consideration does
not decrease. More precisely, using (4.14), (4.15), (4.22) and the lemma
mentioned above, we obtain

Σ
(1)
2 ≤

∑

k1,k2≤K
T≤[k1,k2]≤2T

∑

L<l1,l2≤L1
l1 6=l2

∑

|s|≤2M/T

(4.27)

×
∞�

−∞
K(θ)

∣∣∣
∑

M/(4T )<t≤4M/T

e(θt)e(2αs[k1, k2]2(l21 − l22)t)
∣∣∣ dθ

=
∞�

−∞
K(θ)Σ(2)

2 (θ, T ) dθ,

where

(4.28) K(θ) = min(15M/(4T ) + 1, (π|θ|)−1, (πθ)−2)
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and

Σ
(2)
2 = Σ

(2)
2 (θ, T ) =

∑

k1,k2≤K
T<[k1,k2]≤2T

∑

L<l1,l2≤L1
l1 6=l2

∑

|s|≤2M/T

×
∣∣∣

∑

M/(4T )<t≤4M/T

e(2αs[k1, k2]2(l21 − l22)t+ θt)
∣∣∣.

From (4.27), (4.28) we get

(4.29) Σ
(1)
2 � L max

0≤θ≤1
Σ

(2)
2 .

Consider Σ(2)
2 . We have

Σ
(2)
2 =

∑

T<h≤2T

( ∑

k1,k2≤K
[k1,k2]=h

1
) ∑

L<l1,l2≤L1
l1 6=l2

(4.30)

×
∑

|s|≤2M/T

∣∣∣
∑

M/(4T )<t≤4M/T

e(2αsh2(l21 − l22)t+ θt)
∣∣∣

�
∑

T<h≤2T

τ2(h)
∑

L<l1,l2≤L1
l1 6=l2

×
∑

|s|≤2M/T

∣∣∣
∑

M/(4T )<t≤4M/T

e(2αsh2(l21 − l22)t+ θt)
∣∣∣

=
∑

T<h≤2T

τ2(h)
∑

t1,t2

( ∑

L<l1,l2≤L1
l1−l2=t1, l1+l2=t2

l1 6=l2

1
)

×
∑

|s|≤2M/T

∣∣∣
∑

M/(4T )<t≤4M/T

e(2αsh2t1t2t+ θt)
∣∣∣

�
∑

T<h≤2T

τ2(h)
∑

0<|t1|,|t2|≤4L

×
∑

|s|≤2M/T

∣∣∣
∑

M/(4T )<t≤4M/T

e(2αsh2t1t2t+ θt)
∣∣∣

�
∑

T<h≤2T

τ2(h)
∑

0<|t1|,|t2|≤4L

×
∑

0<|s|≤2M/T

∣∣∣
∑

M/(4T )<t≤4M/T

e(2αsh2t1t2t+ θt)
∣∣∣+ML2L3

�ML2L3 +Σ
(3)
2 ,
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where

Σ
(3)
2 =

∑

T<h≤2T

τ2(h)

×
∑

0<|m|≤32ML2/T

τ3(|m|)
∣∣∣

∑

M/(4T )<t≤4M/T

e(2αh2mt+ θt)
∣∣∣.

We use the Cauchy inequality to get

(Σ(3)
2 )2 ≤

( ∑

T<h≤2T

τ4(h)
∑

0<|m|≤32ML2/T

τ6(|m|)
)
Σ

(4)
2(4.31)

�ML2L100Σ
(4)
2 ,

where

Σ
(4)
2 =

∑

T<h≤2T

∑

0<|m|≤32ML2/T

∣∣∣
∑

M/(4T )<t≤4M/T

e(2αh2mt+ θt)
∣∣∣
2
.

For the last sum we have

Σ
(4)
2 =

∑

T<h≤2T

∑

0<|m|≤32ML2/T

(4.32)

×
∑

M/(4T )<t1,t2≤4M/T

e((2αmh2 + θ)(t1 − t2))

�
∑

0<|m|≤32ML2/T

∑

M/(4T )<t1,t2≤4M/T

×
∣∣∣
∑

T<h≤2T

e((2αmh2)(t1 − t2))
∣∣∣

� M2L2

T
+
M

T

∑

0<|m|≤32ML2/T

∑

0<|l|≤4M/T

∣∣∣
∑

T<h≤2T

e(2αmh2l)
∣∣∣

� M2L2

T
+
M

T
Σ

(5)
2 ,

where
Σ

(5)
2 =

∑

0<|s|≤256M2L2/T 2

τ(|s|)
∣∣∣
∑

T<h≤2T

e(αsh2)
∣∣∣.

By Cauchy’s inequality we obtain

(Σ(5)
2 )2 �

( ∑

1≤s≤256M2L2/T 2

τ2(s)
)

(4.33)

×
( ∑

1≤s≤256M2L2/T 2

∣∣∣
∑

T<h≤2T

e(αsh2)
∣∣∣
2)
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� M2L2

T 2 L3
∑

1≤s≤256M2L2/T 2

∑

T<h1,h2≤2T

e(αs(h2
1 − h2

2))

� M4L4

T 3 L3 +
M2L2

T 2 L3|Σ(6)
2 |,

where
Σ

(6)
2 =

∑

1≤s≤256M2L2/T 2

∑

T<h1,h2≤2T
h1 6=h2

e(αs(h2
1 − h2

2)).

Applying the estimate for the linear sums again we get
∣∣Σ(6)

2

∣∣ =
∣∣∣
∑

m1,m2

( ∑

T<h1,h2≤2T
h1−h2=m1, h1+h2=m2

h1 6=h2

1
) ∑

1≤s≤256M2L2/T 2

e(αsm1m2)
∣∣∣

�
∑

0<|m1|,|m2|≤4T

∣∣∣
∑

1≤s≤256M2L2/T 2

e(αsm1m2)
∣∣∣

�
∑

1≤m1,m2≤4T

min
(
M2L2

T 2 ,
1

‖αm1m2‖

)

�
∑

1≤m≤16T 2

τ(m) min
(
M2L2

T 2 ,
1

‖αm‖

)
.

Now we proceed as in the estimation of Σ(1)
1 to get

(4.34) Σ
(6)
2 �M2L2L2−50A.

The inequalities (2.17), (4.12), (4.18), (4.26), (4.29)–(4.34) imply

(4.35) Σ2 �M2L2L−12A.

Taking into account (4.12), (4.16), (4.19), (4.25) and (4.35), we find that

(4.36) |W2| � XL50−3A.

Let us now estimate type I sums. Consider, for example, the sum W1.
According to (2.18) and (4.11) we have

(4.37) |W1| � L2 max
1/2≤T≤K

Σ3,

where

Σ3 = Σ3(T ) =
∑

T<k≤2T
(k,2)=1

τ(k)
∑

M<m≤M1
(m,k)=1

τ5(m)
∣∣∣

∑

L′<l≤L′1
ml+2≡0 (k)

e(αm2l2)
∣∣∣,

and

(4.38) L′ = max(L, Y/m), L′1 = min(L1, 2Y/m).
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For any m coprime to k we define m by mm ≡ 1 (k), 0 ≤ m < k. Let

(4.39) R = (L′ + 2m)/k, R1 = (L′1 + 2m)/k.

By Cauchy’s inequality we get

(Σ3)2 �
( ∑

T<k≤2T

τ2(k)
∑

M<m≤M1

τ2
5 (m)

)
(4.40)

×
( ∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

∣∣∣
∑

R<r≤R1

e(αm2(−2m+ rk)2)
∣∣∣
2)

�MTL100
∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

∣∣∣
∑

R<r≤R1

e(αm2(r2k2 − 4mrk))
∣∣∣
2

= MTL100
∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

×
∑

R<r1,r2≤R1

e(αm2(k2(r2
1 − r2

2)− 4mk(r1 − r2)))

�M2LTL100 +MTL100|Σ(1)
3 |,

where

Σ
(1)
3 =

∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

×
∑

R<r1,r2≤R1
r1 6=r2

e(αm2(k2(r2
1 − r2

2)− 4mk(r1 − r2))).

We have

|Σ(1)
3 | =

∣∣∣
∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

(4.41)

×
∑

s1,s2
s1 6=0

e(αm2(k2s1s2 − 4mks1))
∑

R<r1,r2≤R1
r1−r2=s1
r1+r2=s2

1
∣∣∣

=
∣∣∣
∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

×
∑

s1,s2: s1 6=0
2R<s1+s2, s2−s1≤2R1

s1≡s2 (2)

e(αm2(k2s1s2 − 4mks1))
∣∣∣
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�
∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

∑

0<|s1|≤10L/T

∣∣∣
∑

s2: s2≡s1 (2)
2R−s1<s2≤2R1−s1
2R+s1≤s2≤2R1+s1

e(αm2k2s1s2)
∣∣∣

�
∑

T<k≤2T
(k,2)=1

∑

M<m≤M1
(m,k)=1

∑

1≤s1≤10L/T

∣∣∣
∑

R<t≤R1
R−s1<t≤R1−s1

e(2αm2k2s1t)
∣∣∣.

First we consider the case

(4.42) MT ≤ K0,

where K0 is defined by (4.18). We apply Cauchy’s inequality, Lemma 2.2 of
Vaughan [27] and also (2.3), (2.4), (4.11), (4.18), (4.42) to get

|Σ(1)
3 | �

∑

T<k≤2T

∑

M<m≤M1

∑

1≤s≤20L

min
(
L,

1
‖2αm2k2s‖

)
(4.43)

�
∑

1≤n≤640K2
0L

τ3(n) min
(
L,

1
‖αn‖

)
� X2L−300A.

Hence, by (4.11), (4.40), (4.42), (4.43) we find that

(4.44) Σ3 � XL−100A if MT ≤ K0.

Consider now the case

(4.45) MT > K0.

Using (4.38), (4.39), (4.41) and Lemma 2.2 of Bombieri and Iwaniec [2] we
obtain

(4.46) |Σ(1)
3 | � L max

0≤θ≤1
Σ

(2)
3 ,

where

Σ
(2)
3 = Σ

(2)
3 (θ, T )

=
∑

T<k≤2T

∑

M<m≤M1

∑

1≤s≤10L/T

∣∣∣
∑

L/(4T )<t≤4L/T

e(2αk2m2st+ θt)
∣∣∣.

It is clear that

Σ
(2)
3 �

∑

MT<h≤4MT

τ(h)
∑

1≤s≤10L/T

∣∣∣
∑

L/(4T )<t≤4L/T

e(2αh2st+ θt)
∣∣∣.

Hence an application of Cauchy’s inequality gives
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(4.47) (Σ(2)
3 )2 �

( ∑

MT<h≤4MT

τ2(h)
∑

1≤s≤10L/T

1
)

×
( ∑

MT<h≤4MT

∑

1≤s≤10L/T

∣∣∣
∑

L/(4T )<t≤4L/T

e(2αh2st+ θt)
∣∣∣
2)

�MLL3
∑

MT<h≤4MT

∑

1≤s≤10L/T

∑

L/(4T )<t1,t2≤4L/T

e((2αh2s+ θ)(t1 − t2))

�MLL3
∑

1≤s≤10L/T

∑

L/(4T )<t1,t2≤4L/T

∣∣∣
∑

MT<h≤4MT

e(2αh2s(t1 − t2))
∣∣∣

� M2L3

T
L3 +MLL3Σ

(3)
3 ,

where

Σ
(3)
3 =

∑

1≤s≤10L/T

∑

L/(4T )<t1,t2≤4L/T
t1 6=t2

∣∣∣
∑

MT<h≤4MT

e(2αh2s(t1 − t2))
∣∣∣.

For the last sum we have

Σ
(3)
3 =

∑

1≤s≤10L/T

∑

0<|t|≤4L/T
1≤u≤8L/T

( ∑

L/(4T )<t1,t2≤4L/T
t1−t2=t
t1+t2=u

1
)∣∣∣

∑

MT<h≤4MT

e(2αh2st)
∣∣∣

� L

T

∑

1≤s≤10L/T

∑

1≤t≤4L/T

∣∣∣
∑

MT<h≤4MT

e(2αh2st)
∣∣∣

� L

T

∑

1≤m≤80L2/T 2

τ(m)
∣∣∣

∑

MT<h≤4MT

e(αh2m)
∣∣∣.

Hence

(Σ(3)
3 )2 � L2

T 2

( ∑

1≤m≤80L2/T 2

τ2(m)
)

(4.48)

×
( ∑

1≤m≤80L2/T 2

∣∣∣
∑

MT<h≤4MT

e(αh2m)
∣∣∣
2)

� L4

T 4L
3

∑

1≤m≤80L2/T 2

∑

MT<h1,h2≤4MT

e(α(h2
1 − h2

2)m)

� L6M

T 5 L
3 +

L4

T 4L
3Σ

(4)
3 ,
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where
Σ

(4)
3 =

∑

MT<h1,h2≤4MT
h1 6=h2

∣∣∣
∑

1≤m≤80L2/T 2

e(α(h2
1 − h2

2)m)
∣∣∣.

So we get as before

Σ
(4)
3 =

∑

0<|s1|,|s2|≤8MT

( ∑

TM<h1,h2≤4MT
h1−h2=s1
h1+h2=s2

1
)

(4.49)

×
∣∣∣

∑

1≤m≤80L2/T 2

e(αs1s2m)
∣∣∣

�
∑

1≤s1,s2≤8MT

∣∣∣
∑

1≤m≤80L2/T 2

e(αs1s2m)
∣∣∣

�
∑

1≤s1,s2≤8MT

min
(
L2

T 2 ,
1

‖αs1s2‖

)

�
∑

1≤s≤64M2T 2

τ(s) min
(
L2

T 2 ,
1
‖αs‖

)
�M2L2L2−50A.

Using (2.17), (4.11), (4.18), (4.40), (4.45)–(4.49) we find that

(4.50) Σ3 � XL−6A if MT > K0.

Hence by (4.37), (4.44) and (4.50) we obtain the estimate

(4.51) |W1| � XL2−6A.

We treat type I sums W ′1 in the same way and we find that

(4.52) |W ′1| � XL2−6A.

The estimate (4.4) follows from (4.10), (4.36), (4.51) and (4.52). Now the
proof of the estimate (2.23) for U2 is complete.

5. Proof of the Proposition—major arcs. In this section we prove
that for the sum U1, defined by (2.20), the estimate (2.23) holds. However,
now we do not need such a restrictive upper bound for K3, as in Section 4.
Now we assume that

(5.1) Ki ≤ X1/2L−20000A, i = 1, 2, 3.

According to (2.4) and (2.6) we have

(5.2) I1 =
∑

q<Q

∑

0≤a≤q−1
(a,q)=1

H(a, q),
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where

(5.3) H(a, q) =
1/(qτ)�

−1/(qτ)

Sk1

(
a

q
+ α

)
Sk2

(
a

q
+ α

)

× Sk3

(
a

q
+ α

)
e

(
−n
(
a

q
+ α

))
dα

and where Sk(α) is defined by (2.2). Denote

M(α) =
∑

m≤N

1
2
√
m
e(αm), ∆(y, h) = max

z≤y
max

(l,h)=1

∣∣∣∣
∑

p≤z
p≡l (h)

log p− z

ϕ(h)

∣∣∣∣

and let sk(a, q) be defined by (2.7). We write

(5.4) Sk

(
a

q
+ α

)
=
sk(a, q)
ϕ(k)

M(α) + G(α; k, q, a).

For α, a, q satisfying

(5.5) |α| ≤ (qτ)−1, 0 ≤ a < q < Q, (a, q) = 1

and for k ≤ X1/2L−20000A we have

(5.6) G(α; k, q, a)� (1 +∆(X, [k, q]))
X2

τ
.

The calculations are similar to those in Section 4.1 of [21], so we do not
present them here. We define

(5.7) Γi(α, q, a) =
∑

k≤Ki
βi(k)G(α; k, q, a), i = 1, 2, 3.

By (5.6) we get

max
α,q,a
(5.5)

|Γi(α, q, a)| � X2

τ

∑

q≤Q

∑

k≤Ki
τ(k)(1 +∆(X, [k, q]))

� X2

τ

∑

h≤KiQ
τ3(h)(1 +∆(X,h)).

Applying Cauchy’s inequality and Bombieri–Vinogradov’s theorem (Chap-
ter 28 of Davenport [4]) and using (2.3), (5.1) we get

(5.8) max
α,q,a
(5.5)

|Γi(α, q, a)| � XL−7000A, i = 1, 2, 3.

Define

(5.9) Si = Ski

(
a

q
+ α

)
, Mi =

ski(a, q)
ϕ(ki)

M(α), Gi = Si −Mi.
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We use (5.2)–(5.4), (5.9) and the identity

S1S2S3 =M1M2M3 + S1S2G3 + S1G2M3 + G1M2M3

to get

(5.10) I1 = J ′ + J1 + J2 + J3,

where

(5.11) J ′ =
∑

q<Q

∑

0≤a≤q−1
(a,q)=1

1/(qτ)�

−1/(qτ)

M1M2M3e

(
−n
(
a

q
+ α

))
dα,

and where J1, J2 and J3 are the contributions of the other summands.
Consequently,

(5.12) U1 � U ′ + Z1 + Z2 + Z3,

where

U ′ =
∑

n≤N

∗
∣∣∣∣
∑

ki≤Ki
i=1,2,3

β1(k1)β2(k2)β3(k3)
(
J ′ − π

4
√
n

S(n;Q; k1, k2, k3)
ϕ(k1)ϕ(k2)ϕ(k3)

)∣∣∣∣,

Z1 =
∑

n≤N

∣∣∣∣
∑

ki≤Ki
i=1,2,3

β1(k1)β2(k2)β3(k3)

×
∑

q<Q

∑

0≤a≤q−1
(a,q)=1

1/(qτ)�

−1/(qτ)

S1S2G3e

(
−n
(
a

q
+ α

))
dα

∣∣∣∣,

the definitions of Z2 and Z3 are clear. First we show that

(5.13) Zi � X3L−A, i = 1, 2, 3.

Consider, for example, Z1. We have

Z1 �
∑

q<Q

∑

0≤a≤q−1
(a,q)=1

∑

n≤N

∣∣∣∣
1/(qτ)�

−1/(qτ)

K1

(
a

q
+ α

)

×K2

(
a

q
+ α

)
Γ3(α, q, a)e

(
−n
(
a

q
+ α

))
dα

∣∣∣∣,

where Ki(α) are defined by (4.1) and Γ3(α, q, a) by (5.7). We apply the
Cauchy and Bessel inequalities to get
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Z2
1 � Q2X2

∑

q<Q

∑

0≤a≤q−1
(a,q)=1

∑

n≤N

∣∣∣∣
1/(qτ)�

−1/(qτ)

K1

(
a

q
+ α

)

×K2

(
a

q
+ α

)
Γ3(α, q, a)e

(
−n
(
a

q
+ α

))
dα

∣∣∣∣
2

� Q2X2
∑

q<Q

∑

0≤a≤q−1
(a,q)=1

1/(qτ)�

−1/(qτ)

∣∣∣∣K1

(
a

q
+ α

)
K2

(
a

q
+ α

)
Γ3(α, q, a)

∣∣∣∣
2

dα

� Q2X2 max
α,q,a
(5.5)

|Γ3(α, q, a)|2
1�

0

|K1(α)K2(α)|2 dα

� Q2X2 max
α,q,a
(5.5)

|Γ3(α, q, a)|2
1�

0

(|K1(α)|4 + |K2(α)|4) dα.

We use (4.3), (5.8) and the estimate (5.13) for Z1 follows. To treat Z2 and
Z3 we also need the inequality

1�

0

∣∣∣
∑

k≤Ki
βi(k)Mi

∣∣∣
4
dα� X2L10τ4(q),

whose proof is easy. We leave it to the reader to verify that the estimate
(5.13) holds also for Z2 and Z3.

Consider the quantity J ′ defined by (5.11). Using (2.8) and (5.9) we get

J ′ =
1

ϕ(k1)ϕ(k2)ϕ(k3)

∑

q<Q

t(q)
1/(qτ)�

−1/(qτ)

M3(α)e(−nα) dα.

It follows from (2.9)–(2.14) that for squarefree odd integers k1, k2, k3 we
have

(5.14) t(q)� τ 3(q)q−1(k1, q)(k2, q)(k3, q).

We also apply the well known formula

(5.15)
1/(qτ)�

−1/(qτ)

M3(α)e(−nα) dα =
π

4

√
n+O((qτ)1/2),

whose proof is available in Vaughan [27], Chapter 2, for example.
We use (2.3), (5.14) to estimate the contribution to U ′ arising from the

error term in (5.15). We leave this computation to the reader. We find

(5.16) U ′ � U ′′ +X2L−A,
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where

U ′′ =
∑

n≤N

∗√
n

∣∣∣∣
∑

ki≤Ki
i=1,2,3

β1(k1)β2(k2)β3(k3)
ϕ(k1)ϕ(k2)ϕ(k3)

(∑

q<Q

t(q)−S(n;Q; k1, k2, k3)
)∣∣∣∣.

To estimate U ′′ we apply some arguments of Mikawa [16]. Consider the
function

Ψ(k) =
{

0 if k has a prime divisor ≥ Q,
1 otherwise.

Let

(5.17) M = X2Q−1 and T = 8
∏

p<Q

p.

By the definition (2.15) of S we get

S−
∑

q<Q

t(q) =
∑

Q≤q≤M
t(q)Ψ(q) +

∑

M<q≤T
t(q)Ψ(q).

Therefore

(5.18) U ′′ � U∗ + U∗∗,
where

U∗ = X
∑

n≤N

∗ ∑

ki≤Ki
i=1,2,3

′ τ(k1)τ(k2)τ(k3)
ϕ(k1)ϕ(k2)ϕ(k3)

∣∣∣
∑

Q≤q≤M
t(q)Ψ(q)

∣∣∣,

U∗∗ = X
∑

n≤N

∗ ∑

ki≤Ki
i=1,2,3

′ τ(k1)τ(k2)τ(k3)
ϕ(k1)ϕ(k2)ϕ(k3)

∑

M<q≤T
|t(q)|Ψ(q).

Here and later
∑′
k≤Ki means that we sum over squarefree odd integers k

only.
Consider U∗. Using Cauchy’s inequality we get

U∗2 � X4L14
∑

ki≤Ki
i=1,2,3

′ 1
k1k2k3

∑

n≤N

∣∣∣
∑

Q≤q≤M
t(q)Ψ(q)

∣∣∣
2

(5.19)

= X4L14
∑

ki≤Ki
i=1,2,3

′ 1
k1k2k3

F,

say. We use the definition (2.8) of t(q) to represent the sum F as

F =
∑

n≤N

∣∣∣
∑

r∈X

η(r)e(−nr)
∣∣∣
2
,

where
X = {a/q : Q ≤ q ≤M, 1 ≤ a ≤ q − 1, (a, q) = 1}
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and
η(a/q) = sk1(a, q)sk2(a, q)sk3(a, q)Ψ(q).

For any r ∈ X we set δr = min{‖r − r′‖ : r′ ∈ X, r′ 6= r}, so if r = a/q
then δr ≥ (qM)−1. We apply the dual form of the large sieve inequality (see
Montgomery [17], Montgomery–Vaughan [18]) to get

(5.20) F�
∑

r∈X

(N + δ−1
r )|η(r)|2 �

∑

Q≤q≤M
(N + qM)Ψ(q)$(q),

where

$(q) = $(q; k1, k2, k3) =
∑

0≤a≤q−1
(a,q)=1

|sk1(a, q)sk2(a, q)sk3(a, q)|2.

This function is multiplicative with respect to q and we may easily compute
$(pl) for prime p. So we establish that if k1, k2, k3 are squarefree odd integers
then $(q)� q−2τ6(q)(k1, q)(k2, q)(k3, q). Now we use (5.17), (5.19), (5.20)
and after some straightforward calculations we get

(5.21) U∗ � X2L−A.
Consider U∗∗. We apply the estimate (5.14) to get

(5.22) U∗∗ � X3L
∑

M<q≤T
Ψ(q)

τ3(q)
q

( ∑

k≤X

τ(k)(k, q)
k

)3

� X3L7T,

where

T =
∑

M<q≤T
Ψ(q)

τ9(q)
q
�

∑

M<q1...q9≤T

Ψ(q1 . . . q9)
q1 . . . q9

(5.23)

�
∑

M<q1...q9≤T
q1≤q2≤...≤q9

Ψ(q1) . . . Ψ(q9)
q1 . . . q9

�
(∑

q≤T

Ψ(q)
q

)8 ∑

M1/9<q≤T

Ψ(q)
q

.

As in Mikawa’s paper [16] we find that
∑

M1/9<q≤T
Ψ(q)/q � exp(−

√
L)

and obviously
∑
q≤T Ψ(q)/q � L. Hence using (5.22), (5.23) we get

(5.24) U∗∗ � X3L−A.
The estimate (2.23) for U1 is a consequence of (5.12), (5.13), (5.16), (5.18),
(5.21) and (5.24).

Now the proof of Theorem 1 is complete.
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[1] J. Br üdern and E. Fouvry, Lagrange’s Four Squares Theorem with almost prime
variables, J. Reine Angew. Math. 454 (1994), 59–96.

[2] E. Bombier i and H. Iwaniec, On the order of ζ( 1
2 + it), Ann. Scuola Norm. Sup.

Pisa 13 (1986), 449–472.
[3] J.-R. Chen, On the representation of a large even integer as the sum of a prime

and the product of at most two primes, Sci. Sinica 16 (1973), 157–176.
[4] H. Davenport, Multiplicative Number Theory (revised by H. Montgomery), 2nd

ed., Springer, 1980.
[5] R. R. Hal l and G. Tenenbaum, Divisors, Cambridge Univ. Press, 1988.
[6] D. R. Heath-Brown, Three primes and an almost-prime in arithmetic progression,

J. London Math. Soc. (2) 23 (1981), 396–414.
[7] —, Prime numbers in short intervals and a generalized Vaughan identity , Canad.

J. Math. 34 (1982), 1365–1377.
[8] L.-K. Hua, Some results in the additive prime number theory , Quart. J. Math.

Oxford 9 (1938), 68–80.
[9] —, Introduction to Number Theory , Springer, 1982.

[10] H. Iwaniec, On sums of two norms from cubic fields, in: Journées de théorie
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Added in proof (September 2000). After the present paper was submitted for pub-
lication Professor H. Mikawa sent to the author the manuscript On exponential sums over
primes in arithmetic progressions. In this article he establishes non-trivial estimates for
the sums ∑

(d,c)=1

λ(d)
∑

n≤x, n≡c (d)

Λ(n)e(αn),

where α belongs to the set of minor arcs, c 6= 0 is a fixed integer, λ is any well-factorable
function of level x4/9(log x)−B and B > 0. This result implies a slight improvement of
Theorem 2 and Corollaries 2 and 3. The method can be used to improve also Theorem 1.
However the calculations will be quite difficult.

The author would like to thank Professor H. Mikawa for informing about his result
and sending the manuscript.


